
QFT II – SS 2013 – Marc Wagner, David Palao

Exercise sheet X
July 3 [correction: July 10]

Problem 1 [Lattice discretisation of the harmonic oscillator ]

Consider the Euclidean harmonic oscillator:
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assume, in particular, a periodic and finite time extent T .

(i) Discretise now the temporal direction, by dividing T into N intervals of length ∆t.

Write the corresponding action Sij and generating functional Z(j), where now Sij
is a matrix acting on N -component vectors q = (q1, . . . , qn), the discretised form of

the trajectories q(τ). The source term j will also be a N -component vector.

(ii) Evaluate the inverse of Sij with a discrete Fourier transform:
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(Hint : you should get a closed form only in Fourier space, while in coordinate space

an explicit summation will remain, over a finite number of terms).

(iii) Express the lattice two-point function
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in terms of S−1k` . Compute numerically the resulting sum with your favourite method

(Python, C++, Fortran, . . . ): to do this, choose mT = 8, ω/m = 1 and take N =

8, 16, 32. Compare, by means of a plot, the discretised results with the T → ∞
continuum equation you have seen in the Lecture. Are there differences?

(iv) Determine the slope of − log
(
C(t)

)
for “intermediate” t. Interpret what you find.

(v) Look at your results for t . T : can you imagine a technique to make the comparison

to the continuum more accurate?


