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Final Project: χ2 Data Fitting

1 Introduction

The goal of this project is to write a program that fits a function to a given set of data points depending on a set of
parameters. When fitting a function to data points the usual approach is to define a merit function that measures
the agreement between the data and the model given a particular choice of parameters. Conventionally a merit
function is designed in such a way that its minimum represents close agreement. In order to find this minimum the
parameters of the fit model have to be adjusted properly which is a task of minimization.

Suppose we want to fit a function with M adjustable parameters to N data points (xi, yi), i = 1 . . . N , i.e. a
polynom of degree M − 1. A simple example for such a problem is the Least-Squares-Fit for which the function to
be minimized is given by

M =

N∑
i=1

(yi − y(xi; a1 . . . aM ))
2
, (1)

where y(xi; a1 . . . aM ) is the function we want to fit to the data, depending on the adjustable parameters ai. The
function y(xi; a1 . . . aM ) e.g. could be given by

y(x) = a0 + a1x+ a2x+ . . . . (2)

Since data typically never exactly fits a model one is not purely interested in the best fit parameters (which minimize
the merit function) but also wants to estimate the uncertainties in the determination of these parameters. Lets
assume that each data point to be fitted has a known error σi (i.e. from the uncertainty when measuring this value
in an experiment). To incorporate this error each term in the sum of the right side of equation (1) is divided by σi.
Thus the following equation is obtained,

χ2 =

N∑
i=1

(
yi − y(xi; a1 . . . aM )

σi

)2

, (3)

called the ”chi-square”.

In order to minimize the χ2-function we take the derative with respect to the M parameters ak which yields

0 =

N∑
i=1

(
yi − y(xi)

σ2
i

)(
∂y(xi; . . . ak . . .)

∂ak

)
, k = 1, . . . ,M . (4)

In the following this equation has to be adapted for each particular problem.
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2 Linear Regression
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Figure 1: Linear Regression for f(x) = a+ b · x

For now let us consider the simple case of linear regression, which is simply fitting Data to a straight line. Thus
the model function reads

y(x) = y(x; a, b) = a+ bx . (5)

In this case the minimization of χ2 is straightforward and does not require any kind of sophisticated algorithms.
At its minimum the derivatives of χ2(a, b) with respect to the parameters a and b vanish:

0 =
∂χ2

∂a
, 0 =

∂χ2

∂b
. (6)

In order to obtain the error estimates on the parameters a and b consider error propagation which is given by

σa =

N∑
i=1

σi

(
∂a

∂yi

)2

, σb =

N∑
i=1

σi

(
∂b

∂yi

)2

. (7)

2.1 Tasks

• Given these equations implement a χ2-fitting procedure that fits equation (5) to a set of data points in order
to obtain a, b as well as the error estimates. Afterwards use the fitted parameters to compute the reduced
chi-square value χ2/ν where ν represents the degrees of freedom and is given by ν = N −M (number of data
points minus number of free parameters). This value is known as reduced χ2, where χ2 = 1 indicates a good
fit.

• Fit the function to the set of data points provided here: http://th.physik.uni-frankfurt.de/~mwagner/

mcwagner.html.

• Plot the data points as well as the fitted function.

• The parameters and the χ2/ν value should be either printed in the terminal as output from the program or
included in the plot.
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3 General Linear Least Squares Problems

Most physical applications are more involved when it comes to fitting data and can not be handled with linear
regression. The more general form of a model function has to be considered,

y(x; a1 . . . aM ) =

M∑
k=1

akXk(x) , (8)

with M basis functions Xi, i = 1, . . . ,M . Each Xi could be an arbitrary function of x, but for the sake of simplicity
one could just assume Xk(x) = xk, meaning we are fitting a polynome of the form f(x) =

∑M
k=0 = akx

i.
The corresponding χ2-function to be minimised then reads

χ2 =

N∑
i=1

(
yi −

∑M
k=1 akXk(xi)

σi

)2

. (9)

This time, in order to minimize χ2, we have to use a more sophisticated algorithm. One possibility is to solve the
problem by reformulating it in terms of normal equations:
Specializing equation (4) to the case of (8) we obtain

0 =
N∑
i=1

1

σ2
i

yi − M∑
j=1

ajXj(xi)

Xk(xi) , k = 1, . . . ,M . (10)

Since in the subsequent discussion the above problem will be reformulated as a matrix equation it is reasonable to
introduce some notations. Let A be a N ×M matrix whose components are constructed of the M basis functions
Xj(xi), evaluated at the N positions xi, divided by the standard deviations xi:

Aij =
Xj(xi)

σi
. (11)

Let us also define a vector ~b of length N by

bi =
yi
σi
, (12)

which represents the result vector of the matrix equation. The solution vector is given by ~a, accordingly ai and
contains the parameters to be fitted. The following rearrangement leads to the matrix equation.

