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A short primer in complex analysis

(i) Cauchy-Riemann conditions for a function f : E → C, with E ⊆ C: assuming Ref ,

Imf are differentiable (in the ordinary R sense), the conditions are:







∂Ref
∂Rez

= +∂Imf
∂Imz

;

∂Ref
∂Imz

= −∂Imf
∂Rez

.

If C-R are satisfied, f is differentiable in z (in the complex sense); that is, regardless

of the exact path for h → 0, h ∈ C, the derivative

f ′(z) =
df

dz
= lim

h→0

f(z + h)− f(z)

h

is unique.

“Differentiable” in practice means: no z∗, no |z|, no Rez or Imz explicitly; smooth

functions of z only.

The derivative can be written in various forms using C-R: for instance,

f ′(z) =
∂Ref

∂Rez
− i

∂Ref

∂Imz
.

Def. f is analytic in E ⇔ f is differentiable in ∀ z ∈ E.

Def. f is analytic in z0 ⇔ there is a Iδ(z0) = {z / |z − z0| < δ} where f is analytic.

(ii) Integrals in the complex plane C.

• A Jordan curve z(t) ∈ C, t ∈ [a, b] is:

(a) regular: z, dz
dt

continuous for ∀ t;

(b) closed: z(a) = z(b);

(c) simple: ∀ t1, t2 ∈ [a, b) : z(t1) 6= z(t2) (i.e. does not cross itself).

Conventionally, its positive orientation is the counterclockwise one.

• A domain D is simply connected if each closed curve in D can be continuously

deformed (“homotopically equivalent”) to a point. In practice: “no holes”.



• The complex integral on a path is given by:

A

B

  = z(t)γ

z(a) = A

z(b) = B

∫ B

A;γ

f(z)dz =

∫ b

z

f(z(t))
dz

dt
dt = (· · · ) =

=

∫ B

A;γ

[

Refd(Rez)− Imfd(Imz)
]

+ i

∫ B

A;γ

[

Refd(Imz) + Imfd(Rez)
]

.

(iii) Cauchy theorem

• f(z) analytic in E, E simply connected, γ Jordan curve in E: then,
∫

γ

f(z)dz = 0 .

• (corollary) For two curves in E such as

γ

γ

1

2

A

B
(no holes inside!):

∫ B

A;γ1

f(z)dz =

∫ B

A;γ2

f(z)dz .

• (generalised form) f(z) analytic in E (which need not be simply connected

anymore); γ1, γ2 Jordan curves homotopically equivalent in E (that is, deformed

one onto another within E and continuously). Then

∫

γ1

f(z)dz =

∫

γ2

f(z)dz .

E γ21γ

Example 1 f(z) = 1
z
, defined in C/{0} (one hole at the origin).

CR
Curve CR:

z(θ) = Reiθ , θ ∈ [0, 2π) ;

dz = iReiθ ,

I =

∫

CR

f(z)dz =

∫ 2π

0

1

Reiθ
iReiθdθ =

∫ 2π

0

idθ = 2πi 6= 0 ,

nonzero, indeed there is a “hole” enclosed in CR.

• Then, for any curve γ surrounding the origin,
∫

γ
f(z)dz = 2πi:

γ



• Also, one can prove
∫

CR

dz
zn

= 0, for any integer n > 1.

(iv) Cauchy integral representation (a.k.a. “for an analytic function, all derivatives ex-

ist”): If f(z) analytic in E, E simply connected, and γ = ∂S a Jordan curve which

encloses the domain S, then:

∀z ∈ S : f(z) =
1

2πi

∫

γ

f(z′)

z′ − z
dz′ .

(Corollary) for the n-th derivative, one differentiates inside the integral, getting:

dnf

dzn
=

n!

2πi

∫

γ

dz′f(z′)

(z′ − z)n+1
.

Def. Zeros of a function

• f , analytic, is regular in z0 if it is there defined.

• z0 is a zero of f if f(z0) = 0.

• One speaks of “zero of n-th order” if:

f(z0) = f ′(z0) = . . . = f (n−1)(z0) = 0 ;

f (n)(z0) 6= 0 ,

which is equivalent to

f(z) = (z − z0)
ng(z) , with

{

g(z0) 6= 0 ,

g analytic in z0 .

