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Problem 1 [Spectral decomposition of an operator ] One sometimes needs to define a

function f of an operator (matrix). If the function f : R→ R has a Taylor expansion:

f(x) = f(0) + f ′(0) +
1

2!
f ′′(0) + . . . , (1)

then one can use this expansion as the definition of the matrix-valued function f(A) by

just replacing x → A. For example,

eA = 1 + A +
1

2!
A2 + . . . . (2)

However, a more clever way exists, the so-called spectral decomposition of a matrix:

f(A) =
∑

λ

f(λ)|λ〉〈λ|, (3)

where λ are eigenvalues of the matrix A and |λ〉 their corresponding eigenvectors.

Consider particular examples:

A =

(

0 0

0 2

)

, B =

(

1 1

1 1

)

. (4)

Both A and B have eigenvalues 0, 2. Calculate eA and eB by using both prescriptions –

Eqs. (2) and (3) – and show that they both lead to the same result.

Problem 2 [Generalizations of the Gaussian integral ] Calculate the following integrals

and check that your answer matches the one given below:

G1 ≡
∫

∞

−∞

dxe−
1

2
x2

=
√

2π, (5)

G2 ≡
∫

∞

−∞

dxe−
1

2
ax2

=

√

2π

a
, (6)

〈x2n〉 ≡ G3

G2
≡ 1

G2

∫

∞

−∞

dxe−
1

2
ax2

x2n =
(2n − 1)!!

an
, (7)

G4

G2
≡ 1

G2

∫

∞

−∞

dxe−
1

2
ax2+Jx = e

J
2

2a , (8)

compute 〈x2n〉 again, by using the result for G4:

〈x2n〉 =

(

d

dJ

)2n
G4

G2

∣

∣

∣

J=0
=

(

d

dJ

)2n

e
J
2

2a

∣

∣

∣

J=0
(9)



(J is set to zero at the very end),

G5

G2
≡ 1

G2

∫

∞

−∞

dxe−
1

2
ax2+iJx = e−

J
2

2a , (10)

G6

G2
≡ 1

G2

∫

∞

−∞

dxe
1

2
iax2+iJx = i1/2e−i J

2

2a . (11)

Now we want to generalize to N variables x1, . . . , xN . Thus, instead of a, we will take a

real symmetric N × N matrix Aij and x, J will be vectors xi, Ji:

G7 ≡
∫

∞

−∞

dx1dx2 . . . dxNe−
1

2
xAx =

√

(2π)N

det A
, (12)

where xAx ≡ xiAijxj . To do this integral, you should diagonalize A by an orthogonal

transformation that will factorize the integral into N Gaussian integrals like G4. Gener-

alizations including a source term:

G8 ≡
∫

∞

−∞

dx1dx2 . . . dxNe−
1

2
xAx+Jx =

√

(2π)N

det A
e

1

2
JA−1J , (13)

where Jx ≡ Jixi,

G9 ≡
∫

∞

−∞

dx1dx2 . . . dxNe
i

2
xAx+iJx =

√

(2πi)N

det A
e−

i

2
JA−1J . (14)

Finally, the analogue of 〈x2n〉 for many variables:

〈xixj . . . xkxl〉 ≡
G10

G7
≡ 1

G7

∫

∞

−∞

dx1dx2 . . . dxNe−
1

2
xAxxixj . . . xkxl =

∑

Wick

(A−1)ab . . . (A−1)cd,

(15)

where the set of indices {a, b, . . . , c, d} represents a permutation of the set of indices

{i, j, . . . , k, l}, which can be given the name Wick contractions. The sum is over all such

permutations (contractions).

Work out the following cases:

(i) 〈xixj〉 = (A−1)ij,

(ii) 〈xixjxkxl〉 = (A−1)ij(A
−1)kl + (A−1)il(A

−1)jk + (A−1)ik(A
−1)jl,

(iii) 〈xixjxkxlxmxn〉.

Convince yourself that the above cases reduce to G3 for N = 1 (i.e. a single variable x)

and n = 1, 2, 3 (i.e. 〈x2〉, 〈x4〉, 〈x6〉).



Problem 3 [Free scalar field theory ] Consider the free real scalar field theory with the

Lagrangian density:

L =
1

2
(∂µφ)2 − 1

2
m2φ2. (16)

(i) Write the generating functional Z[J ].

(ii) Compute it explicitly, i.e. solve the appropriate Gaussian integral.

Let us consider an arbitrary n-point Green’s function of the theory:

Gn(x1, . . . , xn) ≡ 〈Ω|T {φ(xn) . . . φ(x1)} |Ω〉 =
1

Z

∫

Dφ φ(xn) . . . φ(x1)e
iS[φ], (17)

where we have defined Z ≡
∫

Dφ eiS[φ]. It is related to the generating functional via:

Gn(x1, . . . , xn) = (−i)n δnZ[J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

J=0
. (18)

(i) Calculate the propagator, i.e. i〈Ω|T {φ(x)φ(y)} |Ω〉 (we are in free theory, so |Ω〉 = |0〉).

(ii) Calculate the 4-point function G4(x1, x2, x3, x4) and draw the corresponding Feyn-

man diagrams.

(iii) Convince yourself (or calculate) that the 6-point function G6(x1, . . . , x6) comes out

as expected and draw the corresponding Feynman diagrams.

(iv) What happens if one calculates an n-point function with n odd?

Problem 4 [Attractive Yukawa potential from scalar exchange ] In this exercise, we will

derive the potential between two static point charges (external sources), coupled to a scalar

field with Lagrangian density (16). We take J(x) = J1(x)+J2(x), with Ji(x) = δ(3)(~x−~xi),

and write the generating functional W [J ] (generator of connected diagrams, defined as

Z[J ] ≡ ZeiW [J ], where Z was defined below Eq. (17)) for this theory:

W [J ] = −1

2

∫

d4xd4yJ(x)D(x − y)J(y). (19)

(i) Insert the expression for the Feynman propagator into Eq. (19), together with the

expression for J . Since J(x) = J1(x) + J2(x), you will have four terms. Ignore the

ones with J1J1 and J2J2 (they correspond to emission and re-absorption of a particle

by the same source, so they don’t contribute to the force we want to compute).

(ii) Now consider the term W12, containing J1J2 (the term W21 is equal, so multiply the

term W12 by 2) and plug in the Dirac delta functions. Perform the integrations over

d3x and d3y.



(iii) Perform the integral over dy0 and use the resulting Dirac delta δ(k0) to do the

integral over dk0. The denominator will now always be positive, so iǫ from the

Feynman propagator can be dropped. Perform also the dx0 integral, which gives

you a factor of T – the temporal extent of the system.

(iv) Now, use the fact that Z[J ] = 〈0|e−iHT |0〉 = e−iET . We then see that W [J ] = −ET

and hence we have the expression for the potential energy between the two static

sources. Define ~r ≡ ~x2 − ~x1 and perform the final integral (over d3k), going to

spherical coordinates (hint: pick up the pole in the upper half-plane).

In the end, you should obtain:

E = − 1

4πr
e−mr, (20)

i.e. the two sources attract each other by their coupling to the scalar field. Moreover, the

attraction decreases exponentially with the distance – the effective range of the interaction

is of order 1/m. Such mechanism was the one that Yukawa proposed in 1935 to describe

the attraction between nucleons in atomic nuclei. Knowing the range of the nuclear force,

he could then predict the mass of the force carrier, named a meson, to be around 100

MeV. Today we identify this particle with the pion, with a mass of approx. 135 MeV

(neutral pion) or 140 MeV (charged pion).

Bonus problem: what happens in a general d-dimensional space-time?


