
Einführung in die Programmierung für Physiker 13/14 � Marc Wagner

Jonas R. Glesaaen: glesaaen@th.physik.uni-frankfurt.de

C library for Numerical Integration

1 Introduction

In this project we will write multiple C-functions to calculate numerical integrals of one-dimensional
functions. We will start with three basic closed region algorithms. After having used these to write
constant stepsize numerical integration functions, we will move on to semi-adaptive1 stepsize algo-
rithms. We will then tackle integrals with improper integration ranges (such as in�nity), and �nally
we will implement the simplest Monte Carlo integration algorithm.

2 Constant stepsize algorithms

You have already worked with the simplest of the integration algorithms in tutorial VI, the Riemann
sum 2. In the tutorial the midpoint rule was used, which we will come back to later, but �rst let us
look at the left- and right Riemann sums.∫ x1

x0

f(x) dx = hf(x0) +O(h2f ′), (left) (1)∫ x1

x0

f(x) dx = hf(x1) +O(h2f ′), (right) (2)

where h denotes the stepsize, which is (x1 − x0) in the above equations. Graphical representations of
eqs. (1,2) are shown in �gures 1 and 2 respectively.

1. Write out the analytic formulae approximating the integral using the left- and right Riemann
sums with N steps

2.1 Function signature

To write a routine which can integrate any function (or at least try to integrate any function), you
will need to use functional pointers. To begin with, a function which takes in one variable and returns
the result of the evaluation:

double function(double x)

will always be su�cient. However, at some point one might also want to pass some number of
parameters, so that one doesn't have to write a di�erent C-function for every interesting parameter
choice. To solve this, you could have one integration function for a number of parameter set-ups:

double integral (..., double (*func)(double),...)

double integral (..., double (*func)(double ,double),...)

double integral (..., double (*func)(double ,double ,int) ,...)

but this solution obviously creates as much double work as the previous one. To bypass this, we can
make use of the fact that any pointer type in C can be typecast to a void pointer. So, by using the
following function signature

double function(double x, void *params)

1Only semi-adaptive as the stepsize is not fully �exible, but can only be divided by a constant, 2 and 3 in our case
2http://en.wikipedia.org/wiki/Riemann_sum

1

mailto:glesaaen@th.physik.uni-frankfurt.de
http://en.wikipedia.org/wiki/Riemann_sum

x

f
f(x)

x0 x1

Figure 1: Left Riemann Sum

x

f
f(x)

x0 x1

Figure 2: Right Riemann Sum

we can pass any number of parameters we wish. One does this by re-casting it back to its initial form
inside of the function call, so e.g. if you want to pass two double's, it can be written like this:

//In the main()-function

double p[2] = {2., 4.};

function(x,p);

//...

double function(double x, void *params){

double *arr = (double *) params;

double p1 = arr [0];

double p2 = arr [1];

//...

}

If your function doesn't take any parameters, you can simply pass NULL. If you are having di�culties
with this, you can use the simple function call mentioned at the beginning of this subsection, and
implement this change at the very end.

With this in mind, a possible function signature for the integration function itself is:

double int_finite_c_alg(double a, double b, void *params ,

double (*func)(double ,void*), double h)

where a and b are the integration bounds, params are the parameters to be passed on, func the
function pointer, and lastly some sort of error control. To begin with we will used a �xed stepsize,
and later move on to absolute and relative errors.

(Optional)

A cleaner, more secure and more readable possibility is to de�ne your own struct for a given parameter
set. This way you can also pass multiple di�erent variable types, such as two double's and one int.
For example for the Gaussian distribution

f(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

2

x

f
f(x)

x0 x1

Figure 3: Trapezoidal Rule

x

f
f(x)

x0 x1

Figure 4: Simpson's rule

you could write a struct on the form:

struct gaussian_parameters{

double mu;

double sigma;

};

then pass an instance of this struct to your function and typecast it as shown above. struct's will
be covered in the lectures sometime after Christmas. If you want to read about them earlier, you can
consult your favourite text book on C programming, or have a look here: http://www.cplusplus.

com/doc/tutorial/structures/.

2. Implement the left and right Riemann sums and test them on the Gaussian distribution with
0 mean and 1 standard deviation in the range [−1, 1]. Compare the result with ones found in
standard mathematical tables using varying stepsizes.

