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Abstract

In this work we compute chromoelectric and chromomagnetic flux densities for hybrid
static potentials in SU(2) and SU(3) lattice Yang-Mills theory. We show results for
quantum numbers Ay = X5, ¥ 3F Y0 Tl T, Ay, A, where the flux densities of five
of them were studied for the first time. The flux tube structure changes significantly
for hybrid static potentials compared to the ordinary static potential. We find strong
localized peaks which can be interpreted as valence gluons. Furthermore, our results
are consistent with investigations using pNRQCD.
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1. Introduction

According to the standard model of particle physics all matter is composed of spin—%
particles, so called fermions. The four fundamental forces, gravity, electromagnetism,
weak force and strong force, are mediated between those particles via so called gauge
bosons, particles with integer spin.

The strong interaction between quarks and gluons is exerted by so called color charges.
Several experiments showed that there are three different charges labeled with the colors
red, green and blue. In contrast to the photons in quantum electrodynamics, gluons also
carry color charge. Consequently, the quantum field theory of the strong interaction,
quantum chromodynamics (QCD), is described by a non-abelian gauge symmetry group

SU(3).

The coupling constant of the strong force becomes large at low energies and large dis-
tances, making it impossible to work with perturbation theory in this regime. Hence, a
valid approach is to introduce a lattice representing a discretized spacetime and perform
numerical simulations of the physical system.

The elementary fermions carrying color charge are referred to as quarks, which come in
6 flavours: up, down, strange, charm, bottom and top. In the standard quark model
quarks can form either mesonic quark-antiquark (gg) states or baryonic (anti)quark-
(anti)quark-(anti)quark (ggq or ggq) states with corresponding quantum numbers (an-
gular momentum, parity, charge etc.) dependent on the (anti-)flavour of the quarks.
This is due to the property of confinement: quarks can never appear as single particles,
but always as color singlets, i.e. color neutral objects. There are, anyhow, experimental
observations of quark states which can not be explained by this simple quark model [1].
These are for example the JP¢ = 17+ states m;(1400) and m5(1600).

One explanation of these exotic mesons would be the existence of tetraquarks, bound
states of two quarks and two antiquarks (ggqq), which again form a color singlet and,
thus, are technically possible. Another explanation would be excited gluon structures
in a quark-antiquark state, contributing to the quantum numbers (hybrid mesons). The
latter is the system investigated in this work.

Hybrid mesons are also a topic of large interest for experimentalist as the PANDA
experiment at FAIR is planning to search for exotic matter in the form of hybrid mesons
and glueballs.

We study the limit of infinitely heavy i.e. static quarks. In the past hybrid static
potentials were mainly investigated in order to obtain masses of heavy hybrid mesons
using the Born-Oppenheimer approximation [2-26]. In this work on the other hand we
consider the flux tubes of such meson states. While the flux tubes of the ordinary static
potential are subject of studies for a long time [27-42]) we are among the first to study
hybrid static potential flux tubes [43H46].



The aim of this work is to get an insight on the effects of excitations in the gluon sector
on the structure of flux tubes from lattice simulations using pure gauge theory. We
compute the square of chromoelectric and chromomagnetic field strength components
for the ordinary static potential A7 = ¥ and the seven lowest energy hybrid static
potentials with quantum numbers A} =37, H Y I, 00, Ay, A,

This work is structured as follows. In section [2| we briefly introduce SU(2) and SU(3)
lattice Yang-Mills theory and fix some notations. In the following section [3] we derive
how to compute the static potential and the square of field strength components on
the lattice. Section [4] addresses the formulation of quantum numbers for hybrid static
potentials Aj and how to construct operators generating corresponding trial states on
the lattice. Section [5] starts with a detailed description of the lattice setup followed by
the discussion of systematic errors before showing numerical results on the flux densities
of hybrid static potentials. Finally we give a short summary and outlook in section [}



2. SU(2) and SU(3) lattice Yang-Mills
theory

In this work we will perform simulations in both SU(2) and SU(3) lattice Yang-Mills
theory For the investigation of a meson system with static quarks it is a valid approach
to reduce the number of different colors down to two by considering the gauge group
SU(2) instead. This gives similar results and yields less expensive simulations making
it a feasible choice for qualitative investigations.

In pure lattice Yang-Mills theory there are only gauge fields to consider while fermions,
which are a major challenge to simulate on the lattice, are absent.

In order to make the kinetic term of fermions in the QCD action invariant under gauge
transformations one needs to introduce a covariant derivative. It can be expressed by
the parallel transporter

Ulz,y) = P (exp {ig / ’ dzuA“(z)D € SU(N) (2.1)

where g is the coupling constant, A, = AZT* the gauge field with the generators of the
SU(N) algebra T® and P denotes path ordering. In the case of SU(2) these correspond
to the Pauli-matrices and for SU(3) to the Gell-Mann-matrices.

On the lattice the parallel transport from one lattice site (z € N*) to a neighboring
one in direction p will be referred to as link variable

Uu(z) = exp (igaA,) (2.2)

with lattice spacing a.

