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Motivations

In heavy ion collision Quark

fluid freely expanding
in the vacuum
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What are the
consequences
of the presence
of other
degrees of
freedom (spin)?
Especially in
peripheral
collision?



Relativistic fluids with spin

We describe relativjstic fluids with two tensor, the stress-energy '/ '#”

and spin tensor S

‘MY fulfilling the equations:

8, TH =0
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Which imply the total
four-momentum and
angular momentum
conservation
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Provided that the flux at / dEZ-Ti“ — 0
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/ dY; T =0
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General approach to the study of relativistic fluids

Macroscopic (classical) properties stem from
a microscopic (quantum) description

O = tr (ﬁ 6)

Therefore we would like to take as the (macroscopic) stress-
energy and spin tensors:




Noether's theorem give us canonical stress-energy
and spin operators

From space-time translation invariance:
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and Lorentz group:
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Pseudo-gauge transformations
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provided that the boundary integrals vanish
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the new couple fulfill the same equations and give same generators of the Poincaré group.

An important example is the Belinfante symmetrization, where 5)"1-"’/ = §>"“’V

and ' pr 1 ¥ N N
TH = TH 4 5% (swv Ty 5’4@“)
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where the conservation laws are




If the new couple were actually equivalent, we would expect the same average values for
observable quantities.

Four momentum density and angular momentum density are in principle observable
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j/ R (37) K \7 = (aj) to be true in any inertial
frame, it means
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the met!lod used to _get the new primed tensors - a]/ KMt —0
constrains the possible values of the vector field: —

sF.Becattini, L. Tinti, Phys. Rev. D 84, 025013 (2011)



Are these conditions fulfilled?

Being the conditions on the average values, the

symmetry of the state of the system plays a fundamental

role. In the grand-canonical ensemble we proved that
L any microscopic tensor give the same macroscopic

results 1 . ~
y D= E(‘?XI)(—H/T +puQ/T)

X

7 = tr[oxp(—ﬁ/T + /1(}/1)]

o

kT< The situation is completely different in a less symmetric
case
1

= Z—Pvexp(—ﬁ/T—Fw . J/T + pQ/T)
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7
Z. = tr[Pvexp(—H /T +w - J )T + pQ/T)]

where the average value is ¢A, Wi <$)\, ;,w>
less constrained by the I

symmetry of the system
and the the new primed tensors don't fulfill the
equivalence conditions by construction any
longer.
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nermodaynamical inequivaience Q : 2Nergy ana spin tensg
An example, the free Dirac field:

S . ST

R v 1— v = v
S = SU{Y, DR = SU{y, [y, 70

Are the tensor given by Belinfante fg” "4 [@W 5’/ U + UryY 8 \I/] i.e. does the spin tensor
symmetrization equivalent like in the = 4 operator represent a
grand-canonical ensemble? SQ’W =0 suitable transformation ?
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For symmetry reasons the average value of S™* | A .
n = (0,r) k= (0,k)
V

decomposed using the basis:

ShHY — D(r)[(nt7T" — n”T“)uA e (n)‘fr““ —ntr

is fully described by a function: S212 — tr (ﬁgo 12) — D(T)I




Free rotating Dirac field in a cylindrical region
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From an explicit calculation we found:
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We proved that this function is not vanishing if there is a non
vanishing angular velocity




D(r) in the non-relativistic limit

It is the sum of a particle and antiparticle term:
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we can make a numerical computation of the D(r) function:
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Linear response and Kkinetic coefficients

for an isotropic fluid.:

TH = eutu” — pAH + giu” + ¢"ut + I + Tl AR g g%

where:
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linear in the small change:
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Zubarev method for relativistic Kubo formulas
a1 -

~ e
B C
1 / We use the non equilibrium stationary operator to

= obtain the macroscopic energy momentum tensor
E—tr (e_ )
. v for the Belinfante symmetrized case:

t
T = lim e/ dt; ef(t1— V) /d?’x T (t1,x)B,(t1, x)

—
e—0 — 00

where /6 H— (1 / T)u‘u I is a relativistic generalization of the temperature of a system

In the specific case of the canonical

equilibrium where ﬁgq. — 355 I

it reduces to the known canonical density matrix
N

Zubarev D N 1974 Nonequilibrium Statistical Thermodynamics (New York: Plenum Press)



To get the average values of the stress-energy tensor we
divide the exponent in

YT = A+ |
. 3« 70u dstoalocal -~ ! A
i e Bx T corresponds to a loca — al
P e / BM equilibrium distribution PL.E. = ZL E ¢

and B linearly depends on the four temperature gradients.

As long as the deviation from equilibrium is small we can make the approximations:

to finally get the relativistic Kubo formula:
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When there is a spin tensor we have to add another contibution
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A 2
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otherwise we wouldn't get the rotating density matrix p= = Pve_ﬂ HA+wJ:
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corresponding to the equilibrium four temperature: ﬁeq, — /8(1, W X X)I

There is a constraint at equilibrium WY = — 1 (aﬂ v _ oY )
9 eq. eq.

over the two rank tensor €q




The density matrix changes if we change the quantum tensors
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The las term vanishes if we assume that the relation

1
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It will still remain
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For a generic “pseudo-gauge” transformation
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the transport coefficients will be different in general, in particular for the shear viscosity:
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This difference in transport coefficients directly depends on the microscopic
spin tensor

A S Wy W - ( G §/\,W)
so, if the starting couple is the Belinfante one ¢)‘9NV — _S)\alw
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Can we measure it?

[What‘s the magnitude of this difference in relevm




sCouples of stress-energy and spin tensor, previously thought equivalent
are actually thermodynamically inequivalent.

-This inequivalence persists in the non-relativistic limit and can
be measured, at least in principle.

*Different couples of microscopic tensors give different
transport coefficients.

‘How can this difference in transport coefficients prediction be measured?



