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Insights from Critical Behavior
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universal behavior close to, e. g,  the chiral phase transition:

(dynamics is governed by the critical exponents which are 
determined by the symmetries and the dimensionality)

|hq̄qi|1/3 ⇠ |T � T�|�

http://www.gsi.de
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Many-color QCD

weak-coupling limit

decoupling of gluons 
and matter degrees of freedom

relevant for:
•beyond standard model applications 
(see e. g. Weinberg ’74, Appelquist ‘86, Sannino ’09)

•condensed-matter physics, e. g. 
graphene, QED3, ...
•QCD: for example, reveal mechanism 
for chiral symmetry breaking

...

Many-flavor QCD

Phase transitions (may) occur in various “directions”

http://www.gsi.de
http://www.gsi.de


Many-flavor QCD
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Many-flavor QCD
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no asymptotic freedom
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Many-flavor QCD

•two-loop    -function�
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(Caswell ’74)

•non-trivial infrared fixed point       for                      8.05 � Nf < 16.5��
(Caswell ’74; Banks & Zaks ‘82)

�SB



“trivial phase”:
no asymptotic freedom
no          in IR�SB

Many-flavor QCD

Nf16.5

asymptotic freedom
         in IR
confinement

“conformal phase”:
asymptotic freedom
no          in IR
confinement?

�SB

Nf,cr =?� 8.05

•Caswell-Banks-Zaks fixed gets destabilized due to chiral symmetry breaking:

fermions acquire mass, i. e. N e�.
f � 0

•cf. quantum phase transition (QPT) in 3d QED
(R. D. Pisarski ’84)

destab. 
IR FP

(Caswell ’74)

g2 > g2
cr :

�SB

•lower end of the conformal window is determined 
by the onset of chiral symmetry breaking



How do chiral observables scale close to the QPT?

(Pisarski, Wilczek ’84)

O

scaling of observables                                          in 
gauge theories with many fermions, such 

as                              ?QED3, QCD, . . .

O = f⇡ , h ̄ i , T� , . . .

Nf,cr



Outline

•Introduction

•Scaling behavior of QCD with many flavors
•Miransky scaling
•Beyond Miransky scaling

•Scaling in the              -plane

•Conclusions and outlook

(Nc, Nf)



Aspects of the NJL model: Brief Reminder

•spontaneous symmetry breaking if quark condensate is non-vanishing: ⇥�̄�⇤ �= 0

•classical action of the NJL model:

S =
⇤

x

�
⇤̄i⇧/⇤ + ⇥̄�[(⇤̄⇤)2 � (⇤̄�5⇤)2]

⇥

(Nobel prize ’08)



•bosonization of the NJL model yields 
�
⌅ = �2⇥̄�⇧̄⇧ , ⇤ = �2⇥̄�⇧̄�5⇧

⇥

Aspects of the NJL model: Brief Reminder

•classical action of the NJL model:

is inverse proportional to the scalar mass parameter, �̄� m2 � 1
�̄�

S =
⇤

x

�
⇧̄i⌥/⇧ + ⇧̄(⌅ + i�5⇤)⇧ � 1

⇥̄�
(⌅2 + ⇤2)

⇥

phase transition can be induced by 
changing an “external” parameter, e. g. the temperature, number of flavors, ...

no fermion mass/gap finite fermion mass/gap

S =
⇤

x

�
⇤̄i⇧/⇤ + ⇥̄�[(⇤̄⇤)2 � (⇤̄�5⇤)2]

⇥

(Nobel prize ’08)
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k is the Renormalization Group (RG) scale; 
k~p (“momentum scale”)

(four-fermion coupling 
grows rapidly; onset 
of chiral symmetry 

breaking)

NJL model: RG flow of Four-Fermion Interactions



NJL model: RG flow of Four-Fermion Interactions
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initial condition of the differential equation 
determines whether chiral symmetry is 

spontaneously broken or not
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NJL model: RG flow of Four-Fermion Interactions

∂tλσ

λσλ∗
σ

scale for (chiral) low-energy observables is set by the scale        at 
which the four-fermion coupling diverges, Ldddd(ddkS)=0:1/��(kSB) = 0

kSB

mf ⇠ kSB , f⇡ ⇠ kSB , |h ̄ i| 13 ⇠ kSB , T� ⇠ kSB , . . .
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Role of gauge degrees of freedom?

S =

Z
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RG Flow of Four-Fermion Interactions in QCD

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr
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Figure 6.3: Representation of the terms on the right-hand side of the RG flow equa-
tion (6.9) by means of 1PI Feynman diagrams, see Refs. [73, 338]. Our functional RG
approach, see e. g. Sect. 6.5, includes resummations of all diagram types including
ladder-diagrams generated by type (b) and (c) as well as the corresponding crossed-
ladder diagrams.

theories. The role of the vector-coupling in our simple model is now played by the
squared gauge coupling g2. In gauge theories, exponential scaling behavior near a
quantum critical point is also known as Miransky scaling [151, 152].

The following analysis is by no means bound to QCD. To make this explicit, we
shall keep our discussion as general as possible and consider a very general class of
theories where symmetry breaking and condensate formation is driven by fermionic self-
interactions. Independently of whether these interactions may be fluctuation-induced
(as in QCD) or fundamental (as in beyond standard-model applications) This class of
theories can be parameterized by the following action:

SM =

Z
ddx

n
 ̄(i/@ + ḡ/A) + �̄↵��� ̄↵ � ̄� �

o
, (6.8)

where ↵,� . . . denote a specific set of collective indices including, e. g., flavor and/or
color indices. In general, we expect to have more than just one four-fermion interaction
channel as it is indeed the case in QCD, see Eq. (5.38).

