Heavy Ions Studies in ATLAS

Martin Rybář for the ATLAS collaboration

Heavy Ions at the LHC

opportunity to study QCD in many particle regime

RHIC -
$$\sqrt{S_{NN}} = 200 \text{ GeV}$$

evidence for new state of matter and new phenomena

LHC -
$$\sqrt{S_{NN}}$$
 = 5.5 **TeV** (2.75 TeV expected in 2010)

- thirty times larger energy a new regime in HI physics
- a hotter, denser and longer living QGP
- hope for unexpected discoveries

Pb+Pb nominal conditions:

- Iuminosity 10²⁷ cm⁻²s⁻¹
- event rate: 7.7 kHz
- → LHC experiments with HI programme: ALICE, ATLAS, CMS

The ATLAS Detector

ATLAS is a general-purpose p+p experiment, but most features developed for p+p can also be used for heavy ion physics!

Heavy Ion Programme

- the ATLAS detector has excellent capabilities for heavy ion physics
- precise inner detector and calorimeter for measurements of global observables (multiplicity, transverse energy, flow)

Heavy Ion Programme

- the ATLAS detector has excellent capabilities for heavy ion physics
- fine segmented calorimeter for jet and photon measurements
- inner detector for jet fragmentation studies

Heavy Ion Programme

- the ATLAS detector has excellent capabilities for heavy ion physics
- muon system and inner detector for quarkonia and Z's measurement

ATLAS Detector Status and Performance

- ATLAS detector is fully operational
- 2008-2009: millions of cosmic events were recorded
- end of 2009: first p+p events at 900 GeV, top energy 2.36 TeV

Subdetector	# Channels	Operation Fraction *
Pixels	80 M	97.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM	170 k	98.8%
Tile calorimeter	9800	99.2%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger	320 k	99.4%
LVL1 Calo trigger	7160	99.8%

Excellent results during first physics runs!

Global Observables I

- properties of initial state, collective motion
- primary "day 1" measurement
- global observables are correlated with event geometry
- event by event measurement

Total E_T measurement → impact parameter number of collisions and participants

Global Observables II

Charged particle multiplicity testing predictions of theoretical models

two methods for N_{th} estimation:

hit counting method:

N_{dn} is proportional to the # of hit clusters in different barrel pixel layers (colour marks)

Global Observables III

Transverse energy as an example of reconstruction performance

Two approaches:

- calorimeter (em+had) clusters + muons + correction for dead material
- \bullet η -dependent correction from MC simulation and measured E_T

A+A MC & reconstruction a single b=2.3 fm Pb+Pb HIJING event!

Global Observables IV

Elliptic flow

- particle emission asymmetry due to the initial pressure gradient
- various methods for azimuthal anisotropies measurement are developed (non-flow effects)

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{T}\mathrm{d}p_{T}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2\underline{v_{n}} \cos[n(\phi - \Psi_{r})]\right)$$

Jets in HI Collisions

- jet rates can be calculated with pQCD
- we expects ~20 million jets with E_T>50GeV during one month of A+A at nominal luminosity (integrated luminosity of 0.5nb⁻¹)
- ATLAS is already measuring jets in p+p

Distribution of the uncalibrated jet transverse momentum in p+p collisions at 900GeV

jets are ideal for tomography of medium

Jet Measurement

- partons are expected to lose energy in dense coloured medium
- → jet quenching
- medium properties
- capabilities and performance for full jet reconstruction
- two reconstruction strategies: cone and anti-kT algorithm
- event-by-event background subtraction

Tower energies for a PYTHIA di-jet event embedded into a HIJING event

Jet Measurement

- partons are expected to lose energy in dense coloured medium
- → jet quenching
- medium properties
- capabilities and performance for full jet reconstruction
- two reconstruction strategies: cone and anti-kT algorithm
- event-by-event background subtraction

Tower energies in the same event after layer- and η-dependent subtraction

Jet Internal Structure

- sensitive to in-medium energy loss mechanisms
- fragmentation functions, D(z) and j_T distribution
- integral and differential jet shapes

$$z = \frac{\hat{p}_{jet} \cdot \vec{p}_{frag}}{|\vec{p}_{jet}|}$$

ATLAS is sensitive to quenching effect if it is of the PYQUEN size

Photon Measurement

unique resolution of ATLAS calorimetry for γ

photons well reconstructed after applying isolation cuts and shower pattern recognition also in HI collisions

γ-Jet Correlations

- medium is transparent for photons
- photons are direct handle on jet energy loss process
- ~200k photons E_T> 30GeV in standard Pb+Pb run (0.5 nb⁻¹)
- angular correlation enables fake rejection

15/17

Quarkonia

- quarkonia test deconfinement of medium
- size of quarkonia > colour screening length
- dependence of colour screening length on T
- different quarkonium states disassociate at different plasma temperatures quarkonia suppression

- mass resolution ~120 MeV
- 100k J/ψ, 25k Y, 7k Y', 4k Y" for standard Pb+Pb run

Quarkonia as a thermometer for QGP

Conclusions

- ATLAS has excellent capability to study HI physics especially due to the fine granularity of calorimeter and large coverage of all the subsystem
- detector will be calibrated and commissioned thanks to the p+p
- real data are in a good agreement with MC simulations from p+p collisions
- ATLAS has developed comprehensive physics program for HI collisions to measure many HI observables:
 - global observables
 - jets and photons
 - quarkonia
 - Z's
- we expect some results early in running, but have a multi-year program for hard probes