Improved Relativistic Hydrodynamics
from AdS/CFT

Michael Lublinsky

Ben-Gurion University

based on M.L. and Edward Shuryak, arXiv:0905.4069; arXiv:0704.1647



Motivation: Experiments (RHIC) probe systems with finite gradients.
Phenomenologically observed low viscosity is an “effective” viscosity measured at
momentum typical for a process in study.

New phenomena: Conical flows linear perturbations on top of global explosion.
These are small size perturbations sensitive to high gradients.

Main ldea:
Introduce all order dissipative terms in the gradient expansion of T"",

(VVu) we keep (Vu)?  we neglect

Extract momenta dependent viscosities by matching two-point correlation functions
of stress tensor with correlation functions computed from BH AdS/CFT.

Outlook of the talk:

e Old Life on the boundary: relativistic hydro (NS and 1S)
e Life in the bulk: gravity perspective

e New Life on the boundary: all order (linearized) hydro
e The bulk meets the boundary



Relativistic Hydrodynamics

Energy momentum tensor

(T") = (e + P)u*u” + Pg" + I

[T*” - tensor of dissipations ( ideal fluid: 11" = 0)
(uv) L ha AuB L v AaB
I1 = 5 AT A (Hag -+ Hﬁa) — 5 AT A I1.3

A = g + u'u” w = —1

Navier Stokes hydro (expanding in the velocity gradient)

II.s = —nV,ug

V. (T*) =0 — Navier — Stokes Eq.



Conformal invariance

T, =0 — e = 3P and £ = 0

Entropy density and EoS

e + P
s = —— = 4ksp T°

No dissipation no entropy production:

ds , v

— =0 v f I~ = 0

dt
Plane wave perturbation:

Su — 5uoe—iwt—l—ikz SP — 5P08—iwt—l—ikz

Linearized Hydro leads to the dispersion relation

Sound velocity ¢ = 1/4/3 Sound attenuation ~ 7



Retarded Correlators

G"*P(k,w) = —i /OOO dt /d3xei°"t+ikz([TW(x,t), T*7(0)])

The sound:

k? — 4iqwk?
— 3w? — 4inwk?

S _ tztz
Gi(k,w) = G = (¢ + P) -5

The shear: o
G-D k7 E GtXtX — P ,r’

The scalar:
G'(k,w)

GVY = —i(e + P)wq

27T = landnp = 27n/s



Israel-Stewart second order Hydrodynamics

Solves causality problems present in Navier-Stokes

Add extra term in the gradient expansion + non-linear terms in (Vu)

Hw/ p— (1 — TR 11>\V>\) HI’L\LIVS
Iterate the equation

1 + rruy V) I = IIxg

When thinking about small perturbations u,V* — V, — —iw

The IS second order hydro is equivalent (in the linear approximation) to

n
1 — iTRw

’I’]—)

Sound dispersion

w = ck[l + 7K 2m — 7)] — iccqk’[1 + K Gmw(27 — )]



AdS/CFT correspondence: weakly coupled super-gravity in AdSs X S5 is “dual”
to strongly coupled N' = 4 SYM gauge theory in 4d

't Hooft coupling

A Eg%MNC = 47mgs N > 1 R'*= L' = \d'?

g2 — p2 dx? + dz>

Warp Factor W ~ % f

R4

Boundary Z 1= Horizon
Z=0



Retarded Correlators from gravity

P. Kovtun and A. Starinets, Phys.Rev.Lett.96:131601,2006

For three channels a=S,D, T

() + ) Za(r) + 0a() Za(r) = 0,

Absorptive boundary condition (incoming wave) at the horizon r = 1:

Zo(r — 1) ~ e /2

Two independent local solutions at » = 0,

Za(r) = AaZ,(r) + B Z,'(r),
Z! is irregular in the origin while Z!! is a regular solution.

B.(w, k)
Aql(w, k)

G'(w,k) = —8P



Small momenta perturbation theory

Extending R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804:100,2008

1 1 1 1 1
mG.T — —igw—§k2—§(ln2—1)w2—z (3 —4In2)k*+iln2wk’®—1In"2Kk° ...
€

1 oo _ ik?/2[1 +i(2 — In2)w — k?/2 ...] + wk?/2 + ---

(e + P) B w + ik2/2[1 +i(2 — In2)w — k2/2 4+ -]
1 s _ —k* +i21 —iw(n2 — 2) + - Jwk® + 20°K? ...

