Exercise sheet IV

November 9 [correction: November 16]

Problem 1 [3-vector bilinear] Show that

$$
\bar{\psi}_{1} \gamma^{0} \gamma^{i} \gamma^{5} \psi_{2}
$$

transforms as a 3 -vector (e.g. x^{i}) under rotations.
Problem 2 [Chiral projectors] The projectors on the left- and right-components of Dirac spinors are given by $P_{L}=\frac{1-\gamma_{5}}{2}$ and $P_{R}=\frac{1+\gamma_{5}}{2}$, respectively. Use the properties of γ_{5} to prove the following projector identities:

$$
P_{L} P_{R}=P_{R} P_{L}=0, \quad P_{R} P_{R}=P_{R}, \quad P_{L} P_{L}=P_{L}
$$

Verify that, given a spinorial solution to the massless Dirac equation, the spinors $P_{L, R} u_{s}(p)$ are eigenstates of the helicity operator

$$
\mathfrak{h}=\frac{1}{2|\mathbf{p}|}\left(\begin{array}{cc}
\sigma \cdot \mathbf{p} & 0 \\
0 & \sigma \cdot \mathbf{p}
\end{array}\right)
$$

with eigenvalues $\pm \frac{1}{2}$. Does this hold also when $m \neq 0$?
Problem 3 [spin and spinors] Let us consider the following two spinors

$$
u_{1}=N\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{3}}{E+m} \\
\frac{p_{1}+i p_{2}}{E+m}
\end{array}\right), \quad \text { and } u_{2}=N\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{1}-i p_{2}}{E+m} \\
-\frac{p_{3}}{E+m}
\end{array}\right) .
$$

It is easy to see that they are eigenstates of S_{3} with eigenvalues $\pm \frac{1}{2}$, if $\mathbf{p}=\left(0,0, p_{3}\right)$.
a) Construct the eigenstates of S_{1} and S_{2} as linear combinations of u_{1} and u_{2}, and the appropiate choice of $\left(p_{1}, p_{2}, p_{3}\right)$.
b) Alternatively, to obtain those eigenstates, you can perform a rotation of $\pi / 2$ about the y and x axis of the spinors u_{1} and u_{2}. Show that the result is the same as in a), up to an irrelevant phase factor.
Note: Be careful with the sign of the rotation.

