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Abstract

In this work the phase diagram of the 1+1 dimensional Gross-Neveu model will be investigated

at finite number of quark flavors for which lattice simulations will be employed. The behavior

of this system will be compared to the large-Nf results and the final result is the homogeneous

phase diagram of this theory.

Zusammenfassung

In dieser Arbeit wird das Phasendiagramm des 1+1 dimensionalen Gross-Neveu Modells bei

endlicher Quarkflavoranzahl untersucht. Dies wird mit Hilfe von Gittersimulationen erreicht.

Das Verhalten dieses System wird mit den Ergebnis von large-Nf Rechnungen verglichen und

das finale Ergebnis ist das homogene Phasendiagramm.
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Chapter 1

Introduction

The 1+1 dimensional Gross-Neveu model is probably the most simple toy model for QCD

one can formulate. Its Lagrangian features - besides a free Dirac part - a quartic fermion

interaction term. This term approximates the fermions interactions, which are mediated by a

gauge field in QCD, by a direct point interaction. That the theory is asymptotically - like QCD -

was found in a large-Nf expansion [1]. A discrete chiral symmetry is realized within the model,

which breaks spontaneously. A first attempt to solve the phase diagram of this symmetry

breaking with a homogeneous mean field approximation yielded a homogeneous broken and

restored phase [2]. The broken phase is located in the region of low temperature and chemical

potential. This was, however, revised almost 20 years later using a numerical implementation

of the Dirac-Hartree-Fock method and later by analytical means. An additional third crystal

phase where the chiral condensate had a spatial dependence with a kink-antikink shape was

found. [3]. Lattice calculations produced a similar phase diagram although with finite size

artifact in the homogeneous phase [4]. All of these findings were done in the large-Nf limit.

It is now an interesting task to study this homogeneous phase diagram as a preparation and

then if the inhomogeneous phase remains at finite Nf. In order to do so we will perform lattice

field simulations. It is not clear if the inhomogeneous phase remains when they are subject to

thermal and quantum fluctuations. Unfortunately the investigation of the inhomogeneous

phase will not be achieved within this thesis. If we were to find this phase, it would be worth

investigating more sophisticated models. These could be the NJL (has a γ5 interaction term)

or the Thirring model (features a continuous chiral symmetry) and they would give us further

hints about the situation in QCD. Since no first principle approaches for QCD, that can explore

the phase diagram in the expected region of the inhomogeneous phase, are known at this time,

these hints are very valuable.
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Chapter 2

Gross-Neveu model

First, we want to have a look at the 1+1 dimensional Gross-Neveu model. The Lagrangian for

the Minkowski action consists of a common Dirac part and a four fermion interaction term:

L = ψ̄ f (i /∂−m)ψ f +
g 2

2
(ψ̄ f ψ f )2

= ψ̄ f (i /∂−m)ψ f +
λ

2Nf
(ψ̄ f ψ f )2 (2.1)

with λ= Nf g 2 being the rescaled coupling. In the limit of m → 0 (which we will assume from

now on and drop the mass term) it is invariant under a discrete chiral transformations.

ψ→ γ5ψ, ψ̄→−ψ̄γ5 (2.2)

Therefore the model is suited for the investigation of the spontaneous breaking of chiral

symmetry, where the chiral condensate 〈ψ̄ψ〉 can exhibit a nonzero vacuum expectation value.

[5]

We now apply a wick rotation to the action by transforming the time coordinate as t →−iτ.

i S = i
∫

dX

(
ψ̄ f (i /∂)ψ f +

λ

2Nf
(ψ̄ f ψ f )2

)
Wick−−−→ i

∫
(−i dτ)dx

(
ψ̄ f ((i 2∂0γ0 − i∂1γ1))ψ f +

λ

2Nf
(ψ̄ f ψ f )2

)
=−

∫
d2x

(
ψ̄ f ((∂0γE ,0 +∂1γE ,1))ψ f −

λ

2Nf
(ψ̄ f ψ f )2

)
=−SE (2.3)

with γE,0 = γ0 and γE,1 = iγ1.

