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Numerische Methoden der Physik
WiSe 2023-2024 – Prof. Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de
Lasse Müller: lmueller@itp.uni-frankfurt.de

Exercise sheet 4
To be handed in on 08.11.2023 and discussed on 10.11.2023 and 13.11.2023.

Exercise 1 [The Kepler problem] (2+2+4+7+5=20 pts.)

Consider the so-called Kepler problem, a particular case of a two-body problem,
in which the two bodies interact by a central force F(r) that varies in strength
as the inverse square of the distance r between them. It can be shown that
this is equivalent to describing the motion of a single body of mass m in a
central, attractive (α > 0) potential V (r) = −α/r, with r = |r|. Given that the
total energy E is negative and after a suitable choice of coordinates, the body
trajectory will lie in the (x, y)-plane and it will be an ellipse of semi-major axis
a and eccentricity

e =
c

a
=

√
1−

(
b

a

)2

.

(i) Write down the equations of motion. In order to handle them numerically
in a convenient way as well as to be able to approach the problem in the
most general way (e.g. to avoid to solve the problem for each value of a),
it is recommended to make use of dimensionless quantities. Rewrite the
equations of motion as

d2

dt̂2
r̂ = − r̂

r̂3
,

where r̂ ≡ r/a and t̂ has been properly defined as dimensionless time.

(ii) Choose the initial conditions

r̂0 ≡ r̂|t̂=0 and v̂0 ≡ dr̂

dt̂

∣∣∣∣
t̂=0

such that E < 0, and to have the body at the perihelion at t̂ = 0 and
moving counter-clockwise on an ellipse of eccentricity e and semi-major
axis a. For this, use

E =
m

2
ṙ2 +

L2

2mr2
− α

r
with L = m(r× p)

and consider points on the ellipse where ṙ = 0.

(iii) Solve the considered initial value problem numerically for the cases e1 =
0.1 and e2 = 0.9, using a fourth order Runge-Kutta method and making
use of a uniform time step. Plot the so obtained body trajectory in the
(x̂, ŷ)-plane, where x̂ ≡ x/a and ŷ ≡ y/a. Add to your plot the expected
elliptical orbit and check if your time step is small enough so that the
numerically calculated trajectory qualitatively agrees with it.
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(iv) Improve now your program adding the possibility to use an adaptive step
size in the Runge-Kutta method1, using the strategy discussed in the
lecture. Repeat task (iii) using using this method. Discuss, how the step
size changes along the trajectory during the integration for the two cases
e1 = 0.1 and e2 = 0.9.

(v) Plot the ŷ-coordinate as function of t̂. Find a way to calculate the orbital
period of the body T̂ in your program (just printing the plot and measuring
with a ruler is not sufficient). Determine the orbital period of both Earth
and Mars by transforming T̂ back into a dimensionful physical quantity.
Take all necessary physical input (e.g. masses, eccentricity and natural
constants) from the internet.

Perihelion

Aphelion

a c

b

F

1Please, think of an handy method to switch between fixed and adaptive step size, do not
hard code it.
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