EXAM III Physics 208

Name.....Section Number.....

USEFUL INFORMATION

For two point particles

$$ec{F} = rac{1}{4\pi\epsilon_0} rac{q_1 q_2}{r^2} \hat{r}$$
 $dec{B} = rac{\mu_0 i}{4\pi} rac{dec{s} imes ec{r}}{r^3}$
 $rac{dec{r}}{dt} = rac{dx}{dt} ec{i}_x + rac{dy}{dt} ec{i}_y = rac{dr}{dt} ec{i}_r + r rac{d heta}{dt} ec{i}_ heta$
 $\oint ec{E} \cdot dec{r} = -rac{d}{dt} \int ec{B} \cdot dec{S}$
 $C = rac{Q}{V}$
 $R =
ho rac{l}{A}$
 $\int ec{B} \cdot dec{S} = \pm Li$
 $\oint ec{B} \cdot dec{r} = \mu_0 i_{enclosed}$

1. (25 points) An infinitely long wire carrying a current i, into the page, has a circular cross section of radius W. The current is uniformly spread over the cross sectional area.

a. Evaluate $\int \vec{B} \cdot d\vec{r}$ for the path shown which consists of a semi-circle of radius a=2W and two straight segments of length H.

b. Evalaute $\int \vec{B} \cdot d\vec{r}$ for the same path if, instead, $a = \frac{W}{2}$

- 2. (25 points) In the circuit below the capacitor is originally charged with Q_0 on the top plate and $-Q_0$ on the bottom. At t=0 the switch is closed.
- a. Find the equation for the charge on the plates as a function of time.

b. Solve the equation for the charge on the plates if the resistance of the circuit can be ignored.

3. (25 points) A constant magnetic field, magnitude B_0 , points into the page. A circular loop of very thin wire with resistivity ρ and cross-sectional area W, has radius H. It is initially in the plane of the paper. The loop can be rotated about the axle shown:

If a torque is applied to the axle, starting at t = 0, so that the loop has a constant angular acceleration, α , find the current in the loop.

4. (25 points) A coaxial cable has a wire with current i_1 flowing to the right in the center wire and i_2 flowing to the left in the outer, hollow wire. Both wires have circular cross-sections. The inner wire has a radius a_1 and the outer wire a radius a_2 with a thickness T.

What must be the relationship between i_1 and i_2 so that there is no magnetic field at a point x away from the central axis if

a.
$$x > a_2 + T$$

b.
$$a_1 < x < a_2$$

c.
$$x = a_2 + \frac{T}{2}$$