Exercise sheet 0 (special session)

April 24, 2013

Problem 1 [Functional differentiation]: The formal definition of the functional derivative is as follows: with $F[\phi]$ a functional of $\phi(x)$,

$$
\frac{\delta F[\phi]}{\delta \phi(y)}=\left.\frac{\mathrm{d}}{\mathrm{~d} s} F[\phi(x)+s \delta(x-y)]\right|_{s=0} .
$$

(i) In calculating the transition probability $\left\langle x_{2}, t_{2} \mid x_{1}, t_{1}\right\rangle$ for the harmonic oscillator,

$$
S[x]=\int_{t_{1}}^{t_{2}} \mathrm{~d} u\left(\frac{m}{2} \dot{x}^{2}(u)-\frac{m \omega^{2}}{2} x^{2}(u)\right) ; x=x(t)
$$

one can write the trajectory as $x(t)=x_{\mathrm{cl}}(t)+y(t)$, with boundary conditions $x_{\mathrm{cl}}\left(t_{1}\right)=x_{1}, x_{\mathrm{cl}}\left(t_{2}\right)=x_{2}$ and $y\left(t_{1}\right)=y\left(t_{2}\right)=0$.
Expanding around the classical solution to the equations of motion, x_{cl}, the following exact result holds:

$$
S[x]=S\left[x_{\mathrm{cl}}\right]+\int_{t_{1}}^{t_{2}} \mathrm{~d} t\left(\frac{m}{2} \dot{y}^{2}(t)-\frac{m \omega^{2}}{2} y^{2}(t)\right)
$$

(a) Show, using the formal definition above, that indeed

$$
\frac{\delta S[x]}{\delta x(t)}=-m \ddot{x}(t)-m \omega^{2} x(t)
$$

(b) Show that

$$
\frac{\delta^{2} S[x]}{\delta x(t) \delta x\left(t^{\prime}\right)}=\delta\left(t-t^{\prime}\right)\left(-m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{\prime 2}}-m \omega^{2}\right) .
$$

(c) Show that, for any $n>2$,

$$
\frac{\delta^{n} S[x]}{\delta x(t) \delta x\left(t^{\prime}\right) \cdots \delta x\left(t^{(n-1)}\right)}=0
$$

for which class of potentials do you expect this result to hold?
(ii) Starting from the real Klein-Gordon action in four dimensions, with metric $g^{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$,

$$
S[\phi]=\int \mathrm{d}^{4} x\left(\partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+m^{2} \phi^{2}(x)\right)
$$

evaluate the derivative

$$
\frac{\delta S[\phi]}{\delta \phi(x)}
$$

and verify that setting it to zero yields the Klein-Gordon equation $\left(\square-m^{2}\right) \phi(x)=0$. [Hint: in integration by parts, the finite contribution can be neglected.]

Problem 2 [Contour integration, residues]:
(i) Prove that

$$
I_{1}=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+3 \cos \theta}=\frac{\pi}{2}
$$

(ii) Prove that

$$
I_{2}=\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=\frac{\pi}{6} .
$$

(iii) Prove that

$$
I_{3}=\int_{-\infty}^{+\infty} \frac{\cos x}{1+x^{2}} \mathrm{~d} x=\frac{\pi}{e}
$$

Hint: different parts of the calculation may require different choices of half-planes.. .
(iv) Prove that

$$
I_{4}=\int_{0}^{\pi} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2} .
$$

Hint: remember the freedom granted by Cauchy's theorem...
(v) An integral representation for the Heaviside step function $\theta(x)$ is the following:

$$
\theta(x)=\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{e^{i x z}}{z-i \epsilon} \mathrm{~d} z
$$

verify, using the residue theorem, that it gives indeed the usual $\theta(x)$. What happens for $x=0$? [Hint: how is $\log (z)$ defined in \mathbb{C} ?]