We can obtain gauge invariant observables by constructing closed paths of link variables
on the lattice. We denote a straight path of link variables starting at x and ending at
x + ré, in direction y as

S,(x,r) =P (ﬁ U, (z + akéu)> (2.3)

k=0

An important lattice observable for studying the static quark-antiquark potential is the
Wilson loop

W(x,r,t) ="Tr {Su(x, r)-Sy(z+é,r,t)- S;L($ +é,t,r)- Si(x, t)} , (2.4)
where the simplest non-trivial Wilson loop is called plaquette
P, (x)="Tr [Uu('r) U, (r+ap) - Uj(r + av) - Uj(r)} (2.5)

In this work the Wilson loop will only appear in the 2-0O-plane and is independent of x
when performing the path integral expectation value (...). Consequently, we set

<W(7“, t?a tO)) = <Wz0(x> T, t2 - t0)> . (26)



3. Static QQ - potentials in SU(2) and
SU(3) lattice Yang-Mills theory

3.1. Static QQ potential

We construct a two point correlation function for a trial state of a quark at (x,?,) and
an antiquark at (y, to) propagating to t (we already label the times to and ¢5 in order to
keep the notation consistent throughout this work as we will introduce an intermediate
time ¢, in the next chapter)

Coo(X,y,t2,t0) = (QOT(x, ta;y, t2)O(x, to; y, 1) |2)
= <Q|Q(Y7 tQ)U(Y7 t27 X, tQ)Q(X7 t?)@(xa tO)U(Xa th Yy, tO)Q(y: t0)|Q> .
(3.1)

Here |Q) denotes the vacuum, Q(x,t) and Q(y,t) are operators creating a spinless
quark-antiquark pair and we omit all color indices in favor of readability. After a lengthy
calculation which can be found in [47] it is shown, that this two point correlation function
is proportional to the path integral expectation value of the Wilson loop in temporal
and y —x = (0,0, z) direction

CQQ(X,y, tg,to) 0.8 <W(T’, tg,to)) . (32)
Starting at the first line of eq. (3.1]) we can also perform a time evolution of the operators
and insert a complete basis of energy eigenstates |n) to obtain
Coata: to) = (2O (2)O(t0)|Q2) = (Qe" 2= O (tg)e =2~ O(10)|02)
= > {Qef 0 (1) n) (nle= =70 O (1))

= > [QUO(to) n) [P~ (EnFa)t2mt0), (3:3)

In the limit of large (t3 — to) only the ground state will contribute since all other states
are exponentially suppressed. This leads to

lm  Cog(ta,to) = F(to)e—(Eo—Eﬂ)(tz—to) — F(to)e—VQQ(tz—t0)7 (3.4)

to—to—00
where V(g is the static QQ potential and
F(to) = [(Q]O(t0)|0) [ (3.5)

denotes the overlap of the initial trial state with the ground state of the system.
Comparing eq. (3.2) and eq. (3.4) we can extract the static potential between quark
and antiquark in the continuum as

1 <W<T, tg — t0)>

Voo(r) = lim tim  Ver(r) =l o oty —to - a)) |

(3.6)

where we used the definition of the effective potential as the temporal forward derivative.



3.2. Squared field strengths components

On the lattice we can find a correspondence of the plaquette P,, to the field strength
tensor in the continuum. Plugging in eq. (2.2)) into eq. (2.5) we obtain

Py = Tr |97 (3.7)

with F,, = Fjj,T". Performing a second order Taylor expansion yields

926L4
PHV =Tr [1 + Z'g(l2.7'./,w - Tfil, + O(a6)]
.9 g*a’ b b 6
= N +iga’Fy,Te (T°) = =~ Fy, ), Tr (T°T") + O(a®)
2.4
g a a a
=N (Fg,Fr,)
4
a a 2\
ﬁF#VFuV%_O(a)_W(N_PUV)’ (38)

where we used in the second step that the generators of any SU(N) Lie algebra are trace-
less and Tr(7°T°) = §%°/2. Since there is no sum over y and v we can always identify
P Fe, with EZES or B§B{ (no sum over j). So, while the field strength components
themselves are obviously not a gauge invariant quantity, the square of them actually is
and as such can be measured on the lattice without gauge fixing. In the following F}’
denotes either EY or Bf. Additionally, we introduce F}(z) = ¥, Ff'(z)F}'(z) (again,
with no sum over 7).

We want to compute the change of the field strength components when generating a
quark-antiquark pair in the vacuum. Consequently we also need to subtract the vacuum
contribution

AF? = (F2) 0 — (F)y. (3.9)

This expectation value represents the three point correlation function
CFJ- (T, tg, to7 X, tl) = <Q|O(X, tg, Yy, tg).FjQ(Z7 tl)O(X, t(), Yy, to) |Q> . (310)

In a calculation similar to the one sketched in section [3] but a bit more involved we
can derive an expression for AFJZ. For the detailed derivation I refer to my Bachelor
thesis [48]. This leads to

Cr, (1, t2,to; X, 1)

AF? = li
J (7”, X) t2—t1,t11r£1to—>00 CQQ(X7 Ys t07t2)

— (QIF2|%). (3.11)

AFZg (nt2,toix;t)

where Fesz,j (r,ta,10; X,11) can be evaluated using euclidean lattice path integrals yielding

W(rta o) Pyt o
(W (r,ta,t0)) <P0J>U> (3.12)
(W(r ta, to) - |eu/2| P (x,t1))
<W(T7 t27t0)>U

AEeff,j(rv t27t0;x7 tl) =+ <

ABeg j (1, t2, to; X, t1) = — ( - (!€jkl/2|Pkl>U> (3.13)
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Figure 3.1.: Illustration of equations to on the lattice. Red spheres, black dots and black
arrows represent the quarks, lattice sites and gauge links respectively. Black dashed lines represent
operators ae. The links in the clover plaquette are shifted for better visibility. Grey dashed lines
parallel to the coordinate axes are drawn to guide the eye. (a) CA;, F? (r,ta,to;x,t1) for exemplary
values r = 3a, ty = to +4a, t; = (t2 —t0)/2, x = n + 2az, and F; = E,, where n is the lattice
site on which C’A%’ F? is evaluated. (b) The corresponding Wilson loop with insertions. (c¢) The clover
plaquette.

with (...),; denoting the path integral expectation value with integration over link con-
figurations. The different sign for the E; components results from time ordering.

