Exercise sheet IX
 June 26 [correction: July 3]

Problem 1 [Divergences in the ϕ^{3} theory]
Consider the four-dimensional ϕ^{3} theory. Draw all diagrams that have a non-negative "superficial degree of divergence".

For each such diagram, with explicit calculations, determine the actual degree of divergence.

Problem 2 [Dimensional regularisation of the ϕ^{4} theory]
In the Lecture you have seen how, in Euclidean dimensional regularisation $(\epsilon=4-d)$,

$$
\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}=\lambda \frac{1}{2} \delta\left(p_{1}+p_{2}\right) \pi^{2} m^{2}\left(\frac{2}{\epsilon}+1-\gamma+\log \left(\frac{\mu^{2}}{\pi m^{2}}\right)+\mathcal{O}(\epsilon)\right)
$$

(external lines are not explicitly written on the r.h.s.).
Prove that

$$
\begin{aligned}
& {\left[\frac{2}{\epsilon}-\gamma-\int_{0}^{1} \mathrm{~d} z \log \left(\frac{\pi\left[\left(p_{3}+p_{4}\right)^{2} z(1-z)+m^{2}\right]}{\mu}\right)+\mathcal{O}(\epsilon)\right] .}
\end{aligned}
$$

Hint: to proceed, you will need to use the Feynman parametrisation trick:

$$
\underbrace{\frac{1}{\left(q_{1}^{2}+m^{2}\right)}}_{a} \cdot \underbrace{\frac{1}{\left[\left(q_{1}-q_{2}\right)^{2}+m^{2}\right]}}_{b}=\frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} .
$$

