Exercise sheet II
 April 27 [correction: May 4]

Problem 1 [Observables from v.e.v.'s for the harmonic oscillator]
Consider the one-dimensional harmonic oscillator and its (Euclidean) generating functional as derived in the Lecture:

$$
Z[j]=\exp \left(\frac{1}{4 m \omega} \int \mathrm{~d} \tau_{1} \int \mathrm{~d} \tau_{2} j\left(\tau_{1}\right) e^{-\omega\left|\tau_{1}-\tau_{2}\right|} j\left(\tau_{2}\right)\right)
$$

(i) Calculate the v.e.v. of the mean square deviation (mittlere quadratische Auslenkung)

$$
\langle\Omega| x^{2}|\Omega\rangle
$$

by means of $Z[j]$.
(ii) Consider now the operator $\mathcal{O}=x^{2}-\langle\Omega| x^{2}|\Omega\rangle$. Compute the two-point function

$$
\langle\Omega| \mathcal{O}(\tau) \mathcal{O}(0)|\Omega\rangle
$$

and argue that, in the $\tau \rightarrow \infty$ limit, it takes the form $A e^{-B \tau}$.
Show that B is the energy difference $E(\psi)-E(\Omega)$, with $|\psi\rangle$ some higher energy eigenstate. What is the parity of the state $|\psi\rangle$?
[I.e. which excitations of the harmonic oscillator does this operator "feel"? Think in terms of the ordinary quantum-mechanical knowledge of the system's spectrum.]
(iii) Consider the quantity

$$
\lim _{\tau \rightarrow \infty} \frac{\langle\Omega| x(\tau) x^{2}(0) x(-\tau)|\Omega\rangle}{\langle\Omega| x(\tau) x(-\tau)|\Omega\rangle} .
$$

- What is its meaning, i.e. what kind of observable is it?
- Evaluate it.
(iv) Design an operator $\widetilde{\mathcal{O}}$ to determine the energy difference between the first negative parity excitation of the spectrum and $|\Omega\rangle$ by means of a two-point function $\langle\Omega| \widetilde{\mathcal{O}}(\tau) \widetilde{\mathcal{O}}(0)|\Omega\rangle$.

