Exercise sheet X
 June 29 [correction: July 6]

Problem 1 [Lattice discretisation of the harmonic oscillator]

Consider the Euclidean harmonic oscillator:

$$
\begin{aligned}
Z[j] & =\frac{1}{Z} \int[\mathscr{D} q] \exp \left\{\frac{1}{2} \int \mathrm{~d} \tau q(\tau)\left(m \frac{\mathrm{~d}^{2}}{\mathrm{~d} \tau^{2}}-m \omega^{2}\right) q(\tau)+\int \mathrm{d} \tau j(\tau) q(\tau)\right\}= \\
& =\exp \left\{\frac{1}{2} \int \mathrm{~d} \tau_{1} \int \mathrm{~d} \tau_{2} j\left(\tau_{1}\right)\left[\frac{e^{-\omega\left|\tau_{1}-\tau_{2}\right|}}{2 m \omega}\right] j\left(\tau_{2}\right)\right\}
\end{aligned}
$$

assume, in particular, a periodic and finite time extent T.
(i) Discretise now the temporal direction, by dividing T into N intervals of length Δt. Write the corresponding action $S_{i j}$ and generating functional $Z(\mathbf{j})$, where now $S_{i j}$ is a matrix acting on N-component vectors $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$, the discretised form of the trajectories $q(\tau)$. The source term \mathbf{j} will also be a N-component vector.
(ii) Evaluate the inverse of $S_{i j}$ with a discrete Fourier transform:

$$
\left(S_{k \ell}^{-1}\right)=G_{k-\ell}=\sum_{n=1}^{N} \exp \left(\frac{-2 \pi i n(k-\ell)}{N}\right) \widetilde{G}_{n} .
$$

(Hint: you should get a closed form only in Fourier space, while in coordinate space an explicit summation will remain, over a finite number of terms).
(iii) Express the lattice two-point function

$$
\langle 0| T(q(j \Delta t) q(k \Delta t))|0\rangle=C(\underbrace{(k-j) \Delta t}_{t})
$$

in terms of $S_{k \ell}^{-1}$. Compute numerically the resulting sum with your favourite method (Excel, c++, Maple, ...): to do this, choose $m T=8, \omega / m=1$ and take $N=$ $8,16,32$. Compare, by means of a plot, the discretised results with the $T \rightarrow \infty$ continuum equation you have seen in the Lecture. Are there differences?
(iv) Determine the slope of $-\log (C(t))$ for "intermediate" t. Interpret what you find.
(v) Look at your results for $t \lesssim T$: can you imagine a technique to make the comparison to the continuum more accurate?

