Exercise sheet X

January 18 [correction: January 25]

Problem 1 [Unitary and hermitian matrices] Show the following relationships between unitary and hermitian matrices:
(i) Any $n \times n$ unitary matrix U, i.e. $U^{\dagger} U=\mathbb{1}$, can be written as

$$
U=\exp (i H)
$$

where H is hermitian, $H=H^{\dagger}$.
(ii) $\operatorname{det}(U)=1$ implies that H is traceless.

Note: This result means that $n \times n$ unitary matrices with unit determinant can be generated by $n \times n$ traceless hermitian matrices.

Problem 2 [An identity for $S U(2)$ matrices] Prove the following identity for 2×2 unitary matrices generated by Pauli matrices:

$$
\begin{equation*}
\exp (i \mathbf{r} \cdot \sigma)=\cos r+(\hat{\mathbf{r}} \cdot \sigma) \sin r \tag{1}
\end{equation*}
$$

where $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) ; r=|\mathbf{r}|$ is the magnitude of the vector \mathbf{r}; and $\hat{\mathbf{r}}=\mathbf{r} / r$ is the unit vector.

Problem 3 [Gammatics] Using only the anticommutation relations of the gamma matrices, prove the following relations in a 4-dimensional space-time:
(i) $\operatorname{tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}}\right)=0$, with n odd
(ii) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$
(iii) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)$
(iv) $\operatorname{tr}\left(\gamma^{5}\right)=0$
(v) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right)=0$
(vi) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{\mu \nu \rho \sigma}$
(vii) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \ldots\right)=\operatorname{tr}\left(\ldots \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \gamma^{\mu}\right)$
(viii) $\gamma^{\mu} \gamma_{\mu}=4$

$$
\begin{aligned}
& \text { (ix) } \gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu} \\
& \text { (x) } \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 g^{\nu \rho} \\
& \text { (xi) } \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu}=-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \\
& \text { (xii) } \epsilon^{\alpha \beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta}=-24 \\
& \text { (xiii) } \epsilon^{\alpha \beta \gamma \mu} \epsilon_{\alpha \beta \gamma \nu}=-6 \delta^{\mu}{ }_{\nu} \\
& \text { (xiv) } \epsilon^{\alpha \beta \mu \nu} \epsilon_{\alpha \beta \rho \sigma}=-2\left(\delta^{\mu}{ }_{\rho} \delta^{\nu}{ }_{\sigma}-\delta^{\mu}{ }_{\sigma} \delta^{\nu}{ }_{\rho}\right)
\end{aligned}
$$

