Exercise sheet 2

To be discussed on 27, 30 April and 04, 07 May

Exercise 1 [Third order Runge-Kutta method]

Consider the differential equation $\dot{y}(t)=f(t, y)$, with y and f being at least 4-times differentiable. The RungeKutta method is a numerical procedure to iteratively obtain an approximate solution for $y(t)$. Show that for a given time t the third-order Runge-Kutta expression for the new time $t+h$ for small h

$$
y(t+h)=y(t)+\frac{h}{6}\left(k_{1}+4 k_{2}+k_{3}\right) \quad \text { with } \quad\left\{\begin{array}{l}
k_{1}=f(t, y) \\
k_{2}=f\left(t+\frac{h}{2}, y+\frac{h}{2} k_{1}\right) \\
k_{3}=f\left(t+h, y-h k_{1}+2 h k_{2}\right)
\end{array}\right.
$$

is equivalent to the Taylor expansion

$$
y(t+h)=y(t)+h \frac{d y}{d t}+\frac{h^{2}}{2} \frac{d^{2} y}{d t^{2}}+\frac{h^{3}}{6} \frac{d^{3} y}{d t^{3}}+\mathcal{O}\left(h^{4}\right) .
$$

Use the Taylor expansion of a function g of two variables (u, v) around a given point (a, b)

$$
g(u, v)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(u-a)^{n}(v-b)^{m}}{n!m!}\left(\frac{\partial^{n+m} g}{\partial u^{n} \partial v^{m}}\right)_{(u, v)=(a, b)}
$$

and consider to use the simplified notation

$$
y(t) \equiv y, \quad f(t, y) \equiv f, \quad \frac{\partial f}{\partial t} \equiv f_{t} \quad \text { and } \quad \frac{\partial f}{\partial y} \equiv f_{y}
$$

For example,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \equiv f_{t}+f_{y} f
$$

Exercise 2 [Pendulum motion]

Consider the so-called simple pendulum (mass m and length l), for which the only external considered force is the gravitational one, $\vec{F}=-m g \vec{e}_{z}$. The angle ϕ describes the angular displacement of the pendulum from the neutral position $\phi=0$. Suppose to have an initial displacement $\phi(t=0)=\phi_{0}$.
(i) Derive the equation of motion of the pendulum.
(ii) Solve analytically the equation of motion assuming $\phi_{0} \ll 1$.
(iii) Implement the $4^{\text {th }}$ order Runge-Kutta method discussed in the lecture, in order to solve the equation of motion obtained in task (i). How can you solve a second order ordinary differential equation with RungeKutta methods? What would you do if you had to solve a higher order ordinary differential equation?
(iv) Test your code in the small-angle regime. Set ϕ_{0} properly and compare the numerical solution to the previously calculated analytical one.
(v) Use your program to solve the equation of motion for initial conditions $\phi_{0} \in\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$. Calculate the motion $\phi(t)$ for at least a complete period of the pendulum. Compare again your analytical solution with the numerical one. Can you explain the discrepancy?
(vi) Set $\phi=\frac{\pi}{2}$ and think of a way to calculate the period of the pendulum. Provide an error estimate for your result.