Def. z0 is an isolated singularity of f if there is a “holed domain” I(z0) = I(z0)/{z0}

such that f(z) is regular in ∀z ∈ I(z0).

(One cannot use a power series here; but something else can be done . . . )

(v) Laurent theorem, Laurent series. If z0 is an isolated singularity for f(z), then there

is a “holed domain” I(z0) where

f(z) =

+∞∑

k=−∞

dk(z − z0)
k , ∀z ∈ I(z0) ,

with coefficients given by

dn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz

(C is some circle centred in z0 and contained in I(z0)).

Remark. The Taylor series is a particular case, with dk = 0, ∀k < 0.

Def. Poles, singularities



• If d−n 6= 0 and d−n−1 = d−n−2 = . . . = 0, then z0 is a pole of order n of f(z);

in that case (within I(z0)),

f(z) =
1

(z − z0)n

+∞∑

k′=0

dk′−n(z − z0)
k′ =

g(z)

(z − z0)n
, with

{

g analytic in z0 ,

g(z0) 6= 0 ,

(in practice, for a simple (n = 1) pole, the function is locally ∼ 1
z−z0

).

• If, instead, there are infinitely many nonzero dnegative, z0 is an essential singu-

larity (e.g. z0 = 0 for f(z) = e1/z); f is then “a monster”.

(vi) Residues : suppose z0 is an isolated singularity (→ f is regular in I(z0). . . ).

Def. The residue of f at z0 is defined as:

Resf(z)|z0 =
1

2πi

∫

C

f(z)dz , with C ∈ I(z0) surrounding z0 ,

from which it follows that Resf(z)|z0 = d−1.

Note: z0 regular implies zero residue, but zero residue does not imply anything!

See, e.g., f(z) = 1
z2

at z0 = 0.

Calculation (using the Cauchy representation)

– For a simple pole:

Resf(z)|z0 = lim
z→z0

(z − z0)f(z) .

– For any n:

Resf(z)|z0 =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)

nf(z)] .

– The above are not valid for an essential singularity: there, the residue is

read off the Laurent expansion. Example:

e1/z = 1 +
1

z
︸︷︷︸

(⋆)

+
1

2!

1

z2
+ · · ·

(⋆) = d−1(z − 0)−1 ⇒ Res(e1/z)|0 = 1 .

(vii) Residue theorem. Suppose D is a compact domain (practically: closed and limited);

the Jordan curve γ in D does not run over any singularity and encloses, on the

inside, at most a finite number of isolated singularities zk, k = 1, . . . , n; f(z) is

regular in D – except at the singularities. Then

∫

γ

f(z)dz = 2πi

n∑

k=1

Resf(z)|zk .



Applications. Two of the most typical classes of integrals that can be solved with these tools are:

(a) Trigonometric integrals. Suppose we must find

I1 =

∫ 2π

0

f(cos θ, sin θ)dθ ;

with the identities

cos θ =
e+iθ + e−iθ

2
;

sin θ =
e+iθ − e−iθ

2i
,

it can be made into a complex integral along the unit circle C: setting z = eiθ,

we have:

dz = izdθ ;

cos θ =
z + 1/z

2
, and so on.

[Question: why 1/z instead of z∗? On the unit circle they are the same. . . ]

The result is then ready to be solved with the residue theorem:

I1 =

∫

C

f(z)

iz
dz .

(b) Integrals on R.

• An integral in the form

I2 =

∫ +∞

−∞

f(x)dx

means, formally written (the last expression holds if the previous one is

defined):

I2 = lim
R1,R2→∞

∫ +R2

−R1

f(x)dx = lim
R→∞

∫ +R

−R

f(x)dx .

This can be embedded in C, and a half-circle γ(R) can be added with

centre 0 and radius R, to make a Jordan curve:
−R +R

 (R)γ

It is now easy to use the residue theorem on

J(R) =

∫ +R

−R

f(x)dx+

∫

γ(R)

f(z)dz = 2πi
∑

...

Resf(z)|... .

Under suitable conditions,

lim
R→∞

∫

γ(R)

f(z)dz = 0 ,

hence

I2 = lim
R→∞

J(R) .