For the three-point-correlation function in eqs. (3.12]) and (3.13]) we need to compute the
value of the plaquette at lattice space time point (x,¢). On a finite lattice the plaquette
P,,(x,t) is an object with area a-a in the p-v-plane. Similar to the lattice representation
of derivatives by the forward derivative, P, (x,t) is not a symmetric discretization. To
make computations of the different components of AF]?(T’, x) more comparable while
also reducing lattice artifacts, we introduce a symmetric version of the plaquette

P, (x,t) = — [Pu(x,t) + Pu((x,t) — ad) + P ((x,t) — aft) + Pu((x,t) — ab — ajt)] .

(3.14)

o |

We note that hII(l) P'(x,t) = hII(l) P(x,t), making P’'(x,t) an equivalent quantity in the
a— a—

continuum. This symmetric form of the plaquette is also referred to as "clover leaf'. An

illustration of eq. (3.11]) with this discretization of the plaquette is shown in Figure [3.1]



4. Hybrid static potentials

4.1. Hybrid static potential quantum numbers

Hybrid static potentials are static potentials of quark-antiquark pairs with additional
contributions to the quantum numbers by gluonic excitations. As shown in chapter
the static potential can be computed by evaluating the Wilson loop on the lattice where
the spatial position of temporal links corresponds to the quark position. The ordinary
static potential is created by the simplest case of a straight line between the charge
positions.

However, there is also the possibility to choose more complex spatial paths which will
lead to additional contributions to the quantum numbers. These contributions are
determined by the path of gauge links, which are elements of the gauge group SU(3),
and thus are gluonic contributions. We will call the part of the Wilson line, which is
not a straight path of links along the separation axis insertion. The quantum numbers
for hybrid static potentials are sketched in Figure [4.1}

e Total angular momentum with respect to the separation axis z:
Ae{E=0II=1,A=2 .}

e The combination of parity and charge conjugation (P o C):
ne{g=+u=-}

e The spatial reflection along an axis perpendicular to z (P,):
€€ {+7 _}

A state with quantum numbers A, n und € will be labeled with A} according to the
convention. Note that for angular momentum A > 1 the energy spectrum is degenerate
with respect to €. Therefore we will write A, in this case. As further discussed in section
the shape of the flux tube on the other hand does depend on e. In the following we
will derive how to create operators which yield hybrid static potential quantum numbers.
For this purpose we define

S(x,y) =U,(x) - Uy(x+aé,) - ...- Uy(y — aé,) (4.1)

as an arbitrary spatial path of links starting at x and ending at y.

4.1.1. Angular momentum

Acting with hybrid static potential creation operators on the vacuum we obtain trial
states

21 .
Whmid)sp = |, e R(9)0s(x,t:3,0)[9). (4.2



Q- 7 TQ

Figure 4.1.: Graphical illustration of hybrid static potential quantum numbers.

where |Q2) is the vacuum, A the angular momentum and R(y) denotes a rotation by an
angle of ¢ with respect to the z-axis. Additionally, the operator from eq. (3.1)) becomes
now

Os(=7/2,7/2) = Q(=1/2)S.(=1/2,11)S(r1,72)S:(r2,7/2)Q(r/2) |2) , (4.3)

where the quark and antiquark are at spatial positions (0,0,r/2) and (0,0,-r/2) respec-
tively. On a cubic lattice only rotations by k- 7,k € N are possible without changing
the shape of the operator

3 .

imAk k

i = -0 (5" ) 1 () Ostxtvn ) (4.4
k=0

The rotation R of the operator only affects the insertion S(ry,rs) from eq (4.2) which

is shown in Figure (a)-(d). Now the factors of the rotated insertions for the sum in

eq. (4.4) can be determined explicitly for a given angular momentum quantum number

|\I/hybrid>g;0 = :1 + R (g) +R(m)+ R (3;)} Os(x,t;y,t)|2), (4.5)
Wnria)sn = 1R (5) = R 5 iR (T)] Oste tv.0 1), (46)
Wnmria)ss = 1~ B(5) + R - R(T )] Ostxtiyn)le). @)

Since we consider the total angular momentum quantum number the sign is not a degree
of freedom. For even A = |)| the prefactors are the same anyways but for A = 1 we are
left with a choice. Instead of just deciding for either the factors of A = +1 or A = —1
we take a look at the superposition

1
3 (|qlhybrid>5;+1 + |\Ilhybrid>s;,1) =[1 - R(m)]Os(x,t;y,t) ), (4.8)

1 (T (3T
5 (|\Ijhybrid>s;+1 - |\I/hyb7'id>5;,1> = |:ZR (2) —iR <2>:| OS(Xa ta Y, t) |Q> ) (49)

and immediately notice, that two rotations of the insertion vanish. Thus to simplify
computations we choose eq. (4.8) to construct trial states for A = 1.

Since we are restricted to cubic rotations on the lattice the trial states we can construct
will also contain contributions from an infinite number of states with higher angular
momentum. If we take a look at eq. (4.4) and plug in A > 2 we note that trial states
for



e A = 0 also receive contributions from A = 4k, k € N,
e A =1 also receive contributions from A =14 2k, k € N and
e A = 2 also receive contributions from A =2 + 4k, k € N.

In practice, anyhow, these higher A states will be exponentially suppressed for ¢ — oc.
It would be possible to construct operators with a larger overlap to higher angular mo-
mentum states by taking next-to-nearest neighbors on the lattice into account. However,
this would be very costly in computation time and is thus not further investigated in
this work.