0 =

N∑
i=1

yiXk(xi)

σ2
i

−
M∑
j=1

N∑
i=1

Xj(xi)Xk(xi)

σ2
i

aj , (13)

⇒
N∑
i=1

yiXk(xi)

σ2
i︸ ︷︷ ︸

βk

=

M∑
j=1

N∑
i=1

Xj(xi)Xk(xi)

σ2
i︸ ︷︷ ︸

αkj

aj . (14)

Finally with

(β) = AT~b , (α) = ATA (15)

one obtains the normal equations

(ATA)~a = AT~b . (16)

Note that the dimension of (ATA) is M ×M . This equation can be solved for the vector ~a which contains the fit
parameters ak in (8). Thus the χ2 minimization has been reformulated into a problem of solving a system of linear
equations which can be accomplished e.g. by methods like Gauss-Jordan or LU decomposition 1. At this point we
are not done, since we still have to compute the uncertainties for the fit parameters.

1Numerous descriptions of the algorithm including examples for implementations in the programming language C can be found on
the internet.
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3.1 Computation of Error Estimates

Principally we use error propagation again (c.f. equation (7)):

σ2(aj) =

N∑
i=1

σ2
i

(
∂aj
∂yi

)2

. (17)

This time the evaluation of equation (17) is a little bit more complicated. In order to be able to take the derivatives
of aj with respect to yi we have to invert equation (16)

~a = (ATA)−1AT~b . (18)

Using equations (13) - (16) and denoting (ATA)−1 = C we can express the above equation in the following way:

aj =

M∑
k=1

Cjk

[
N∑
i=1

yiXk(xi)

σ2
i

]
. (19)

Having derived this expression the derivatives of aj in equation (17) can be computed. Further evaluation will
reduce equation (17) to

σ2(aj) = Cjj . (20)

This means the diagonal elements of the covariance matrix C are the variances (squared uncertainties) of the fit
parameters aj .
In summary in order to calculate the errors for the fit parameters the matrix ATA has to be inverted (e.g. Gauss-
Jordan, LU decomposition) to obtain the covariance matrix. The variances are given by the diagonal of this matrix.
σ2(aj) = Cjj .

The final task will be to implement this procedure for a simple physical application, namely the static quark
antiquark potential.

4 The Static Quark Antiquark Potential
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Figure 2: Static q̄q Potential: χ2 minimizing fit for Vq̄q(r) = V0 + α/r + σ · r
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One of the most characteristic phenomena in Quantumchromodynamics is confinement. This means that quarks
and gluons can not be isolated and do only occur in bound states. In sophisticated computer simulations it can
be shown that the potential between two static quarks is roughly a linear function of the distance. Contrary to
gravitation or electromagnetism the force between the two quarks remains constant. However, since not only the
strong force is involved in this process but also the coulomb force, at shorter separations the latter dominates and
the potential is best described by a coulomb part. In summary the static potential can be parametrized by the
following equation:

Vq̄q(r) = V0 +
α

r
+ σr , (21)

where the second term on the right side represents the so called Lüscher term (∝ 1/r) and the third term (∝ r)
stems from the strong interaction.

Figure 3: source: http://cerncourier.com/

4.1 Tasks

• On the basis of the theoretical foundations explained in the previous section apply a χ2-minimizing fit of equa-
tion (21) to the provided data points (http://th.physik.uni-frankfurt.de/~mwagner/mcwagner.html).

• Compute the covariance matrix in order to obtain the error estimates on the fitted parameters V0, α and σ.

• Don’t forget to compute the χ2/ν value!

• Plot the data points as well as the fitted function.

• The parameters and the χ2/ν value should be either printed in the terminal when running your program or
included in the plot.

5 General Hints for the Tasks

Static q̄q Potential

• The χ2 minimization in this case is based on solving a matrix equation. For this reason the first step could be
to separately implement a procedure to solve a matrix equation. As already mentioned above this can be e.g.
Gauss-Jordan or LU decomposition. Another essential part that should be included in a stable algorithm for
solving systems of linear equations is pivoting.

• The next big step is to invert the matrix ATA what can also be done with the above mentioned algorithms.

• When the above tasks are accomplished the main work is done and one can think about how to incorporate
the procedures into the fitting program.

• You should also think about how to construct the matrices A, AT and ATA (c.f. equation (11)). For example
you can directly construct A and AT by filling them with the data points from the provided file by e.g. looping
over the rows of the file with a while-loop or a for-loop. Afterwards you can construct ATA by a simple
matrix multiplication.
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