3



Chapter 2. Gross-Neveu model

Therefore the eulidean Lagrange density is

LE = ψ̄ f ((∂0γE,0 +∂1γE ,1)+m)ψ f −
λ

2Nf
(ψ̄ f ψ f )2

= ψ̄ f (/∂E +m)ψ f −
λ

2Nf
(ψ̄ f ψ f )2 (2.4)

From here on we will drop the subscript E and assume all objects are euclidean until denoted

otherwise.

2.1 Bosonization via a Hubbard-Stratonovich transformation

The four fermion interaction poses a problem for numerical lattice calculations since the

fermion fields are Grassmann valued. With the help of a so called Hubbard-Stratonovich (HS)

transformation we can reduce the four fermion part to a term quadratic in the fermion fields

and an additionally bosonic part. The transformation is basically a shifted gaussian integral.

We will use the following integral identity:

exp

(
1

2
~J A−1~J

)
=

√
det A

(2π)N

∫
dN~r exp

(
−1

2
~r A~r +~J ·~r

)
(2.5)

Now we want to transform the four fermion part of our action with this identity.

exp

[∫
d2x

λ

2Nf

(
ψ̄ f ψ f

)2
]

= lim
Nt ,Nx→∞
τ,a→0

exp

[
Nt∑

i=0

Nx∑
j=0

λ

2Nf

(
ψ̄

f
i , jψ

f
i , j

)2
]

= lim
Nt ,Nx→∞
τ,a→0


√

Nf

2πλ

(Nt ·Nx ) ∫ (
Nt∏

i=0

Nx∏
j=0

dσi , j

)
exp

[
Nt∑

i=0

Nx∑
j=0

(
−Nf

2λ
σ2

i , j − ψ̄ f
i , jσi , jψ

f
i , j

)]
=N

∫
Dσexp

[
−

∫
d2x

(
Nf

2λ
σ2 + ψ̄ f σψ f

)]
(2.6)

with a and τ being the spacing of our intermediately discretized space and time. ψi , j denotes

the field at the i-th position in time and the j-th position in space. From line two to three we

used eq. 2.5.

The path integral assumes the form

Z =N

∫
Dψ f Dψ̄ f Dσexp

[
−

∫
d2x

(
ψ̄ f Dψ f +

Nf

2λ
σ2

)]
(2.7)
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2.2. Symmetry breaking

with D = /∂+m +σ. Here σ is a scalar boson field whose expectation value is linked to that
of the chiral condensate. To get this relation we start with the expectation value of the chiral
condensate

〈ψ̄(X )ψ(X )〉

= 1

Zψ

∫
Dψ f Dψ̄ f ψ̄(X )ψ(X ) exp

[
−

∫
d2x

(
ψ̄ f /∂ψ f −

λ

2Nf
(ψ̄ f ψ f )2

)]

= 1

Zψ
lim

Nt ,Nx→∞
τ,a→0

∫ (
Nt∏

i=0

Nx∏
j=0

dψ̄ f
i , j dψ f

i , j

)
ψ̄

f
k,lψ

f
k,l exp

[
−

Nt∑
i=0

Nx∑
j=0

(
ψ̄

f
i , j /∂ψ f

i , j −
λ

2Nf
(ψ̄ f

i , jψ
f
i , j )2

)]

= 1

Zσ
lim

Nt ,Nx→∞
τ,a→0

∫ (
Nt∏

i=0

Nx∏
j=0

dψ̄ f
i , j dψ f

i , j dσi , j

)(
Nf

2πλ

)(Nt ·Nx )/2 −Nf

λ
σk,l

exp

[
−

Nt∑
i=0

Nx∑
j=0

(
ψ̄

f
i , j (/∂+σi , j )ψ f

i , j +
Nf

2λ
σ2

i , j

)]

= 1

Zσ
N

∫
Dψ f Dψ̄ f Dσ

−Nf

λ
σ(X ) exp

[
−

∫
d2x

(
ψ̄ f (/∂+σ)ψ f +

Nf

2λ
σ2

)]
= −Nf

λ
〈σ(X )〉 (2.8)

The indices k and l correspond to the spacetime position X . Zψ is the normal path integral

before the HS transformation and Zσ being the transformed path integral according to eq. 2.6.

