Exercise sheet I
October 15 [solution: October 24]

Problem 1 [Natural units] How much is $1 k g$ in GeV and $1 s$ in GeV^{-1} ? Use the results to express Newton's gravitational constant $G_{N}=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ and the value of the Planck mass $M_{\mathrm{Pl}}=G_{N}^{-1 / 2}$ in natural units.

Problem 2 [Hamiltonian mechanics] Starting from the definition of the Hamiltonian,

$$
H(x, p) \equiv p \dot{x}-L(x, \dot{x})
$$

and using the Euler-Lagrange equation, derive Hamilton's equations,

$$
\dot{p}=-\frac{\partial H}{\partial x}, \quad \dot{x}=\frac{\partial H}{\partial p}
$$

[Hint: Be careful about what the independent variables of a function are.]
Problem 3 [Continuity equation] Using the Schrödinger equation for the wavefunction $\Psi(\mathrm{x}, t)$,

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\mathbf{x})\right] \Psi(\mathbf{x}, t)=i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t)
$$

show that the probability density, $\rho=\Psi^{*} \Psi$, satisfies the continuity equation

$$
\frac{\partial}{\partial t} \rho+\nabla \mathbf{j}=0
$$

where

$$
\mathbf{j}=\frac{\hbar}{2 m i}\left[\Psi^{*} \nabla \Psi-\left(\nabla \Psi^{*}\right) \Psi\right]
$$

Problem 4 [Heisenberg equation of motion] Let \hat{O} be a time-independent operator in the Schrödinger picture, and \hat{H} the time-independent Hamiltonian of the system. Starting from the definition of a Heisenberg operator,

$$
\hat{O}_{H}(t)=e^{i \hat{H}\left(t-t_{0}\right) / \hbar} \hat{O} e^{-i \hat{H}\left(t-t_{0}\right) / \hbar}
$$

derive the Heisenberg equation of motion,

$$
i \hbar \frac{d \hat{O}_{H}}{d t}=\left[\hat{O}_{H}, \hat{H}_{H}\right]
$$

