Exercise sheet VII
 June 8 [correction: June 15]

Problem 1 [Gauge principle, Abelian field]
The Lagrangian for a free complex scalar field (Euclidean version) reads:

$$
\mathscr{L}_{0}=\left(\partial_{\mu} \phi^{*}(x)\right)\left(\partial_{\mu} \phi(x)\right)+m^{2} \phi^{*}(x) \phi(x) .
$$

- Consider the global $U(1)$ symmetry, realised by

$$
\left\{\begin{array}{lll}
\phi & \rightarrow & \phi^{\prime}=U \phi \\
\phi^{*} & \rightarrow & \phi^{* \prime}=\phi^{*} U^{\dagger}
\end{array}\right.
$$

with $U=e^{i \theta}$ and θ a constant $\in[0,2 \pi)$. Determine the corresponding current J_{μ} and conserved charge Q.

- Now promote U to a local symmetry transformation $U(x)=e^{i \theta(x)}$, i.e. a gauge transformation. What happens to the invariance of \mathscr{L}_{0} ?
- Show that the variation upon an infinitesimal gauge transformation is of the form

$$
\delta \mathscr{L}_{0}=\left(\mathscr{L}_{0}^{\prime}-\mathscr{L}_{0}\right)=\left(\partial_{\mu} \theta\right) J_{\mu},
$$

Introduce now a four-vector A_{μ} which couples to the current according to

$$
\mathscr{L}_{1}=q J_{\mu} A_{\mu}
$$

and identify the transformation law that has to be required for A_{μ} in order to cancel the $\delta \mathscr{L}_{0}$ above.

- In the new $\mathscr{L}_{0}+\mathscr{L}_{1}$, however, a new non-gauge-invariant term appears: verify then that with an additional

$$
\mathscr{L}_{2} \propto A_{\mu} A_{\mu} \phi^{*} \phi
$$

one can achieve $\delta \mathscr{L}_{2}=-\delta\left(\mathscr{L}_{0}+\mathscr{L}_{1}\right)$, i.e. build a gauge-invariant Lagrangian.

- Finally, A_{μ} should be a dynamical field: provide its own (gauge-invariant) kinetic term $\mathscr{L}_{3}\left[A_{\mu}\right]$ (the simplest term containing derivatives of A_{μ}) and write down the complete Lagrangian $\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1}+\mathscr{L}_{2}+\mathscr{L}_{3}$.
\star Realise that you have just constructed the theory of electromagnetism!
\& Optional: Consider now two identical complex scalar fields $\Phi=\left(\phi_{1}, \phi_{2}\right)$ and a $S U(2)$ symmetry instead of the previous $U(1)$. Proceeding in the same way as before, you will construct "two-colour QCD" (a.k.a. $\mathrm{QC}_{2} \mathrm{D}$).

Problem 2 [Feynman rules in axial gauge]
Write down the effective action (gauge-fixing term, ghost term) for QCD (i.e. the $S U(3)$ gauge theory) in the axial gauge:

$$
n_{\mu} A_{\mu}^{a}=0, \text { for some fixed } n_{\mu}: n_{\mu} n_{\mu}=1 ;
$$

What happens to the ghost? Derive the gluon propagator (in momentum space) and sketch the corresponding Feynman rules for the quark-gluon interactions.

Hint: when inverting the gluon operator, the symmetry-motivated Ansatz

$$
\left(-k^{2} g_{\mu \nu}+k_{\mu} k_{\nu}-\frac{1}{\alpha} n_{\mu} n_{\nu}\right)^{-1}=A g_{\mu \nu}+B k_{\mu} k_{\nu}+C\left(k_{\nu} n_{\mu}+k_{\mu} n_{\nu}\right)
$$

will suffice.

