Exercise sheet VI

June 12 [correction: June 19]

Problem 1 ["Higher order" perturbation theory, combinatorial (Feynman) rules] Consider Euclidean ϕ^{4}-theory,

$$
S[\phi]=\int d^{4} x\left(\frac{1}{2}\left(\partial_{\mu} \phi(x)\right)\left(\partial_{\mu} \phi(x)\right)+\frac{m}{2} \phi^{2}(x)+\frac{\lambda}{4!} \phi^{4}(x)\right) .
$$

(a) Draw all diagrams of order λ^{3} contributing to the connected 2-point function $G_{2}^{c}\left(x_{1}, x_{2}\right)$.
(b) Draw all diagrams of order λ^{3} contributing to the connected 4-point function $G_{4}^{c}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
(c) Truncate the diagrams drawn in (b). Which of them are 1-particle-irreducible?

Problem 2 [Feynman rules in axial gauge]
Write down the effective action (gauge-fixing term, ghost term) for QCD (i.e. the $S U(3)$ gauge theory) in the axial gauge:

$$
n_{\mu} A_{\mu}^{a}=0, \text { for some fixed } n_{\mu}: n_{\mu} n_{\mu}=1
$$

What happens to the ghost? Derive the gluon propagator (in momentum space) and sketch the corresponding Feynman rules for the quark-gluon interactions.

Hint: when inverting the gluon operator, the symmetry-motivated Ansatz

$$
\left(-k^{2} g_{\mu \nu}+k_{\mu} k_{\nu}-\frac{1}{\alpha} n_{\mu} n_{\nu}\right)^{-1}=A g_{\mu \nu}+B k_{\mu} k_{\nu}+C\left(k_{\nu} n_{\mu}+k_{\mu} n_{\nu}\right)
$$

will suffice.

