
“Einführung in die Programmierung für Physiker” – WS 2013/14 – Marc Wagner

Tutors: C. Czaban, A. Dromard, J. Glesaaen, M. Neuman, D. Palao, C. Schäfer, A. Sciarra

Tutorial IX
January 16

Excercise 1 [Iteration and recursion] The purpose of this exercise is to practice two relatively

common programming techniques: iteration and recursion. In particular, in this tutorial we suggest

to write two functions that implement the integer exponentiation of a number.

(i) Write a function, double pow_iter(double a, int n), that uses iteration to compute an.

Using a loop, the function must multiply a by itself n times to produce the result.

(ii) Write another function, double pow_rec(double a, int n), that computes again an but

this time using recursion. You are allowed to use neither for nor while nor do-while loops.

Note: the standard mathematical library (linked with -lm) includes a function called pow. In this

exercise you can use it to check your functions.

However, in real life we recommend you to use as much as possible the standard library: it comes

with well tested and efficient functions that avoid the effort of reinventing the wheel.

Excercise 2 [Linked list] In the lectures, the concept of (singly) linked list has been introduced.

It is a simple sequence-like data type. It consists of nodes, which in its simplest version, are objects

that contain some data and a pointer to the next node. The pointer of the last element is a NULL

pointer.

In this tutorial you should extend the basic functionality introduced in the lecture. For instance,

by writing suitable functions, you could add the following features:

(i) Inserting an element at some position in the list:

void insert(L_ELEM **p_list, const char name[], int index).

(ii) Determining the length of a list: int length(L_ELEM *p_list).

Of course, if you wish, you could add much more features: reverse a list, concatenate two lists,

copy a list, sort a list, . . .

