## Exercise sheet XI

July 10 [correction: July 17]

## Problem 1 [Fermions on the lattice]

Consider, in the following, a $(1+1)$-dimensional Minkowski spacetime. Here the metric tensor is $g_{\mu \nu}=\operatorname{diag}(+1,-1)$, the two $2 \times 2$ gamma-matrices satisfy $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}$, and spinors have two components.
(i) Solve the Dirac equation on the continuum

$$
i \gamma^{0} \partial_{0} \psi(x, t)+i \gamma^{1} \partial_{x} \psi(x, t)-m \psi(x, t)=0
$$

up to identifying the dispersion relation $E=E(p)$. To do so:

- get rid of derivatives with the plane-wave Ansatz

$$
\psi(x, t)=e^{i(E t-p x)} u(p, E)
$$

- get rid of the gamma-matrix structure with the Ansatz

$$
u(p, E)=\left(-\gamma_{0} E-\gamma_{1} p+m\right) v
$$

with $v$ some two-component spinor.
How many solutions $p$ do you find for a given energy $E>m$ ?
(ii) Now discretise only the spatial direction $x$ with a spacing $a$, choosing a symmetric derivative for rewriting the Dirac equation:

$$
\partial_{x} \psi(x) \longmapsto \frac{\psi(x+a)-\psi(x-a)}{2 a}
$$

Proceed as in the previous case, with an adequate $u \rightarrow v$ Ansatz (Hint: is it still true that $-\infty<p<+\infty$ ?), and write down the lattice version of the dispersion $E=E_{\text {lat }}(p)$. Compare it with the continuum result: in particular, how many solutions (for a given energy $E$ ) do you find on the lattice?
(iii) Repeat the above exercise, but now with the following discretised derivative:

$$
\partial_{x} \psi(x) \longmapsto \frac{\psi(x+a)-\psi(x)}{a}
$$

Which essential property of the continuum action is lost in this case?