2.2 Improvements

Implementing the left and right Riemann sums, you should have noticed that depending on the form
of the function you want to integrate, one of them will overshoot while the other will undershoot. We
should therefore get a better result if we take the average of the two, which leads us to the trapezoidal
rule: ∫ x1

x0

f(x) dx =
h

2

[
f(x0) + f(x1)

]
+O(h3f ′′). (trapezoidal) (3)

It is already apparent from the error estimate that the trapezoidal rule is valid to one order higher
than the Riemann sums, but at the cost of one more function evaluation. An graphical representation
of the trapezoidal rule is shown in �gure 3.

3. Repeat task 1 for the trapezoidal rule. You should notice that even though eq. (3) states that
we have two function evaluations rather than one at every step, the rightmost evaluation can be
re-used as the leftmost evaluation at the next step. When added up, this means that we only
need one additional evaluation of the function compared to the Riemann sums no matter the
size of N . This might not seem too important for the programs we write here, but for more
complicated functions, every evaluation is precious, and we want to get the best possible result
with the fewest number of evaluations.

3

http://www.cplusplus.com/doc/tutorial/structures/
http://www.cplusplus.com/doc/tutorial/structures/

h

h/2

h/4

h/8

Figure 5: Stepsize halving with the trapezoidal rule

Finally, by also evaluating the function at its midpoint, we end up with Simpson's rule 3, illustrated
in �gure 4: ∫ x1

x0

f(x) dx =
h

6

[
f(x0) + 4f(x1/2) + f(x1)

]
+O(h5f (4)). (Simpson ′s) (4)

Comparing the number of function evaluations to the order of the accuracy, one sees that Simpson's
rule is accurate to one order higher than we have come to expect. This is due to a �lucky� cancellation
owing to a left-right symmetry which makes Simpson's rule one of the best low order constant stepsize
numerical integration algorithms.

4. Once again write the expression for an integral approximated by Simpson's rule with N steps.
How many additional function evaluations do you need compared to the Riemann sums at a
given N?

5. Implement both the trapezoidal rule and Simpson's rule to calculate integrals numerically for a
given stepsize. Test the routine for the Gaussian integral (µ = 0, σ = 1), and for the integral∫ 2

0

x cos2(2πx2) dx

which you can solve analytically. How do they compare with each other? How do they compare
with the Riemann sum?

3 Semi-adaptive stepsizes

Rather than passing a stepsize you think will give an approximately close result to your function,
it would be more convenient to pass an error margin we want the result to be within. One way to
implement this would be to have a function which calculates the integral at a given stepsize, then at
a lower stepsize (e.g. multiplied by a constant number < 1). It then compares the results, and if the
di�erence between the two is too large, it repeats the process until the error limit is reached.

Without a proper choice of algorithm, and the constant stepsize reduction, this is quite ine�cient.
However, e.g. using the trapezoidal rule, and halving the stepsize at every iteration, we can reuse
the result from the previous iteration when calculating the result for the current. This is because by
halving the stepsize, we still visit all the points we did at full stepsize, but we add the ones in between
as illustrated in �gure 5.

6. Find and analytic expression for the relationship between the trapezoidal sum at stepsize h and
stepsize h/2, alternatively with N evaluations and then with 2N evaluations.

3See e.g. Numerical Recipes, Third Edition, pages 156-160, or http://mathworld.wolfram.com/SimpsonsRule.html

4

http://mathworld.wolfram.com/SimpsonsRule.html

x

f
f(x)

x0 x1

Figure 6: Midpoint rule

7. Having this relationship, try to write a function which instead of the stepsize h, takes the relative
error as its �nal argument, and uses stepsize halving to calculate the integral within the given
precision.
(Optional) Do this for Simpson's rule as well.

4 Open boundary algorithms and in�nite limits

So far we have only looked at what is called �closed algorithms� as they calculate the integral on
closed intervals, [a, b]. Next, we need an algorithm integrate over open intervals such as [a, b), which
is needed if there for example is an integrable singularity at b, or if we want to integrate to in�nity.

To accomplish this we turn to the midpoint rule, which is another variation of the Riemann sum.
However, instead of evaluating the function at either end-point, it is evaluated at the midpoints, as
shown in �gure 6, giving the expression:∫ x1

x0

f(x) dx = hf(x1/2) +O(h2f ′). (midpoint) (5)

By evaluating the function at the midpoints, we never have to evaluate the function at the boundaries,
and hence we can use this to calculate open boundary integrals. With this expression, we shall go
right to the semi-adaptive stepsize implementation, but there is a slight subtlety. We cannot double
the number of evaluations and still re-use the result from the previous iteration, as we did with the
trapezoidal rule, but we can triple it. At every point we thus add one new point to the left, and one
to the right at one third stepsize. A graphical representation is given in �gure 7, from which we can
see that at every iteration the outer-most points we evaluate quickly approaches the end-points, but
never exactly reaches them. Similar to the situations with integrals of open intervals.

