Exercise sheet IV

November 5 [solution: November 14]

Problem 1 [3-vector bilinear] Show that

$$
\begin{equation*}
\bar{\psi}_{1} \gamma^{0} \gamma^{i} \gamma^{5} \psi_{2} \tag{1}
\end{equation*}
$$

transforms as a 3 -vector (e.g. x^{i}) under rotations.
Problem 2 [Chiral projectors] The projectors on the left- and right-components of Dirac spinors are given by $P_{L}=\frac{1-\gamma_{5}}{2}$ and $P_{R}=\frac{1+\gamma_{5}}{2}$, respectively. Use the properties of γ_{5} to prove the following projector identities:

$$
\begin{equation*}
P_{L} P_{R}=P_{R} P_{L}=0, \quad P_{R} P_{R}=P_{R}, \quad P_{L} P_{L}=P_{L} \tag{2}
\end{equation*}
$$

Verify that, given a spinorial solution to the massless Dirac equation, the spinors $P_{L, R} u_{s}(p)$ are eigenstates of the helicity operator

$$
\mathfrak{h}=\frac{1}{2|\mathbf{p}|}\left(\begin{array}{cc}
\sigma \cdot \mathbf{p} & 0 \tag{3}\\
0 & \sigma \cdot \mathbf{p}
\end{array}\right)
$$

with eigenvalues $\pm \frac{1}{2}$. Does this hold also when $m \neq 0$?
Problem 3 [Weyl equations] Show that for massless particles, the Dirac equation reduces to 2 Weyl equations:

$$
\begin{equation*}
i \bar{\sigma} \cdot \partial \psi_{L}=0 \tag{4}
\end{equation*}
$$

for left-handed particles and

$$
\begin{equation*}
i \sigma \cdot \partial \psi_{R}=0 \tag{5}
\end{equation*}
$$

for right-handed particles, where $\sigma^{\mu} \equiv(1, \vec{\sigma})$ and $\bar{\sigma}^{\mu} \equiv(1,-\vec{\sigma})$.
Problem 4 [Maxwell equations] Consider the electromagnetic field-strength tensor:

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \tag{6}\\
+E_{x} & 0 & -B_{z} & +B_{y} \\
+E_{y} & +B_{z} & 0 & -B_{x} \\
+E_{z} & -B_{y} & +B_{x} & 0
\end{array}\right) .
$$

It satisfies the equation:

$$
\begin{equation*}
\partial_{\nu} F^{\nu \mu}=j^{\mu} \tag{7}
\end{equation*}
$$

where $j^{\mu}=(\rho, \vec{j})$ is the 4 -current, ρ is the charge density and \vec{j} is the electromagnetic current.
a) Show that the following identity holds:

$$
\begin{equation*}
\partial^{\lambda} F^{\mu \nu}+\partial^{\mu} F^{\nu \lambda}+\partial^{\nu} F^{\lambda \mu}=0 . \tag{8}
\end{equation*}
$$

b) Show that (7)-(8) imply 4 Maxwell equations.

