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in collaboration with S. Strüber, F. Giacosa, D. H. Rischke

3rd February 2010



Introduction Our model Results Conclusion and outlook

Outline

1 Introduction
Why do we need tetraquarks?
What is a tetraquark?

2 Our model
Our potential
Untwiddle the masses
Nonzero T model

3 Results
Our potential
Order of phase transition
T dependence

4 Conclusion and outlook



Introduction Our model Results Conclusion and outlook

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an
antiquark (quarkonium) to a meson



Introduction Our model Results Conclusion and outlook

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an
antiquark (quarkonium) to a meson

below 1.8 GeV we have more resonances than expected from
an quarkonium picture

lattice finds for scalar mesons higher masses
Mud = 1.4 − 1.5GeV

scalar quarkonia are p-wave states (L = S = 1), thus expected
to be heavier than 1 GeV as tensor and axial-vector mesons

mass degeneracy of a0(980) and f0(980)



Introduction Our model Results Conclusion and outlook

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an
antiquark (quarkonium) to a meson

below 1.8 GeV we have more resonances than expected from
an quarkonium picture

lattice finds for scalar mesons higher masses
Mud = 1.4 − 1.5GeV

scalar quarkonia are p-wave states (L = S = 1), thus expected
to be heavier than 1 GeV as tensor and axial-vector mesons

mass degeneracy of a0(980) and f0(980)

a possible solution to all these problems is to interpret the light
scalars as tetraquark states
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What is a tetraquark?

a tetraquark is a four quark state

combine two quarks to a coloured diquark and couple two diquarks
two a colourneutral particle

|qq〉 = |Space: L = 0〉 |Spin: (^_− _^)〉 |f: (ud − du)〉 |c: (RB − BR)〉

|qq〉 = ρk =
√

1
2ǫijkqt

i (Cγ5)qj

u ⇔ [d , s ] d ⇔ [s, u] s ⇔ [u, d ]

u ⇔ [d , s] d ⇔ [s, u] s ⇔ [u, d ]

out of this correspondency, you can build up a tetraquark nonet
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What is a tetraquark?

-1 0 +1
isospin

m
as

s

a
−

0 (980) = 1
2
[u, s][d, s] a0(980) = 1

2
√

2
[u, s][u, s] − [d, s ][d, s]

f0(980) = 1
2
√

2
[u, s][u, s] + [d, s ][d, s]

a+
0 (980) = 1

2
[d, s][u, s]

κ
0(800) = 1

2
[u, s][u, d ]

κ
−(800) = 1

2
[u, d ][d, s]

κ
0(800) = 1

2
[u, d ][u, s]

κ
+(800) = 1

2
[d, s][u, d ]

f0(600) = 1
2
[u, d ][u, d ]

tertaquark picture generates many resonances

f0(600) is an s-wave state, thus it can be lighter than 1 GeV

mass degeneracy of a0(980) and f0(980) can be explained with
constituent quarks
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Our potential

the model we use is the SU(2)r × SU(2)l limit of the
SU(3)r × SU(3)l case
F. Giacosa, Phys.Rev.D75:054007 (2007)

A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke,

Phys.Rev.D79:037502 (2009)
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Our potential

the model we use is the SU(2)r × SU(2)l limit of the
SU(3)r × SU(3)l case
F. Giacosa, Phys.Rev.D75:054007 (2007)

A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke,

Phys.Rev.D79:037502 (2009)

linear sigma model + tetraquark

V = λ
4 (−→π 2 + ϕ2 − F 2)2 − ǫϕ + 1

2M2
χχ2 − gχ(−→π 2 + ϕ2)

tetraquark: χ = ρ†ρ

diquark: ρ =
√

1
2ǫijq

t
i (Cγ5)qj

for SU(2) each diquark ρ is invariant under chiral transformation
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Untwiddle the masses

V = λ
4 (−→π 2 + ϕ2 − F 2)2 − ǫϕ + 1

2M2
χχ2 − gχ(−→π 2 + ϕ2)

ϕ0 = F√
1−(2g)/(λM2

χ
)
+ ǫ

2λF 2 + . . . quark condensate

χ0 = g
M2

χ

ϕ2
0 tetraquark condensate
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Untwiddle the masses

V = λ
4 (−→π 2 + ϕ2 − F 2)2 − ǫϕ + 1

2M2
χχ2 − gχ(−→π 2 + ϕ2)

ϕ0 = F√
1−(2g)/(λM2

χ
)
+ ǫ

2λF 2 + . . . quark condensate

χ0 = g
M2

χ

ϕ2
0 tetraquark condensate

expanding the potential around the minimum:

V = 1
2 (χ, ϕ)

(

M2
χ

−2gϕ0

−2gϕ0 M2
ϕ

) (

χ

ϕ

)

+ 1
2M2

π
~π2 + . . .

where M2
ϕ

= ϕ2
0

(

3λ − 2g2

M2
χ

)

− λF 2 and M2
π

= ε

ϕ0

non diagonal mass matrix

−2gϕ0ϕχ

since the mass matrix is not diagonal we have to diagonalize the
potential
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Untwiddle the masses

H and S chosen to diagonalize the potential
(

H

S

)

=

(

cos θ0 sin θ0

− sin θ0 cos θ0

) (

χ

ϕ

)

= B

(

χ

ϕ

)
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Untwiddle the masses

H and S chosen to diagonalize the potential
(

H

S

)

=

(

cos θ0 sin θ0

− sin θ0 cos θ0

) (

χ

ϕ

)

= B

(

χ

ϕ

)

≡
(

f0(600)
f0(1370)

)

V =
1

2
(χ, ϕ)B t

B

„

M2
χ −2gϕ0

−2gϕ0 M2
ϕ

«

B
t
B

„

χ

ϕ

«

+ . . .