From line two to three eq. 2.5 was used again for all but a single factor. For the k, l factor the

following identity was used

x exp
(
ax2)= 1p

4πa

−1

2a

∫ ∞

−∞
dy y exp

(
− 1

4a
y2 −x y

)
(2.9)

Eq. 2.8 shows the direct correspondence of the expectation value of the chiral condensate and

that of sigma.

2.2 Symmetry breaking

The so called effective action Seff is obtained when integrating out the fermion fields in eq. 2.7

and raising the resulting determinant back in the exponent.

Seff = Nf

(∫
d2x

1

2λ
σ2 − ln(det(D))

)
(2.10)

This action has a single minimum in the restored phase at σ= 0. If we increase the coupling

λ for a given cutoff up to a critical λcrit, the minimum will split into two minima symmetric

around the origin for homogeneous σ resulting in a non-zero vacuum expectation value of

the sigma field and hence of the chiral condensate.
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Chapter 2. Gross-Neveu model
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Figure 2.1: Seff for homogeneous σ for different lambda. λ1 <λcrit /λ2 ¿λ3

2.3 Phase diagram in the large-Nf limit

The GN phase diagram in the large-Nf limit consists of three phases: a homogeneous broken,

restored and inhomogeneous phase. The homogeneous phases are separated by a second

order phase transition up to a tricritical point. After this point the inhomogeneous phase

occurs which is seperated from the other phases by phase boundaries of first order. A third

phase occurs in the large-Nf limit called the inhomgenous phase. In this phase σ is a function

of the position in space. For fixed T and increased µ the frequency becomes larger and the

amplitude smaller as seen in fig. 2.2b. This way the phase transitions to the restored phase.

0
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0.2
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0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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B
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homogeneously

broken
crystal phase

T
/σ

0

µ/σ0

(a) Revised phase diagram of the Gross-Neveu model. A: Critical
temperature, B: tricritical point, blue line: second order homo-
geneous phase boundary, orange/yellow line: phase bound-
aries of the inhomgeneous phase, dashed green line: the former
phase first order boundary from Wolff. [3]

(b) The shape of the chiral condensate for
T /σ0 = 0.141 and different values of µ/σ0. [6]
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Chapter 3

Lattice field theory techniques

3.1 Pseudofermions

After the HS transformation the path integral has the following form

Z =N

∫
DσDψ f Dψ̄ f exp

[
−

∫
d2x

(
Nf

2λ
σ2 + ψ̄ f Dψ f

)]
(3.1)

which contains a quadratic fermion term. If we carry out the ψ and ψ̄ integral we obtain the

following

Z =N

∫
Dσ det(D)Nf exp

[
−

∫
d2x

Nf

2λ
σ2

]
(3.2)

This determinant is possibly difficult and/or expensive to evaluate. To circumvent this we

apply a method called pseudofermions. The idea is that we raise the determinant back up in

the exponent by a reverse integration of a bosonic field.

Since det(D) is real - which is shown in Appendix A - we can write

det(D)Nf = det(D†D)Nf/2 = det(M)Nf/2 = 1

det(M−r )NPF
(3.3)

with a new matrix M = D†D . By defining M this way we ensure that it is positive definite which

is needed for the gaussian integral to converge. The number of pseudofermions is arbitrary

but will be set to Nf = NPF and therefore r = 1/2 [7].

If we now perform this reverse gaussian integration over a bosonic field, we end up with the

following expression for the path integral

Z =N

∫
DσDφ† Dφe−S[σ,φ,φ†] (3.4)

7



Chapter 3. Lattice field theory techniques

with

S = Sσ+SPF =
∫

d2x
Nf

2λ
σ2 +

∫
d2xφ†M−rφ (3.5)

3.2 Naive discretization

The naive discretization is arguably the most simple way to discretize a derivative. We simply

transform the derivative to a finite difference of the adjacent latticepoints.

∂µψ(x) →
ψn+êµ −ψn−êµ

2a
(3.6)

where n is a superindex that denotes the position in spacetime. Hence n + êµ is the lattice

point adjacent to the point n in the µ direction. ψn corresponds to ψ(x) and a is the lattice

spacing.

This discretization is hermitian, local and obviously still preserves chiral symmetry. Fermion

doublers are occurring with a factor of 2 per dimension.