(e+P) 3w2 — k2 + i2wk?[l — iw(n2 — 2) + -]

k k* 3 —1n4 ,
Sound mode: W= — — i— + k

V'3 3 6 /3

k* 1 —1n2 ,

Shear mode: w:_z__r,,Tk 4o

TR = 2 — In 2 S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani, JHEP 0802:045,2008
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Sound and Holography

P. Kovtun and A. Starinets, Phys.Rev.D72:086009,2005

Quasi-normal mode analysis in the AdS BH background - the sound channel

I Reto 2

Re[w]

=ck + > rk*"" Smw] =
n=1

Imuw

_77 02k2+25nk2n
n=2

B2 < 0 while the IS second order hydro leads to 32 > 0



Momenta dependent viscosity (naive)

M.L. and E. Shuryak, Phys.Rev.C76:021901,2007.

Effective viscosity nk) = 7|1 4+ ¢’ Zﬁnﬂ k2"
n=1

Entropy production in the Bjorken Hydro:

O(ST) 2‘2‘ ° T, = 300 (MeV) 1250 = ° R T, =300 (MeV)
Solo ol 1.2} .

1.8; 1. 15| : .

1. 6/ . 1.1] T R

1. 4¢ ° 1 ® . °

1 2f ° . . .. ] 1. O5¢
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Too naive: Bjorken hydro is very sensitive to the non-linear effects (so far neglected)



Life on the boundary: Linearized Hydro to all orders

Invariance under the local Weyl transformation 9w — e 28 (@) 9w
pv 6 Q(x,t) pv p Qz,t) | p p© p
T — e T ; u’ — e U Cauﬁ — Cauﬁ

1 1
A A A A A A A A
proz — Ruua_i(gl/ Rﬂa_ga Ruu_guuRa‘i‘guaRy)‘i‘gR(gy guoé_gagul/)a

Introduce all order gradient expansion of T":

0" = —2nV*u’ + 2ku,ugC*"*’ + p(us Vg + ug Vy) CH 4 £V, Vg CHYP

n = n[V?, (uV)]; k= K[V, (uV)]; p = plV’, (uV)]; £ = €[V7, (uV)];

V? - w? — k’and (uV) - —iw.



Retarded Correlators from Hydrodynamics

Linear response

STP
Gaﬁ,ul/ _ _
S 110
The scalar (h™"Y):
1 1 1
GM(kw) = —iwn — k(W + k) = p— (W — 1) + £ (W - 1)

The shear (h'):

nk?® — ikwk?®/2 — pk*(k® — 2w?)/4 + ifwk?®(Ww? — k?)/4

GPk,w) = P
(7w) (€—|— ) —iw—l—ﬁk2

The sound (h*?):

2 —4iqwk?® — 2RwW?k? — 2ipw?k? + £w*k?

k
G°(k,w) = P
(k; w) (e +F) k? — 3w?2 — 4inqwk?




4 vs 3 Puzzle

There should be one to one correspondence between linearized 7"” and the full
set of its correlators.

Our program is to equate the “hydro” correlators with the correlators computed
from the bulk gravity. The goal is to invert these equations in order to determine
the four transport coefficient functions.

We end up having only 3 equations for 4 unknown functions!

This system does not seem to have a unique solution. Despite our failure to
simultaneously determine all transport coefficient functions, we are able to extract
them perturbatively in the long-wave limit approximation.



In the long-wave limit all coefficient functions are expandable in power series

n = no (14111 w+mn2,0 k2-|—?70,2 w’+i 72,1 W K>+ 10,3 w?’—|—n4,0 k4—|—n2,2 w? k2-|_770,4 wi .. );

; 2 2 . 2 . 3
k= ko(l + iko1w + Kook™ + Kosw™ +iko1wk™ + tkozw” + +-°);

p=po(1 + iporw + prok® 4+ posw’ + --)
§ =81+ iépiw+ )

1st and 2nd order hydro

?70:1/2; TREUO,;[:Q—IHQ; 14,0:2’)70
3rd order hydro
3 n? 2
A =m0 = —1/2; no2 ~ —1.379 4+ 0.001 ~ -3 + —
ko1 = 5/2 — 2 In2; po = 4mng

4th order hydro

M21 = — 2.275 £ 0.005; Moz = — 0.082 £ 0.003



n=1l4itRw+A+~yw? ... TR = 2—In[2],

. 2 2
n =1+ 1Tpw — Tpw



Improved Causal Hydrodynamics

_ 7o
thmodel = 773K — iwm




Conclusions

We have initiated study of all order (linearized) hydrodynamics.

The 4 vs 3 puzzle remains unsolved.
Possible solutions may involve either the membrane paradigm approach or prove
that the iterative procedure works to any order

We have determined few new transport coefficients

We cautiously suggest that the results based on IS might be less reliable than
it was previously thought. We have proposed an improved phenomenological
model.

The effective viscosity is a decreasing function both of frequency and
momentum. This behavior might be the reason behind the low viscosity
observed at RHIC. It may also explain the exceptionally good survival of various
hydrodynamic flows, particularly the sound waves.