(@) S(ri,m2)

(e) (7) o C) S(Tl, 7’2) (f) ’PJS(T'l, 7’2)

Figure 4.2.: Example for an insertion S(ry, ), its cubic rotations around the z-axis ((a) - (d)) and its
behavior under parity and charge conjugation (P oC) (e) as well as under reflection along the z-axis

P (£).

4.1.2. Parity and charge conjugation and behavior under spatial
reflection

Applying first a charge conjugation and then a parity transformation to eq. (4.3]) yields

(P o C) [Q(=r/2)S-(=7/2,m1)8(r1, 12) 8- (r2,7/2)Q(r/2)] 190
= Q(=1/2)8.(=1/2,=72)Spoc(—12, —11)S. (=11, 7/2)Q(r/2) Q) ,  (4.10)
which is shown in detail in [49]. Spoc(—r2, —r1) is the charge conjugated spatial reflection
of S(ry,ry) with respect to (0,0,0)7.

When reflecting the state from eq. (4.3) at the separation axis along the z-direction we
obtain

P, [Q(=1/2)S.(~1/2,1)S(r1, 12)S-(r7/2Q(r/2)] |)
= Q(~1/2)8.(=1/2,~12)Sp, (11,712)S:(=11,7/2)Q(r/2) |2) , (4.11)
where Sp, (11,72) is S(r1,72) reflected at the separation axis along the z-direction.

Both Spoc(—72, —r1) and Sp, (r1,72) are shown for an exemplary insertion in Figure
(e) and (f).
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4.1.3. Constructing trial states and correlation functions

We need to take into account all combinations of shapes we obtain by applying R (),
(P oC) and P, to an insertion S(ry,re) with the weight of the corresponding quantum
numbers. Consequently, we can write a trial state for a hybrid static potential with
quantum numbers Aj as

Wsag) =~ (147 (PoC)+ePy +7e(PoC)P Zexp (”A’“> R (”’“) 0s19)
— Q(r/Dasng (—1/2.7/2Q(r/2) 9} (4.12)
where
Ozs,Ae(—T/2 r/2) =
! Z exp (”Ak> R (”j) (U(=r/2,72) (S(r1,72) + € Sp,(r1,72)) Ulra, /20

+U(—=r/2,—713) (77 Specy(—T2, —71) + 1€ Spocyp, (—T2, —r1)> U(—ry, 7"/2)] .
(4.13)

This gives a total of 4 -2 -2 = 16 spatial paths that need to be computed. In most of
the cases some of these paths are identical though, e.g. if we take a look at the insertion
from Figure[d.2] we will quickly notice that the sum over the rotations of (P o C) S(r1,72)
and P,S(r1,72) as well as the sum over the rotations of S(ry,re) and (P o C) P,S(r1,72)
will be the same, leading to only 8 different paths in total.

We also note that not every operator S(ry,72) can be used to construct trial states for
any given A} since eq. (4.12) can become zero. We can also infer from eq. that
even though the potential is degenerate with respect to € for A > 1 the correlation
functions are different from each other. The insertions S(r1,72) used in this work are
the optimal choices, i.e. have the highest overlap with the ground state for separations
r =6 and r = 10 as determined in |26]. They are described in detail in Figure

Analogously to section [3] we can now write down the correlation function for a hybrid
static potential trial state

Usng) , o< exp (Vag (t2 — o)) (4.14)

CQQ’A% - <\PS;A% to—to—

and consequently obtain a modified version of the Wilson loop
W(?", tg, to) =

= Tt |asng (—1/2,7/2,t0)U (/25 to, t2) (aS,A%(—r/Q,r/z,tg))TU(—r/z;tQ,to) .
(4.15)

Correspondingly we just need to replace the ordinary Wilson loop in eqs. (3.12) and
(3.13) to compute the field strength components for hybrid static potentials.
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USui U = U2UZUE-U? U2

2,02,
r,ﬁz\ r/a 6 10
_ L ! E. 6 10 Yy
Zg / f x
/ 2
USmiaU = URUZUE-U? U* UE- US1sU = USUE-U" U, u"s*0,
E, r/a 6 10 6 10
E., 3 5 4
F 2
u 3
Ez
USv, U = Uz "' UBUBU; =2 U3 U3, U.
E.p r/fa 6 10 6 10
Ez,l 1 2 4 5
Z_ E.» 4 6 2 5
u 1 0
2 0
0 5
USi3U = UP=UE-U":U. USmq U = UxUﬁUfofyU_m
b B r/a 6 10 'FE\, rla 6 10
- s E, 3 2 ' | E. 6 10
g ’ E. 5 9 AT '
g
USaU = U, UgUPU2, Uy USmsU = UU2UL=' U2, US2U2,,
— r/a 6 ].0 1
I Bt E/ 6 10 Fet ;/a g 80
z A_ 2,1
1

+ r
Hu ‘/ / u E.» Ez,2

Figure 4.3.: Optimized creation operators for A} = E;,EI,E;,HQ,HU,AQ,AU. The notation is
analogous to [26] and explained in detail there. For Hﬁ we obtain H;F by the transformation in m to

For Aj, we need to do separate computations for both € = + and € = —.
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4.1.4. Angular dependence of AF?(r,x)

As already mentioned in section computing the static quark-antiquark potential
Vi (r) yields results independent of € for A > 1. However, the flux densities AF; A5 (r,x)
are not independent of this quantum number. In the following we will show that
AF; 2 A (r,x) and AF] 2 A (r,x) are related by rotations around the separation axis and

construct an observable AF? A, (r,x) which is independent of e.
To this end, we consider