The operator D from eq. 2.7 takes on the following form with the naive discretization

Dn,m = γ0
δn+ê0,m −δn−ê0,m

2a
+γ1

δn+ê1,m −δn−ê1,m

2a
+δn,mσn (3.7)

In this discretization the chemical potential is introduced with an exponential function in the

time derivative in the following way [12]

Dn,m = γ0
δn+ê0,m exp

(
µ
)−δn−ê0,m exp

(−µ)
2a

+γ1
δn+ê1,m −δn−ê1,m

2a
+δn,mσn (3.8)

3.3 HMC

For the lattice simulations we want to use the Hybrid Monte Carlo algorithm. Its large ad-

vantage is that the whole lattice is updated at once, whereas in the Metropolis algorithm a

large number of acceptance steps are needed for which our action and hence M−r has to be

evaluated. The basic principle is the reformulation of a quantum field theory path integral

to a partition function known from classical mechanics in which time dimension is a space

dimension as well. The fields are then evolved via Hamiltonian equations of motion in a so

called Molecular dynamics time. This creates a new configuration of the whole lattice. In the

following discussion all fields and operators are already discretized on the lattice.

First, we introduce canonically conjugate momenta for the σ-field and can thus formulate a

8



3.3. HMC

Hamilton function:

H
[
σ,π,φ,φ†

]
=∑

i

1

2
π2

i +S
[
σ,φ,φ†

]
(3.9)

where i is a superindex that runs over all lattice sites and π being the canonically conjugate

momenta for σ. We could introduce canonically conjugated momenta for the pseudofermion

fields as well and evolve them, but there exists a faster way of generating configurations for

them. We would now integrate over this momentum field in the continuous path integral as

well:

Z =N ′
∫

DσDπDφ† Dφe−H[σ,π,φ,φ†] (3.10)

These introduced momenta only change the normalization constant of the path integral, since

they do not appear in any physical observable and separate as a simple Gaussian integral.

The Hamiltonian equations of motion for the fields are then:

σ̇i = ∂H

∂pi
, π̇i = ∂H

∂σi
(3.11)

In order to integrate these equations of motion a set of initial field configurations is needed.

The initial configuration of σ can be chosen rather arbitrarily and will only affect the time

the system needs to thermalize. The initial momenta fields π are picked from a gaussian

distribution. For the pseudofermions we take a look at their distribution which is proportional

to

exp
[
−φ†M−rφ

]
= exp

[
−ξ†ξ

]
(3.12)

with ξ= M−r /2φ. Thus we can obtain φ with φ= M r /2ξ. Where ξ is simply a gaussian distr-

buted field, which we can generate easily[8].

We can integrate the equations of motion with a symplectic integrator (e.g. leapfrog). These

integrators preserve phase space area and are reversible in time, which is needed for the

detailed balance of the markov chain [9]. They conserve energy up to O (δτ2) - with δτ being

the integrations step size. It is also possible to integrate on multiple timescales. This means

that we can integrate certain parts of our force on larger timesteps, if they do not contribute

much to the overall force of the molecular dynamic. In our application this is the case for the

SPF part of our action S. Using this technique we can reduce the times we need to evaluate

M−r .

An integration of these equations of motion for a certain time will produce a new configura-

tion. To eliminate any systematic errors we introduce a Metropolis acceptance step with the

9



Chapter 3. Lattice field theory techniques

acceptance probability:

PA
((
σ,π) → (σ′,π′))= min

(
1,e−H[σ,π,φ,φ†]/e−H[σ′,π′,φ,φ†]

)
(3.13)

with the primed fields being the evolved fields. After this we generate new momenta and

pseudofermion fields and iterate this whole process until we obtained enough configurations.

Acceptance rates depend of course on δτ and will drop with an increased step size, since the

error of the energy is larger. Though, there is also the possibility for the integrator to become

unstable. Additionally the acceptance rate can vary as a function of the integration length.

These two effects can be seen in a very simple quantum mechanical example with the action

S = 1
2 q2 in fig. 3.1. In this particular example the integrator becomes unstable for δτ = 2,

because then the eigenvalues of the linear mapping of the integrator become real and increase

the error exponentially.