• The condition for this to hold (sometimes called mistakenly Jordan lemma)

is:

f(z) = o(1/z) , |z| → ∞ ;

indeed, with z = Reiθ:

∫

γ(R)

f(z)dz = iR

∫ π

0

dθf(Reiθ)eiθ ,

taking the modulus,

∣
∣
∣

∫

γ(R)

f(z)dz
∣
∣
∣ =

∣
∣
∣iR

∫ π

0

dθf(Reiθ)eiθ
∣
∣
∣ ≤ R

∫ θ

0

|f(Reiθ)| ;

but

lim
R→∞

[

R
︸︷︷︸

∼(1/z)−1

f(Reiθ)
︸ ︷︷ ︸

o(1/z)

]

= 0 ,

then ∣
∣
∣

∫

γ(R)

f(z)dz
∣
∣
∣→ 0 , for R → ∞ .

• Jordan lemma. Assuming that α > 0, f(z) = o(1) for 0 ≤ arg(z) ≤ π, and

a half-circle γ(R) as in the above picture, it is:

lim
R→∞

∫

γ(R)

eiαzf(z)dz = 0 .

Note Similar consideration obviously hold, mutatis mutandis, if we are to close

the path in the lower half-plane: in that case, besides the need for α < 0,

one has to include an additional minus sign from reversing the orientation

of the curve. Also integrations on the imaginary axis can be treated with

these devices, in that case with no i in the exponent.



Problem 1 [Functional differentiation ] : The formal definition of the functional deriva-

tive is as follows: with F [φ] a functional of φ(x),

δF [φ]

δφ(y)
=

d

ds
F [φ(x) + sδ(x− y)]

∣
∣
∣
s=0

.

(i) In calculating the transition probability 〈x2, t2|x1, t1〉 for the harmonic oscillator,

S[x] =

∫ t2

t1

du

(

m

2
ẋ2(u)−

mω2

2
x2(u)

)

; x = x(t) ,

one can write the trajectory as x(t) = xcl(t) + y(t), with boundary conditions

xcl(t1) = x1, xcl(t2) = x2 and y(t1) = y(t2) = 0.

Expanding around the classical solution to the equations of motion, xcl, the following

exact result holds:

S[x] = S[xcl] +

∫ t2

t1

dt

(

m

2
ẏ2(t)−

mω2

2
y2(t)

)

.

(a) Show, using the formal definition above, that indeed

δS[x]

δx(t)
= −mẍ(t)−mω2x(t) .

(b) Show that
δ2S[x]

δx(t)δx(t′)
= δ(t− t′)

(

−m
d2

dt′2
−mω2

)

.

(c) Show that, for any n > 2,

δnS[x]

δx(t)δx(t′) · · · δx(t(n−1))
= 0 ;

for which class of potentials do you expect this result to hold?

(ii) Starting from the real Klein-Gordon action in four dimensions, with metric

gµν = diag(−1,+1,+1,+1),

S[φ] =

∫

d4x
(

∂µφ(x)∂
µφ(x) +m2φ2(x)

)

,

evaluate the derivative
δS[φ]

δφ(x)

and verify that setting it to zero yields the Klein-Gordon equation (�−m2)φ(x) = 0.

[Hint : in integration by parts, the finite contribution can be neglected.]

Problem 2 [Contour integration, residues ] :



(i) Prove that

I1 =

∫ 2π

0

dθ

5 + 3 cos θ
=

π

2
.

(ii) Prove that

I2 =

∫
∞

0

x2

(x2 + 1)(x2 + 4)
dx =

π

6
.

(iii) Prove that

I3 =

∫ +∞

−∞

cosx

1 + x2
dx =

π

e
.

Hint : different parts of the calculation may require different choices of half-planes. . .

(iv) Prove that

I4 =

∫ π

0

sin x

x
dx =

π

2
.

Hint : remember the freedom granted by Cauchy’s theorem. . .

(v) An integral representation for the Heaviside step function θ(x) is the following:

θ(x) = lim
ǫ→0+

1

2πi

∫ +∞

−∞

eixz

z − iǫ
dz ;

verify, using the residue theorem, that it gives indeed the usual θ(x). What happens

for x = 0? [Hint : how is log(z) defined in C?]