(Ops (N R @) F} (%) Ro()|02) = (QUFFQ) (4.16)

where the rotation operator R, («) can be expressed in matrix representation as

+cq, —So O

Rla)=| +Sa +ca 0 |. (4.17)
0 0 1

where we introduced ¢, = cos(a) and s, = sin(a) which will be used throughout this

chapter. By applying R.(a) on the one hand to the operator F ?(x) and on the other
hand to the states [0, (r)) we will be able to find a relation between AFQAe (r, R(—a)x)

and AF7 ) (1, ).
The field strength components transform as

Ri(a)F}(x)R.(a) = Rjx(—a) F{(R(—a)x) = Rj(—a)F!(x_a) (4.18)
where x_, = R(—a)x. This leads to
(Opz (N RU@) FF(x) R ()|02) — (QUFF|Q) =
= <OA$(T)|(RJI~:( @) Fi(x-4))*|Opz) — (QUFFI)
ZAF?, (7,’ o) + siAF;A%(r, X_q) + 2¢4Sq (O,
(7"

= 2AF2 (X o) + SAAF? L (r,X o) — 2¢a54 (O
AF? (1% o)

(M) F7 (x-a) Fy (x-a) Oy (7))

Y n

(r)[F7 (x-a) Fy (x-a)|Op£ ()

+
n
i
77 n

J
(4.19)
where we used that (QF?|Q) = (Q|FZ|Q) for all j, k € {1,2,3} to expand

(QUEF?|Q) = & (QUF?IQ) + 52 (QFZ|Q) = ¢ (QFZ|Q) + 52 (QFF|Q) . (4.20)

Static potential eigenstates |O), (r)) where A = || are also eigenstates of the z-component
of the angular momentum operator J,

R.(@) |0y, (r)) = €705, (r)) = € |0y, (1) . (4.21)
Now we consider the rotation of a P,-transformed state

R.(a) (P2 05, (1)) = €°7P, [0y, (r)) =Poe =% |05, (1)
=P (P05, (), (4.22)
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where we used that J;Px =P, jz and also note that

This allows us to relate |Oxy, (r)) to [Oac (1)) as

04)) = =5 (1043, (1) £10-5,())- (4.24)

By using eq. (4.21)) and rewriting the exponential functions with trigonometric ones we
obtain

R(0) |042(r)) = can |04z (1)) +isan [055(r)) (4.25)
Plugging eq. into eq. yields
(Opz(r)| RL(0) F} (x) Ro()|Oy2) — (QUFF|Q) =
= CiAAFﬁA% (r;x) + siAFﬁA#(r;x) + iCahSan (<OA$ (r)]F]2(x)|OA;F (r)>) . (4.26)

Now we can equate egs. (4.19) and (4.26]) to obtain a relation between AFJQ 4+ (r5x) and
»An

AF; 2 A (r;x_q). We note that the rotation operation does not leave AF]% A (r;x) invari-
ant for A > 1 while for A = 0 it does.

The choice of € as a quantum number is not unique, one can also fully describe hybrid
static potential states by the set of quantum numbers A, where A\ € —2,-1,0,1,2.
The potentials are still degenerate with respect to the newly introduced sign of A
(V_»x, = V4a,)- If we apply the rotation transformation upon states in this representa-
tion we obtain for the transformed operator essentially eq. with the replacement
Ag — X, while the states transform much more simple according to eq. (4.21). This
means the behavior of the static potential field densities under rotation and consequently
the field strength components themselves is different depending on the set of quantum
numbers we choose to describe the system. Since V}, is fully characterized by A and 7
we want to remove this angular dependence, which is just arising due to the (to some
extend) arbitrary choice of this third quantum number. To this end, we define

1 1
AF}, (rx) = 5 (AR (%) + AF? - (r,x)) = ST [Pa, (F}(x) = (QIF|))]
(4.27)

where the projection operator
Pa, = [04: (1)) (O ()] + 10, (1) (O ()] (4.28)

shows explicitly, that AFjZ,A?7 (r,x) is independent of the basis used to span the space
introduced by € or the sign of \.
Performing the rotation using AF7, (r,x) yields

j
CLAF ) (r,X a) + SEAFF (1,X 0) + X Casa (O ; 4
S| AR )+ AR ) ~ S (O () F2(x-) P20 Oy (1)
AFin (7’, X_a)

AF»Q’An (r,x) =
(M) FZ (X-0) Fy (X-a)|Op= (7))

S

(4.29)
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We immediately notice that the z-component is now left invariant under this transfor-
mation, while the other components still change. However, we can define

1
AFE, (rxea) = 5 (AF2,, (rx_a) + AF}, (1% ) (4.30)

n

which is also invariant under rotations around the separation axis.

If we consider rotations by an angle o which is a multiple of  (cubic rotations) the

mixed terms in eqs. (4.19) and (4.26]) will vanish. This yields

AF2 s (r, (2,9,2)") = AF2 2 (r, (£, F,2)") (4.31)

AF) o (r (2,y,2)") = AF, o (r, (£y, F2,2)") (4.32)

AF2 i (r, (2,9,2)") = AF2 4 (r, (y, F,2)") (4.33)
for A =3, A and

AF? e (r, (2,y,2)") = AF, = (r, (£y, Fo,2)") (4.34)

AF} s (r, (2,y,2)7) = AF2 = (r, (£y, Fa, 2)") (4.35)

AF2 (1, (2,9, 2)7) = AF2 2 (r, (y, 2, 2)") (4.36)

for A = II. These equations can be explicitly used to test and improve results from the
lattice by averaging over field densities related by this symmetry.
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5. Results

Some of the results in this work were obtained in collaboration with Christian Reisinger.
In particular, he generated and provided the SU(3) configurations.

5.1. Lattice setup

All numerical results in this work are obtained using SU(2) and SU(3) lattice gauge
theory. In both cases the standard Wilson lattice gauge action was used to create gauge
configurations.