Figure 3.1: Acceptance rate for a single mode as a function of the MD step size δτ and trajectory
length τ (rounded to the nearest integer multiple of δτ) [10].

3.3.1 rHMC

The rational Hybrid Monte Carlo modifies the original HMC algorithm in such a way that the ra-

tional powers of M , which are needed for the algorithm, are computed with the approximation:

M−r ≈α0 +
NR∑

r=1
αr (M +βr )−1 (3.14)

where α0, αr and βr are coefficients, which have to be calculated beforehand with the Remez

algorithm for example. The accuracy of the approximation 3.14 is governed by the accuracy

up to which the coefficients are calculated and the number of summands NR. The inversions

needed are done with a so-called CG multishift solver. This is a CG method, that performs the

inversion for all βr shifts at the same time [11].

10



Chapter 4

Observables

Our goal is to observe the different phases in the phase diagram. For this we need observables

to differentiate the phases from one another and also to detect where a phase transition is

happening.

4.1 Homogeneous phases

4.1.1 Order parameter

The chiral condensate 〈ψ̄ψ〉 is suited to differentiate between the homogeneous broken phase

and the restored phase. It can be calculated by taking the trace over the inverse Dirac operator

[12]

〈ψ̄ψ〉 = 1

V
tr

[
D−1] (4.1)

This is however quite expensive to calculate, but fortunately there exists the correspondence

between 〈σ〉 and 〈ψ̄ψ〉 that we have shown in eq. 2.8. This observable is easier to obtain

since it is the field that we simulate and therefore we just have to calculate the mean of our

configurations. However, 〈σ〉 is not suited as an order parameter observable because of the

situation depicted in fig. 2.1 and the way the HMC algorithm works. The configurations will

not only fluctuate around one minimum but will also be able to tunnel to the other minimum

which is of the same magnitude but with opposite sign. This is especially the case for λ'λcrit

since there the potential barrier is relatively small. This can be seen in fig 4.1. An average taken

over all these configurations will result in 〈σ〉 ≈ 0.

A suitable alternative is 〈|σ|〉 as it will not experience the same annihilation as 〈σ〉, since -

graphically spoken - all the negative values in fig 4.1 are flipped to the positive side before

11



Chapter 4. Observables

-0.8
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0
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0 200 400 600 800 1000

〈σ
〉

tMC

Figure 4.1: 〈σ〉 for every configuration of an HMC simulation with λ'λcr i t

taking the average. The drawback is, of course, that - even in the restored phase - 〈|σ|〉 will

always be larger than zero. This is due to all the quantum fluctuations around the single

minimum which do not annihilate each other anymore when taking the average.

4.1.2 Susceptibility

To detect a phase transition we rely on the susceptibility χσ of |σ| which diverges (peaks in the

finite volume case) at a phase transition. It is defined as

χσ = 〈σ2〉−〈|σ|〉2 (4.2)

4.2 Inhomogeneous phase

Of course, a different observable is needed to detect the inhomogeneous phase, since its space

dependency would get lost completely in 〈|σ|〉. An option would be the mean of a single lattice

point 〈σ(x)〉. But it might be possible that there occurs a phase shift between configurations

and hence 〈σ(x)〉 ≈ 0. An observable that preserves the oscillating properties is the following

P (x) =
∫

dy 〈σ(y)σ(x + y)〉 (4.3)

To test this observable a thousand configurations of artificial data, that mimics the expected

inhomogeneous phases, were generated. This data was a sinus overlayed with a noise and a

12



4.2. Inhomogeneous phase

0 5 10 15 20 25 30 0 5 10 15 20 25 30

〈σ
〉

xi

(a)

P

xi

(b)

Figure 4.2: (a): A single configuration of the generated data , (b): The observable P of the
generated data.

running phase shift from one configuration to another on lattice with a spatial size of 32.

The observable preserves the nature of the data although it might distorts the shape of the

condensate. In contrast it is zero or constant nonzero for data that mimics the restored or

broken phase. Since these tests are promising we will use this observable in the search for the

inhomogeneous phase.
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Chapter 5

Results

At first we are going to analyze some preliminary results, which show how the system behaves

in general. Following that, the homogeneous phase diagram will be presented.