8. With �gure 7 in mind, write an analytic expression to show how one iteration depends on the
result from the previous iteration for step tripling of the midpoint rule, similar to what you did
in task 6.

9. Then write a function which takes in a relative error and then calculates the integral by utilising
step tripling and the midpoint rule, again similar to what you did in task 7.

4.1 Boundaries taken to in�nity

The easiest way to handle improper boundaries, be that in�nite values or singular points, is by
transforming the integration variable to an expression in which the integral can be evaluated by a

5

h

h/3

h/9

h/27

Figure 7: Evaluation point tripling with the midpoint rule

computer. For in�nite boundaries, e.g. x1 →∞, one possible transformation to use is:

x1→∞∫
x0

f(x) dx
x=

1
t−−−→

1/x0∫
1/x1→0

1

t2
f
(1
t

)
dt (6)

which converges if f(t) declines faster than 1/t2. One should note that one obviously cannot both
transform and integrate across zero, meaning that if we were to integrate over e.g. [−5,∞) we need to
split the integral into two pieces and integrate the �nite domain separately using one of our previous
routines.

10. Write a function which only takes a lower bound (a) and calculates the integral in the region
[a,∞) using the semi-adaptive midpoint rule and the transformation in eq. (6). Try it out on
the integral: ∫ ∞

0

e−x
2

dx,

and compare it with the analytic result.

4.2 Regions with integrable singularities at the boundary

A short mention is given to the fact that if one has an integrable singularity of order γ at either
boundary, the semi-adaptive midpoint rule will give the correct result, but will be quite ine�cient. If
one instead makes use of the following transformation for singularities at the lower boundary:

x = t
1

1−γ + x0, (7)

giving the following equality,

x1∫
x0

f(x) dx =
1

1− γ

(x1−x0)
1−γ∫

0

t
γ

1−γ f
(
t

1
1−γ + a

)
dt, (8)

or the transformation
x = x1 − t

1
1−γ , (9)

for singularities at the upper boundary, before applying the open boundary semi-adaptive midpoint
algorithm.

12. (Optional) Integrate the function

f(x) =
1√
x

in the interval (0, 1] using the adaptive midpoint routine you wrote in task 9, then again using
the transformation de�ned in eq. (7) and compare how fast they converge.

6

5 Monte Carlo Integration

Lastly we will look at a method of approximating integrals which is completely unrelated to the
previous algorithms presented. We will approximate an integral by sampling the value of the function
in the given region randomly, which is known as Monte Carlo integration.

Imagine that we take a very large number of samples N of the function f(x) using a statistical
variable x which is uniformly distributed in the region [a, b]. If we take N large enough, the samples
should be smoothly distributed in the given region, and the average distance between sample points
is around h/N . This would be similar to a midpoint Riemann sum with stepsize h/N , so by taking
enough samples we reduce the error from the Riemann sum, as well as the error from the statistical
uncertainty. The Monte Carlo integral expression is thus∫ x1

x0

f(x)dx ≈ h〈f〉 ± h
√
〈f2〉 − 〈f〉2

N
, (10)

where

〈Y 〉 = 1

N

N−1∑
x=0

Y (xi), x ∈ [x0, x1]. (11)

With the sampling process being a statistical process, we cannot put as rigorous bounds on the error
of the expression as we can with the previous expressions, but one uses the statistical error (given as
the ± term) to get an approximate error.

One should note that the Monte Carlo integration algorithm is very ine�cient compared with the
other methods, as you will normally need many orders of magnitude more function evaluation to
reach the same accuracy, but it is generally used for multi dimensional integrals where the boundary
is hard to de�ne analytically. Say for instance the volume inside of a Klein-bottle contained within
a sphere of lower radius, or a torus cut o� by a parabola. In which case one can sample the variable
from an approximate volume which contains the desired volume, and simply de�ne the function in
question to be zero outside of the desired integration region.

13. The �nal task is to implement the simple Monte Carlo integral for an integral on a given region
within a given absolute error. You can get a pseudo-random integer in the region [0,RAND_MAX]
using the rand() function de�ned in �stdlib.h� (the macro RAND_MAX is also de�ned in �stdlib.h�).
The pseudo-random number routine can be seeded using srand(). Test it against your other
routines. How is the performance?

7

	Introduction
	Constant stepsize algorithms
	Function signature
	Improvements

	Semi-adaptive stepsizes
	Open boundary algorithms and infinite limits
	Boundaries taken to infinity
	Regions with integrable singularities at the boundary

	Monte Carlo Integration