The SU(2) gauge configurations were obtained using a standard heatbath algorithm.
Auto-correlation of subsequent configurations was kept minimal by using a binning of
100 heatbath sweeps. For the heatbath simulation we generated 48 000 configurations
with 8 = 2.5, which corresponds to a lattice spacing of a = 0.079 fm when identifying
ro with 0.5 fm and a lattice volume (L/a)? x (T/a) = 24*. In some earlier simulations
a setup of 13 000 configurations on a lattice with (L/a)? x (T'/a) = 18* and the same (3
was used, which will be referred to when discussing finite volume effects in section [5.2.2]

The SU(3) gauge configurations were obtained using the Chroma QCD library [50].
Each update sweep comprises a heatbath and four relaxation steps and configurations
are separated by 20 of these sweeps. In this case we generated 5500 configurations and
used f = 6.0 which corresponds to a lattice spacing of a = 0.093fm with the same
identification of ry. The lattice volume is (L/a)® = 243 and (T'/a) = 48.

To improve the signal-to-noise-ratio several types of smearing techniques were used for
the computation of Wilson loops:

e Spatial gauge links on the lattice are APE-smeared links (see the detailed discus-
sion in [51]). The smearing parameters aspp = 0.5 and Napr = 20 were chosen
in a way to create large overlaps to the ground state (optimized in [26]).

e For some simulations HYP2-smeared gauge links are used [52-54], improving the
statistical errors significantly by reducing the self energy of the static quarks. This
however comes with the cost of very large discretization errors for small r and x
near the quark positions. There is a more detailed discussion in section [5.2.3

We perform a plateau fit of AF.q ;(r,ta,to;X, ;) in a suitable range determined by a x?
minimization. Statistical errors shown in this work are obtained by a standard jackknife
analysis [b5] of this fit.
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5.2. Systematic errors

5.2.1. Plateaus of FJg;(r,t2,to; X, t1)

Our computations yield results for Fe2ﬁ7j (r,t9, to;x, t1) according to and . As
expressed in we will find convergence of the effective field densities for sufficiently
high (t2—t1)/a and (t; —tp)/a. To this end we computed the field densities for temporal
extents of the Wilson loop (to—tg)/a € 0,1, ..., 10 where t; = (to2—to)/2 for even (to—tg)/a
and t; = (to — to + a)/2 for odd (ty — to)/a.

tmax Where we chose a t,., for which the signal does not completely vanish in noise.
Data points for higher values of ¢,,.x do not contribute to the fit because of very large
errors. Since the convergence of Flef?j (r,ts, to; X, t1) should not depend on x we want to
find ¢, such that x?/Ngoe < 1 is valid for all spatial lattice points x. We also need
to keep in mind that the fit will naturally be better for values Ffﬁvj (r,to, to;x,t1) = 0
which would spoil the results in the t,,;,-optimization considerably. We define x as the
lattice points where Ffﬁj(r, to,to; X, t1) % 0 and N as the number of those points. Now
we find a ¢, such that

We fit a constant using an uncorrelated y? minimization in the range of t, < to —ty <

]\izxz(i)/Ndof SL (5.1)

The ordinary static potential shows significantly lower errors. Additionally the results
from HYP-smeared configurations have a considerably better signal-to-noise ratio. The
optimized values t,,;, and t,,., for all investigated sectors Af] are shown in the following
table:

tmin [a] tmax [CL] tmin,HYP [Cl] tmaX,HYP [CL]
=5 9 6 10
3 5 3 8
SF 03 5 3 7
S 3 6 4 9
m, 3 6 3 8
IT, 3 7 4 10
A, 3 6 4 8
Ay, 3 5 3 7

Table 5.1.: Optimized tynin and tmax by X2 - minimization for sectors AL =%, Sh 8y I, 0, Ay, A,
with unsmeared W and HYP2-smeared W.

In figure we show Ffff’j(r, to, to;x, t1) for the 8 investigated sectors Aj, and corre-
sponding fitted plateaus.

To further check for contributions of higher states, one can in principle consider different
insertions than the ones shown in [£.3] In the limit of sufficiently high ¢, — ¢, the
flux densities are independent of the creation operator since only the ground state will
remain.

We find consistency of our results with computations of different operators for II, and
A, at an earlier stage of this work (see [46]).
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Top: W is computed with unsmeared temporal links
Bottom: W is computed with HYP2-smeared temporal links
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5.2.2. Discretization errors and finite volume effects

From studies of the ordinary static potential flux tubes large discretization errors are
expected for small QQ - separations r = |rg — r5|< 3a or measurements of the field
densities near the quark positions, i.e. F7(r,x) with [x —rq|< 2a or [x —r5|< 2a. These
effects will get a larger radius when performing HYP2-smearing as discussed in the next
chapter.

We only have results for one lattice spacing a and thus cannot make any statements
regarding the continuum limit.

It is known, that finite volume effects for static potentials with QQ - separation 7 < R/2
where R denotes the spatial lattice extent are rather small. Additionally we consider
pure gauge theory where the lightest particle, the JP¢ = 07 glueball, is already very
heavy, i. e. where mgiyepan - L > 3000.

We performed simulations on a 18* lattice with a smaller sample size, which are consis-
tent with our main results.

