Exercise sheet III

May 4 [correction: May 11]

Problem $1\left[\phi^{4}\right.$ theory, perturbation theory $]$
Given the action of the Euclidean ϕ^{4}-theory,

$$
S_{E}[\phi]=\int \mathrm{d}^{4} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

in the Lecture you were given the relation

$$
\begin{aligned}
Z[J] & :=\frac{1}{Z} \int \mathcal{D} \phi \exp \left(-S_{E}+(J, \phi)\right) \\
& =\frac{Z_{0}}{Z} \exp \left(-S_{I}\left[\frac{\delta}{\delta J}\right]\right) \exp \left(\frac{1}{2}\left(J, \Delta_{F} J\right)\right)
\end{aligned}
$$

where

$$
\exp \left(-S_{I}\left[\frac{\delta}{\delta J}\right]\right) \exp \left(\frac{1}{2}\left(J, \Delta_{F} J\right)\right)=\exp \left(\frac{1}{2}\left(J, \Delta_{F} J\right)\right)\left\{1+\lambda W_{1}[J]+\lambda^{2} W_{2}[J]+\mathcal{O}\left(\lambda^{3}\right)\right\}
$$

(i) We derived $W_{1}[J]$ and parts of $W_{2}[J]$ during the Lecture; now compute the full expression for $W_{2}[J]$, where

$$
W_{2}[J]=\frac{1}{2}\left(\frac{1}{4!}\right)^{2} \exp \left(-\frac{1}{2}\left(J, \Delta_{F} J\right)\right)\left\{\int \mathrm{d}^{4} x\left[\frac{\delta}{\delta J}\right]^{4}\right\}^{2} \exp \left(\frac{1}{2}\left(J, \Delta_{F} J\right)\right)
$$

(ii) Translate the expression obtained above into a diagrammatic language.
(iii) Use the resulting $W_{2}[J]$ from (i) to derive $G_{2}\left(y_{1}, y_{2}\right)$ up to order $\mathcal{O}\left(\lambda^{2}\right)$.