All of the following lattice simulations were done using a simulation code provided by Bjo-

ern Wellegehausen, which has been modified by Daniel Schmidt to simulate four fermion

interacting theories. All error estimates are done with the Jackknife method. The results for

the large-Nf case were obtained with a code provided by Marc Wagner. Calculations on the

FUCHS-CSC high-performance computer of the Goethe University Frankfurt were conducted

for this research.

5.1 Coupling scans on a small lattice

In the first simulation we fix the spatial size Ls and temporal size Lt to 8 and the chemical

potential µ is set to 0. Then we do a parameter scan over λ for different Nf and include the

large-Nf result for comparison. The results are presented in fig 5.1.

Now there are several things to observe. Firstly, with increasing Nf and for large λ the sim-

ulation results seem to approach the infinite-Nf result with a similar linear behavior for all

Nf. A large difference occurs for small λ where 〈|σ|〉 6= 0 for the simulations, because all the

fluctuations around one minimum will not cancel each other. Also the rise of 〈|σ|〉 happens

later than for the large-Nf result.

We can see a peak in the susceptibility. We interpret the corresponding λ as λcrit for which the

phase transition is happening at this temperature and µ= 0. The system is very unstable at

this coupling, which results in a larger error. For increasing Nf the height of the susceptibility’s

peak decreases and the critical coupling becomes smaller converging towards the critical

coupling of the large-Nf result.
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Figure 5.1: λ-scan of 〈|σ|〉 and χσ on an 8x8 Lattice for various Nf.

5.2 Dependence of the critical coupling on the spatial size

Next we want to look how the critical coupling scales with the spatial size of the Lattice. This

helps us to choose the spatial size for the simulations of the entire phase diagram in a way

to have a good approximation of the infinite volume limit. Scans over the coupling near λcrit

were performed for different spatial size at Nf = 4 and Lt = 4. Its results are presented in fig.

5.2. The peak of the susceptibility becomes larger for increasing Ls. This is expected since the

susceptibility should diverge in an infinite volume. The critical coupling seems to be the same

for Ls = 32 and Ls = 24. The simulation for Ls = 32 had some problems for smaller λ. We can

neglect these, as they are far off from the peak and do not interfere with the result. For the

homogeneous phase diagram we will choose Ls = 32, so that we do not run into problems for

larger Lt.

5.3 Homogeneous phase diagram

Now we want so simulate the entire homogeneous phase diagram. As already mentioned we

will do this on a lattice of Ls = 32 and Nf = 4. In preparation we need to do a λ-scan with Lt = 4

to determine λcrit. This Lt will correspond to our critical temperature at µ = 0 through the

relation T = 1/Lt. Now we are able to scan the phase diagram in the T , µ- plane. For this we fix

the coupling to the λcrit obtained from the previous simulation. To scan over the temperature

we vary Lt. In addition we scan over µ, which we can put in directly. The simulations with

different Lt need individual adjustment of the simulation parameters since acceptance rates

would fall and auto correlation would increase, if we keep the same values as for a Lt of 4.
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5.3. Homogeneous phase diagram
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Figure 5.2: λ-scan of 〈|σ|〉 and χσ on Lattices with different spatial sizes Ns and fixed temporal
size Nt = 8.

The T and µ axis are rescaled by σ0. This is the 〈|σ|〉 value at very low temperatures and µ= 0.

In fig. 5.3 the value of 〈|σ|〉 is plotted as a heatmap. The T and µ position of a data point

is indicated by the white dot and the surrounding rectangle has the corresponding color of

the value of that data point. The rectangle stretches half-way to next value in all directions.

The size of the squares reduces for decreasing temperature, because of the way the temporal

size and the temperature are related. In fig. 5.4 the susceptibility is plotted which provide an

indication on the phase boundary.

Three datapoints in the lower left corner of the plots are corrupted. The simulations were

affected by autocorrelation effects which resulted in a lower value of 〈|σ|〉 than the expected

one. It was not possible to find suitable simulation parameters in a reasonable timeframe.

Therefore we will ignore these points in the discussion.