5.2.3. HYP2-smearing of temporal links

We observed that using HYP2-smearing on temporal links for the computation of W
reduces the statistical errors by a factor of five to eight. However, at the same time new
systematic errors are introduced. In ﬁgurewe show the flux densities for A} = Z;, X,
and QQ - separation r = 10a on the separation axis with and without HYP2-smearing.
We observe a strong suppression of the peak-like structure at the charge positions for
AFj2 (r,x) for HYP-smeared Wilson loops. This is not an unexpected behavior:

The spatial position of the time links in the Wilson loop correspond to the quark and
antiquark position. Due to the discretization they do not represent point charges but
rather can be interpreted as spherical (color) charges with radii a/2. HYP2-smearing
on temporal links can then essentially be considered as replacing the link by a so called
fat link of width 2a which effectively increases the charges’ radii to 3a/2.

Without HYP-smearing the extension of the charge distribution is small enough that
we still observe peaks at the quark and antiquark position. After HYP2-smearing the
charge extension becomes large enough that we now measure AF jz(r, x) inside the charge
distribution. As we already know from classical electrostatics, the field strength inside
a homogeneously charged volume is proportional to p, i. e. a hole, instead of %, i.
e. a peak, for a point-like charge where p is the distance to the center of the charge
distribution.

From figure [5.2] we can infer that discrepancies between unsmeared and HYP2-smeared
results are

o large for |x —rg|<a
e negligible within statistical errors for
— |x —rg|> 4a when AF?(r,x) = AEZ(r,x) and

— |x —rg|> 3a for all other components
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Figure 5.2.: AF?(r,x) on the separation plane x = (0,0, z)" for gauge group SU(3), A5 = X, ¥} and
QQ - separation r = 10a.

Consequently we will not use HYP2-smearing for computations of the field densities in
the separation plane (w.l.o.g. x-z-plane with y = 0).

On the mediator plane on the other hand (the x-y-plane with z = 0) we have the best
agreement of HYP-smeared and HYP-unsmeared AF ]2 (r,x). In figure we show both

at x = (0,0,0)7 for different QQ-separations r for As =¥, 50, We find agreement if
e 7> 10 for AE2(r,x = (x,y,0)") in the case of Ay = X7,
o 7> 8 for AEZ(r,x = (,,0)") in the case of all other A{ sectors,
e 7 > 6 for all other components of AF}(r,x = (z,y,0)").

As a consequence we perform computations on the mediator axis with HYP2-smearing
and primarily show results for QQ - separation r = 10a in [5.3.2]
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5.3. Hybrid static potential flux densities

We performed identical computations in both SU(2) and SU(3) lattice gauge theory.
There appear to be no differences within statistical errors. Consequently we opted to
only show results from the gauge group SU(2) in this section due to better statistics,
while we refer to the appendix for the SU(3)-version of the plots (see [A).

5.3.1. Symmetrization of flux densities

To reduce the statistical errors as much as possible we averaged over flux densities related
by symmetries which give explicit constraints for the flux density structure. These are

e reflection at all three planes parametrized by (z,y,0)7, (2,0, 2)T and (0,y, 2)” and
e behavior under rotation as discussed in section [.1.4) given by eqs. ([£.31) to (4.36]).

First of all we checked that our results are consistent with these symmetries and then we
used them to reduce statistical errors by averaging over flux densities related by them.
We show the field strength components for IT}, IT, and A}, A, on the mediator plane
in the upper row of Figure and respectively. The results for II;, did not require
additional simulations since according to eqs. (4.34)) to (4.36]) we can transform one into
the other by a cubic rotation of 7. This is not possible for A = A though since A" and
A, are related by rotations of 7 as one can see in Figure and thus we computed
both A and A, separately.

ENETCIE)

In the lower part of figure[5.4{and 5.5/ we determined AF7 A, (1, %) according to eq. (4.27)

as the average of the flux densities for e = + and e = —.
In the following only the symmetrized version of the flux densities AF?, (r,x) will be
shown for A > 1.
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5.3.2. Flux densities on the mediator plane

In this section we show results for the flux tube structure on the mediator plane. As
discussed in section we used HYP-smearing in this region, resulting in better
signal-to-noise ratio compared to measurements on the separation plane which will be
discussed in the next chapter.

In Figure and we show all squared field strength components AF 2 (>(r x) for

QQ-separations r = 6a and r = 10a for all sectors A(€ in the form of 2D color maps.
As discussed in section [5.2.3] HYP2-smearing mtroduces systematic errors for r = 6a.
Consequently, we should consider the left side of Figure and more as a crude
qualitative result what happens for smaller separations and the right side as the main
results. In the upper panel of Figure [5.8] flux densities on a mediator axis are plotted,
using AF A (r,x) and AF Ne (r,x) which are invariant under rotations around the z-

axis. In contrast to the 2D color maps these curves have the advantage, that they allow

us to provide information about the precision of our numerical results. The statistical

errors become larger as the ground state energy Vo (r) increases (see Figure 7 in [26]
n

for results of the hybrid static potential V,, ( ))

In the lower panel of Figure we show the difference between hybrid flux densities
and the ordinary one by plotting AFj Ao (T x) — AF].?E (r,x).
siin =g

5.3.3. Flux densities on the separation plane

In this section we present plots for the flux densities on the separation plane (plane in
which the charges are located) for all sectors Agf) =3, yr oy, 1,11, Ay, A, and both
QQ - separations r = 6a and 7 = 10a in the form of 2D color maps in figures and
[b.10] We refrained from showing curve-like plots on the separation axis, since they only
show a very small amount of information. Also note that as discussed in section [5.2.2]
flux densities in the vicinity of the charges, i.e. [x —rg|< 2a or [x — rg|< 2a, entail
large discretization errors and consequently should be ignored.

Our computations of the flux tubes for the ordinary static QQ - potential yield the
well-known cigar-like string structure with the z-components of AFf(r, x) providing the
largest contribution to the energy density, the maximum on the separation axis and
monotonically decreasing field strength when moving away along a mediator axis.
Hybrid static potential flux tubes on the other hand show a variety of different struc-
tures. As prominently visible in the lower panel of excited gluons yield an increase
in chromomagnetic flux densities near the center of the flux tube. We can also infer
from [5.§] and that flux tubes become wider, i.e. have a larger extension in z-
and y-direction.