=
1

2
(H, S)

„

M2
H 0

0 M2
S

« „

H

S

«

+ . . .

θ0 =
1

2
arctan

4gϕ0

M2
ϕ − M2

χ

, −
π

4
< θ0 <

π

4

M
2
H = M

2
χ cos2

θ0 + M
2
ϕ sin2

θ0 − 2gϕ0 sin(2θ0)

M
2
S = M

2
ϕ cos2

θ0 + M
2
χ sin2

θ0 + 2gϕ0 sin(2θ0)

`

M2
S − M2

H

´2
=

`

M2
ϕ − M2

χ

´2
+ (4gϕ0)

2
→

˛

˛M2
S − M2

H

˛

˛ ≥ 4gϕ0
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Nonzero T model

we employ the CJT-formalism in the Hartree-Fock approximation
to calculate the T dependency of our masses, condensates and
mixing angle

masses, condensates and mixing angle become T dependent

MH → MH(T ) MS → MS(T ) Mπ → Mπ(T )
ϕ0 → ϕ(T ) χ0 → χ(T ) θ0 → θ(T )

MH(0) = MH MS(0) = MS Mπ(0) = Mπ

ϕ(0) = ϕ0 χ(0) = χ0 θ(0) = θ0
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our potential
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Range of the parameters

our potential

V = λ
4 (−→π 2 + ϕ2 − F 2)2 − ǫϕ + 1

2Mχ
2χ2 − gχ(−→π 2 + ϕ2)

two known values

Mπ = 0.139 GeV
ϕ0 = fπ = 0.0924 GeV



Introduction Our model Results Conclusion and outlook

Range of the parameters

our potential

V = λ
4 (−→π 2 + ϕ2 − F 2)2 − ǫϕ + 1

2Mχ
2χ2 − gχ(−→π 2 + ϕ2)

two known values

Mπ = 0.139 GeV
ϕ0 = fπ = 0.0924 GeV

three approximately known values

MH ≈ 0.4 GeV f0(600) = 0.4 GeV − 1.2 GeV
MS ≈ 1.2 GeV f0(1370) = 1.2 GeV − 1.5 GeV
g should be of the order of a few GeV

to manage these uncertainties we study variation of g, MS and MH

A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, Phys.Rev.D79:037502

(2009)
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MH = 0.4GeV fixed, g and MS vary

0 0.5 1 1.5 2 2.5 3 3.5
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1.0

1.1

1.2

1.3
MS [GeV]

g [GeV]

Forbidden area

First-order

Crossover

MH = 0.4 GeV (fixed)

forbidden area arises from
∣

∣M2
S − M2

H

∣

∣ ≥ 4gϕ0

between first order and
crossover region we find a
second order phase
transition

g → 0:
χ and ϕ decouple
H → χ, S → ϕ

MS > 0.948GeV :
first order phase transition
MS < 0.948GeV :
crossover phase transition
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Tc behaviour
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Forbidden area
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Crossover

MH = 0.4 GeV (fixed)

increasing of g:

mixing increases

Tc decreases

first order softens

crossover is obtained for
large g
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MS = 1.2GeV fixed, g and MH vary
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MS = 1.2 GeV (fixed)

forbidden area arises from
∣

∣M2
S − M2

H

∣

∣ ≥ 4gϕ0

between first order and
crossover region we find a
second order phase
transition

g → 0:
χ and ϕ decouple
H → χ, S → ϕ

we get first order phase
transition

to get a crossover for a large
MS we need a large gap
between MS and MH
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Condensate

MH = 0.4 GeV, MS = 1.2 GeV and g = 3.4 GeV
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crossover phase transition at
Tc ≈ 170MeV

T < Tc :
χ(T ) goes like g

M2
χ

ϕ(T )2

T > Tc :
χ(T ) increases
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Masses and mixing angle

MH = 0.4 GeV, MS = 1.2 GeV and g = 3.4 GeV
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H
S predominantly MS(T ) consists of quarkonium

predominantly MH(T ) consists of tetraquark

mixing angle θ(T ) increases till Ts = 155MeV ,
then sign becomes negative
Ts defined as θ(Ts) = π

4

at Ts both masses behave discontinously and the
states interchange their roles

for large T the mixing goes to zero and
everything behaves like in the linear sigmar model
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Conclusion and outlook

a T dependent model including a tetraquark state

order of phase transition changes with coupling g;
if coupling g and mixing is large enough we also obtain a
crossover phase transition for a mass of the chiral partner
above 1 GeV

mixing increases with T and at a temerature Ts a role
interchange takes place

include glueball states and vectormesons
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Thank you

for your attention
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