Übungen zur Theoretischen Physik 3 für das Lehramt L3 - Blatt 11

Aufgabe 1: Hintereinanderausführung von Lorentz-Transformationen

Wir betrachten im Folgenden drei Inertialsysteme Σ , Σ' und Σ'' im Rahmen der speziellen Relativitätstheorie. Dabei möge sich Σ'' gegenüber Σ' mit der Geschwindigkeit $\vec{u} = \beta_u c \vec{e}_1'$ und Σ' mit der Geschwindigkeit $\vec{v} = \beta_v c \vec{e}_1$ gegenüber Σ bewegen.

(a) Geben Sie die Lorentz-Transformationsmatrizen $\hat{\Lambda}_1$ und $\hat{\Lambda}_2$ zwischen den Raum-Zeit-Koordinaten

$$x'' = \hat{\Lambda}_1 x', \quad x' = \hat{\Lambda}_2 x \tag{1}$$

an.

Hinweis: Für das Folgende ist es bequem mit der Darstellung der Lorentz-Transformationsmatrizen mit Hyperbelfunktionen cosh und sinh mit den Rapiditäten α_u und α_v zu arbeiten.

(b) Zeigen Sie, dass auch die Transformationsmatrix $\hat{\Lambda}$, die direkt von \underline{x} zu \underline{x}'' führt,

$$\underline{x}'' = \hat{\Lambda}\underline{x} = \hat{\Lambda}_1\underline{x}' = \hat{\Lambda}_1\hat{\Lambda}_2\underline{x} \Rightarrow \hat{\Lambda} = \hat{\Lambda}_1\hat{\Lambda}_2, \tag{2}$$

wieder eine Lorentz-Transformation ist. Was ist die entsprechende Rapidität?

Tipp: Für die Hyperbelfunktionen gelten die Additionstheoreme

$$\cosh(\alpha_1 + \alpha_2) = \cosh(\alpha_1)\cosh(\alpha_2) + \sinh(\alpha_1)\sinh(\alpha_2),
\sinh(\alpha_1 + \alpha_2) = \sinh(\alpha_1)\cosh(\alpha_2) + \sinh(\alpha_2)\cosh(\alpha_1).$$
(3)

(c) Was ergibt sich daraus für die Relativgeschwindigkeit zwischen Σ und Σ'' ?

Aufgabe 2: Additionstheorem von Geschwindigkeiten

Seien Σ und Σ' zwei Inertialsysteme, wobei sich Σ' mit der Geschwindigkeit $\vec{v} = \beta c(1,0,0)$ gegenüber Σ bewegt. In Σ' bewege sich ein Teilchen mit der konstanten Geschwindigkeit $\vec{u}' = (u_1, u_2, 0)$. Mit welcher Geschwindigkeit bewegt es sich bzgl. Σ ?

Diskutieren Sie die Lösung sowohl im Rahmen der Newtonschen als auch der speziell-relativistischen Mechanik!