There are also some properties, that only a certain group of hybrid flux densities have
in common. On the one hand we notice a clear reduction of chromoelectric flux den-
sity in the center to approximately the vacuum field strength (II,, Ay, 3, ) while for
Ay = X I, A, we find a localized peak of chromoelectric field strength represented
by a cross-like structure in the 2D-color maps. These peaks in either chromoelectric or
chromomagnetic field strength can be interpreted as an explicit gluon. This picture of a
so called valence gluon generating hybrid quantum numbers is common, when discussing
hybrid mesons in models and phenomenological descriptions. The peaks are surrounded
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Figure 5.6.: AF;’A(;) (r,x) for Ay =X, 8, %5, %0
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by a shell-like spherical structure visible as rings in the 2D color plots from figure [5.9
and . This gives an indication for vibrating strings, where at (0,0,0)7 there could
either be a maximum or a node. The string picture is also consistent with our result for
different QQ-separations since the transverse extent of the flux tube structure does not
change with 7.

5.3.4. Comparison to existing works

In potential non-relativistic QCD (pNRQCD) gluonic excitations of a heavy QQ - pair
can be realized by a local operator in the center between quark and antiquark (figure
5.11)) consisting of field strength components and their covariant derivatives (e.g. [56],
[57]). If we only consider the leading order terms in the multipole expansion and set the
separation axis to be the z-axis these operators take the simple form showed in table
0.2)

A

O(F) O(DF)
S 1, E.
5 D.B.
958 D.E.
> B, D,E, — D,E, . -
I, E, E, D,B.—D.B, D,B.—D.B, @ 0 @
I, B,, B, D,E.- D.E,, D,E.— D.E,
A, D,B, — D,B,. D,B, + D,B,
Au DxEx — DyEw DzEy —+ DyEx local excitation operator

Table 5.2.: Gluonic excitation operators at leading order Figure 5.11.: Sketch of an insertion of a

in the multipole expansion of pPNRQCD. The separation local excitation operator to realize hybrid

axis is the z-axis and D; denotes the covariant derivative. quantum numbers in a heavy QQ - sys-
tem

Obviously we can not compare results in a quantitative sense but rather need to draw
phenomenological parallels. An insertion only containing Fj is expected to enhance this
very field strength component which would result in a significant higher contribution
of F to the energy density compared to the ordinary flux tubes. In Figure we can
observe exactly this behaviour for Ay = X %7 11, I1,.

It is known from lattice gauge theory that derivative operators such ase.g. D, FE.—D.FE,
for 11, generate nodes in the corresponding wave functions. This would lead to vanishing
field strength components in the center surrounded by maxima which is indeed the case
according to our lattice results as indicated by double peaks on the mediator axis in

Figure [5.§ lower panel.

Recently there has been another investigation of hybrid flux tubes in SU(3) lattice Yang-
Mills-theory [43]. Our results are in fair agreement within statistical errors taking into
account that different lattice spacings have been used. While in [43] two hybrid sectors
were studied (ASIE) = I1,, X)), we computed the flux densities for in total seven hybrid

sectors (Agf) = X5 N, N g, I, Ay, A, ) with smaller errors by an factor of up to five.
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Figure 5.9.: AF;A(;) (r,x) for Ay =X, %, 5, ¥ on the separation plane for gauge group SU(2).

Left: QQ_— separation R = 6a.
Right: QQ - separation R = 10a.
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Figure 5.10.: AFjQA(ﬁ) (r,x) for Aj, =TIy, I, Ay, Ay on the separation plane for gauge group SU(2).
]

Left: QQ_— separation 7 = 6a.
Right: QQ - separation r = 10a.
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6. Conclusion and Outlook

We computed the squared field strength components of the ordinary static potential
Aff) = E;r and seven hybrid static potentials Aj =3, yr 2, 0, I, Ay, A,. To this
end we fitted plateaus on the effective flux densities AFeg ;(r, t2, to; X, t1) for the limit
of large t5 — ty. We also investigated systematic effects of HYP2-smearing on temporal
links and improved our signal-to-noise ratio by using it under certain conditions.

We find agreement with independent lattice studies of other working groups in the hy-
brid sectors Agf) =11, X} [43] and obtain for the first time results in five more sectors
A9 =5 50 Ty, Ay, Ay

The distinctive properties of the structure of flux tubes for a given A,(f) appear to be ex-
pected when comparing to studies of local excitation operators from pNRQCD [56,57].
Furthermore our numerical results are consistent with a string picture of confinement.

Going forward one could investigate smaller lattice spacings and larger volumes to per-
form a continuum extrapolation and the infinite volume limit. However, we do not
expect much different results since we already computed flux densities for a smaller lat-
tice size [44], finding consistent results, and also addressed discretization errors in the
discussion of HYP2-smeared versus unsmeared W.

One could also include dynamical fermions into the simulations of two heavy quarks to
study not only excitations in the gluon sector but additionally light quark distributions.
This would allow a more general study of heavy-heavy exotic mesons rather than only
hybrid mesons [15]. Anyhow, this kind of simulations poses to be rather complicated
since the system can now just decay into a static potential and one or more light mesons.
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A. Flux densities for gauge group
SU(3)

We show flux densities for the gauge group SU(3) in Figures E to . These plots are
very similar to the corresponding SU(2)-plots in Figures @ to . You find a detailed

discussion in section [A
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Left: QQ_— separation R = 6a.
Right: QQ - separation R = 10a.
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