Exercise Sheet VI

May 27 [Solution June 02]

Problem 1. The Fermion Propagator

In this exercise we will closer examine the free fermionic theory to get used to working with fermions as opposed to bosons.

- Calculate the Gaussian integral

$$
\begin{equation*}
\int\left(\prod_{i} \mathrm{~d} \theta_{i}^{*} \mathrm{~d} \theta_{i}\right) \theta_{k} \theta_{l}^{*} e^{-\theta_{i}^{*} A_{i j} \theta_{j}} \tag{1}
\end{equation*}
$$

where the θ_{i} 's are Grassmann variables.
Using the Dirac Lagrangian for free fermions: ${ }^{1}$

$$
\begin{equation*}
\mathcal{L}[\psi, \bar{\psi}]=\bar{\psi}(i \not \partial-m) \psi, \tag{2}
\end{equation*}
$$

and the Gaussian integral you just evaluated:

- Calculate the fermion propagator and write the expression in the standard way (integral over Fourier space)

$$
\begin{equation*}
\langle\Omega| T\{\psi(x) \bar{\psi}(y)\}|\Omega\rangle=\frac{\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{i S[\psi, \bar{\psi}]} \psi(x) \bar{\psi}(y)}{\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{i S[\psi, \bar{\psi}]}}=S_{F}(x, y) \tag{3}
\end{equation*}
$$

You should find that

$$
\begin{equation*}
S_{F}(x, y)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i(\not p+m)}{p^{2}-m^{2}} e^{-i p(x-y)} \tag{4}
\end{equation*}
$$

- Calculate the four-point Gaussian integrals

$$
\begin{align*}
& \int\left(\prod_{i} \mathrm{~d} \theta_{i}^{*} \mathrm{~d} \theta_{i}\right) \theta_{k} \theta_{l} \theta_{m} \theta_{n} e^{-\theta_{i}^{*} A_{i j} \theta_{j}} \tag{5a}\\
& \int\left(\prod_{i} \mathrm{~d} \theta_{i}^{*} \mathrm{~d} \theta_{i}\right) \theta_{k} \theta_{l} \theta_{m}^{*} \theta_{n}^{*} e^{-\theta_{i}^{*} A_{i j} \theta_{j}} \tag{5b}
\end{align*}
$$

- Use this to calculate the four-point fermion functions

$$
\begin{align*}
& \langle\Omega| T\{\psi(x) \psi(y) \psi(z) \psi(w)\}|\Omega\rangle \tag{6a}\\
& \langle\Omega| T\{\psi(x) \psi(y) \bar{\psi}(z) \bar{\psi}(w)\}|\Omega\rangle \tag{6b}
\end{align*}
$$

[^0]The result should come in pairs of fermion propagators. If the result has a propagator from x to y we say that the field at position x has been contracted with the field at position y. For the propagator we calculated above, this can be written as

$$
\begin{equation*}
\langle\Omega| \psi(x) \bar{\psi}(y)|\Omega\rangle=S_{F}(x, y)=\stackrel{\rightharpoonup}{\psi(x) \bar{\psi}}(y) \tag{7}
\end{equation*}
$$

- Define the rules for $\overline{\psi(x)} \psi(y)$ and $\overline{\bar{\psi}(x) \bar{\psi}}(y)$, and write down the two four-point functions in the Wick contraction notation.

Problem 2. Yukawa Theory

In this exercise we will explore an interacting theory between fermions and scalars known as Yukawa Theory. This theory can work as sort of a simplified toy model ${ }^{2}$ of QED where the photons are replaced by massive scalar fields. The Lagrangian of the theory is:

$$
\begin{equation*}
\mathcal{L}[\phi, \psi, \bar{\psi}]=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\phi}^{2} \phi^{2}+\bar{\psi}\left(i \not \partial-m_{\psi}\right) \psi+g \bar{\psi} \psi \phi \tag{8}
\end{equation*}
$$

- Start by writing down the Feynman rules for the theory.

As with most interactive theories, we cannot solve n-point expectation values analytically, so we will have to resort to perturbation theory.

- Assume for now that the coupling constant g is a small quantity, and calculate the corrections to the fermion and boson propagators to $\mathcal{O}\left(g^{2}\right)$

$$
\begin{equation*}
\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle \&\langle\Omega| T\{\psi(x) \bar{\psi}(y)\}|\Omega\rangle \tag{9}
\end{equation*}
$$

Hint: The Wick contractions might come in handy for bookkeeping and Feynman rules for the integrals.

- Look at anisotropic n-point functions mixing bosons and fermions of the type

$$
\begin{equation*}
\langle\Omega| T\left\{\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \psi\left(y_{1}\right) \cdots \psi\left(y_{m}\right) \bar{\psi}\left(z_{1}\right) \cdots \bar{\psi}\left(z_{k}\right)|\Omega\rangle\right. \tag{10}
\end{equation*}
$$

What is the lowest $n>0$ and $m+k>0$ that gives a nonvanishing contribution? What is the next? Draw their diagrams.

- Draw all diagrams up to $\mathcal{O}\left(g^{4}\right)$ that contribute to the fermionic and bosonic four-point functions and write down their respective symmetry factors:

$$
\begin{equation*}
\langle\Omega| T\{\phi(x) \phi(y) \phi(z) \phi(w)\}|\Omega\rangle \&\langle\Omega| T\{\psi(x) \bar{\psi}(y) \psi(z) \bar{\psi}(w)\}|\Omega\rangle \tag{11}
\end{equation*}
$$

Bonus:
Introduce the $\lambda \phi^{4}$ interaction term to the Yukawa Lagrangian and draw all diagrams that contribute to the two propagators to $\mathcal{O}\left(\lambda g^{4}\right)$.

[^1]
[^0]: ${ }^{1}$ We have made use of Feynman slash notation $\not \phi=\gamma_{\mu} a^{\mu}$

[^1]: ${ }^{2}$ Same mathematical structure or diagrams, does however not mean that they are necessarily related