We now want to do a comparison of this simulation result for Nf = 4 and the analytical large-

Nf result as seen in fig. 2.2a. The analytical phase boundary of the homogeneous phase

is represented by the orange line. At first the region of the broken phase does not seem to

match in T direction. This occurs, because the value of σ0 in the simulations differs from the

infinite-Nf result. It would match, if we would rescale by the σ0 of the infinite-Nf result. In the

µ-direction the phase boundaries seem to match quite well.

From the two phase boundaries of the suspected inhomogeneous phase only the one to the

broken phase is visible. It is not as sharp as the phase boundary between the broken and

restored phase, but runs in a similar manner as in the large-Nf result. To sum it up it can be

said that the phase diagram takes on a similar form as in the large-Nf case.
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Figure 5.3: 〈|σ|〉 in the T , µ- plane on a Ls = 32 lattice and for Nf = 4.
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Figure 5.4: χσ in the T , µ- plane on a Ls = 32 lattice and for Nf = 4.
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5.4. Temperature scans at vanishing chemical potential
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Figure 5.5: Scan of 〈|σ|〉 over Lt for different Nf.

5.4 Temperature scans at vanishing chemical potential

As we have observed earlier, the phase diagram for Nf = 4 is distorted in the temperature

direction, because - amongst other things - the value of σ0 is larger than that in the large-

Nf case. It would be interesting to observe the dependence of σ0 on Nf. To achieve this,

simulations at µ= 0 and for different Nf and Lt on a Ls = 8 were performed. The coupling was

tuned so that the phase transition happens at Lt = 4. By increasing Lt we lower the temperature.

This small lattice was chosen, because it was difficult to tune the parameters for larger Nf on

bigger lattices and calculations would have taken a lot longer. This does not pose a problem,

since we only want to observe a trend.

For large Lt we are deep in the homogeneous broken phase and 〈|σ|〉 approaches σ0. As we

can observe, the value of σ0 scales indeed with Nf and converges to the value of the large-Nf

result. This encourages that the homogenoues phase diagram will converge to that of the

large-Nf result for increasing Nf.
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Chapter 6

Conclusion

6.1 Summary

The simulations, that were done, served primarily to get acquainted with the lattice techniques

and program at hand. However there were also some physical relevant findings. The most

important one is that the theory shows behavior similar to a phase transition even for finite Nf.

The fact that the behavior of the system converges for increasing Nf to that of the large-Nf case

is relieving. Thus we know that there is no drastic change of physics in the large-Nf results

and the more physical situation of finite Nf is still relevant. Therefore an occurrence of the

inhomogeneous phase at finite Nf is still plausible.

6.2 Outlook

Based on these findings the next task will be to simulate the phase diagram at larger Nf to

get closer to the large-Nf result. The difficulty to overcome here is to determine the correct

simulation parameters for which the simulation still runs in a reasonable time. Following that,

one can implement the previously discussed observable for the inhomogeneous phase. If this

phase is found, it is reasonable to simulate other models which resemble QCD more closely. If

they are not found, it might be worth investigating this phase in 2+1 or 3+1 dimensions. It is

possible that one might encounter a sign problem in 2+1 dimensions. This is subject to further

investigations, if needed.
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Appendix A

Proof that det(D) is real in 1+1
dimensions

In even dimensions the irreducible gamma matrices are unique up to a similarity transfor-

mation. γ∗µ also fulfills the Clifford algebra and hence is related to γµ through a similarity

transformation [13]:

γ∗µ = BγµB−1 (A.1)

We now take a look at the eigenvalue equation of D(
γ0∂0 +γ1∂1 +σ

)
ψ=λψ (A.2)

If we take the complex conjugate of this and apply A.1 we obtain(
Bγ0B−1∂0 +Bγ1B−1∂1 +σBB−1)ψ∗ =λ∗ψ∗ (A.3)

and after a multiplication with B−1:(
γ0∂0 +γ1∂1 +σ

)
B−1ψ∗ =λ∗B−1ψ∗ (A.4)

Now we have another eigenvalue equation of D . Since D is two dimensional in spinor space, it

will have two eigenvalues for every spacetime position. The determinant is the product of all

eigenvalues. So either λ is complex and therefore det(D) is the absolute squared of λ or λ is

real and det(D) is again real.
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