Exercise sheet VII

November 30 [correction: December 7]

Problem 1 [Ladder operators] Redo the canonical quantization procedure for a real scalar field, ϕ , using the following definition of the creation and annihilation operators

$$\begin{aligned} a(\mathbf{k}) &\equiv \int \mathrm{d}^3 x \left(\alpha(\mathbf{k}) \phi(\mathbf{x}) + i\beta(\mathbf{k}) \pi(\mathbf{x}) \right) e^{-i\mathbf{k}\mathbf{x}} \,, \\ a^{\dagger}(\mathbf{k}) &\equiv \int \mathrm{d}^3 x \left(\alpha(\mathbf{k}) \phi(\mathbf{x}) - i\beta(\mathbf{k}) \pi(\mathbf{x}) \right) e^{+i\mathbf{k}\mathbf{x}} \,. \end{aligned}$$

(i) Express the Hamiltonian, H, in terms of the new a and a^{\dagger} . Obtain the values for α and β that yield

$$H = \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} E(\mathbf{p}) a^{\dagger}(\mathbf{p}) a(\mathbf{p}) \left(+E_{\mathrm{vacuum}}\right).$$

(ii) How does the field operator, ϕ , read in terms of a and a^{\dagger} ? Is this expression invariant under Lorentz transformations?

Problem 2 [*Quantization inside a box*] Following again the canonical approach, quantize a real scalar field inside a cubic box with edge length L. Impose periodic boundary conditions. Proceed in the following steps:

(i) For $L \to \infty$ the three dimensional Fourier transform can be defined according to

$$\tilde{f}(\mathbf{k}) \equiv \frac{1}{(3\pi)^{3/2}} \int \mathrm{d}^3 x f(\mathbf{x}) e^{-i\mathbf{k}\mathbf{x}} ,$$
$$f(\mathbf{x}) \equiv \frac{1}{(3\pi)^{3/2}} \int \mathrm{d}^3 k \tilde{f}(\mathbf{k}) e^{+i\mathbf{k}\mathbf{x}} .$$

What are the corresponding expressions for finite L?

- (ii) Define suitable creation and annihilation operators using the result of (i).
- (iii) Proceed with the canonical quantization. If $|\psi\rangle$ is an eigenstate of H such that

$$H |\psi\rangle = E_{\psi} |\psi\rangle$$
, $N(\mathbf{k}) |\psi\rangle = n_{\psi}(\mathbf{k}) |\psi\rangle$,

compute, for the case of finite L, the following:

(a) The commutator $[a(\mathbf{k}_1), a^{\dagger}(\mathbf{k}_2)]$.

- (b) The Hamiltonian operator.
- (c) The *number* operator, $N(\mathbf{k})$.
- (d) The energy eigenvalues.
- (e) $N(\mathbf{k})a^{\dagger}(\mathbf{p}) |\psi\rangle$.
- (f) $N(\mathbf{k})a(\mathbf{p}) |\psi\rangle$.
- (g) $N(\mathbf{k}) |\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_j\rangle$, where $|\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_j\rangle \equiv a^{\dagger}(\mathbf{k}_1)a^{\dagger}(\mathbf{k}_2) \dots a^{\dagger}(\mathbf{k}_j) |0\rangle$.