From the action (6.8) we can derive the � function of the dimensionless four-fermion
coupling � in the point-like limit. It assumes the following simple form:

�� ⌘ @t� = (d� 2)�� a�2 � b�g2 � cg4 . (6.9)

The couplings � ⇠ �̄/k(d�2) and g ⇠ ḡ/k4�d denote dimensionless and suitably renor-
malized couplings. The quantities a, b and c do not depend on the RG scale but
may depend on control parameters, such as the number of fermion flavors Nf or the
number of colors Nc in QCD. This �� function can be directly compared to the flow
equation (3.82) of our toy model, where the role of g2 is played by the vector coupling.
Note that the coe�cients a, b and c can depend implicitly on the RG scale as soon as
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(H. Gies & J. Jaeckel ’05; JB & H. Gies ’05, ’06)

Consider gauge coupling       as a 
constant “external” parameter

g2



RG Flow of Four-Fermion Interactions in QCD

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

if                                    no fixed points     

critical gauge coupling        : g2cr

g2 >g2cr
(� ! 1)

(H. Gies & J. Jaeckel ’05; JB & H. Gies ’05, ’06)
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RG Flow of Four-Fermion Interactions in QCD

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

(Kosterlitz ’74, Miransky ’85, Kaplan et al. ’09;  JB, C. S. Fischer H. Gies, ’10)

symmetry breaking scale
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constant “external” parameter
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RG Flow of Four-Fermion Interactions in QCD

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

(Kosterlitz ’74, Miransky ’85, Kaplan et al. ’09;  JB, C. S. Fischer H. Gies, ’10)

symmetry breaking scale

g2cr(N
cr
f ) = g2⇤(N

cr
f )

kSB / ⇤✓(N cr
f �Nf) exp

 
� const.p

|N cr
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e. g. xxxxxxx
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RG Flow of Four-Fermion Interactions in QCD

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

(Kosterlitz ’74, Miransky ’85, Kaplan et al. ’09;  JB, C. S. Fischer H. Gies, ’10)

scaling of (chiral) observables close the quantum phase transition:

g2cr(N
cr
f ) = g2⇤(N

cr
f )

Consider gauge coupling       as a 
constant “external” parameter,

e. g. xxxxxxx

g2

g2 = g2⇤

O ⇠ kSB / ⇤✓(N cr
f �Nf) exp

 
� const.p|N cr

f �Nf |

!



In general, the gauge coupling is not a
constant “external” parameter ...

How does this change 
the well-known scaling behavior?



Outline

•Introduction

•Scaling behavior of QCD with many flavors
•Miransky scaling
•Beyond Miransky scaling

•Scaling in the              -plane

•Conclusions and outlook

(Nc, Nf)



Towards criticality & the role of the running coupling

•lower end of the conformal window is determined by the onset of chiral 
symmetry breaking

•chiral symmetry breaking requires the strong coupling to exceed a critical 
value

Note that
kcr � kSB

Initial condition:
g2(k=⇤, Nf) = const.

(symmetry breaking scale        depends 
on “critical scale”       )

kSB
kcr



•RG flow in the vicinity of the fixed point      is governed by the universal critical 
exponent    :

g�

gcr

�

•solution in the fixed-point regime:

(JB, H. Gies ’05, ’06, ‘09)

k⇤kg2 = �(g2) = ��(g2 � g2
�) + . . .

g2
�

g2(k) = g2⇤ �
✓
k

⇤

◆|⇥|

Towards criticality & the role of the running coupling



gcr

(JB, H. Gies ’05, ’06, ‘09)

g2
�

•proportionality: g2
� � Nf

•                      : onset of          at     g2(k) != g2
cr kcr ' ⇤(g2⇤ � g2cr)

1
|⇥|�SB

Towards criticality & the role of the running coupling



gcr

•proportionality: g2
� � Nf

•“critical scale” scales as

(JB, H. Gies ’05, ’06, ‘09)

g2
�

kcr ' ⇤|Nf �N cr
f |

1
|⇥| with ⇥ = ⇥(N cr

f )

•                      : onset of          at     g2(k) != g2
cr kcr ' ⇤(g2⇤ � g2cr)

1
|⇥|�SB

Towards criticality & the role of the running coupling



Beyond Miransky Scaling
(JB, C. S. Fischer, H. Gies, ’10)

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

gcr

g2
�



Beyond Miransky Scaling
(JB, C. S. Fischer, H. Gies, ’10)

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

gcr

g2
�

•symmetry breaking scale (in accordance with an improved DSE study by Jarvinen & Sannino ’10)

•chiral observables (reminder): 

mf ⇠ kSB , f⇡ ⇠ kSB , |h ̄ i| 13 ⇠ kSB , T� ⇠ kSB , . . .

kSB / ⇤|N cr
f �Nf |

1
|⇥|

exp

 
� const.p

|N cr
f �Nf |

!
✓(N cr

f �Nf)



•Power-law scaling:                   (“slowly walking ...”)

Beyond Miransky Scaling
(JB, C. S. Fischer, H. Gies, ’10)

λ

∂tλ
g2 = 0

g2 = g2cr

g2 > g2cr

gcr

g2
�

•symmetry breaking scale

•Miransky scaling:

|⇥| ⌧ 1

|⇥| � 1

kSB / ⇤|N cr
f �Nf |

1
|⇥|

exp

 
� const.p

|N cr
f �Nf |

!
✓(N cr

f �Nf)



Shape of the phase boundary: Many flavors

•relation between two universal quantities
•relation between IR gauge dynamics and scaling behavior of chiral 
observables
•parameter-free prediction

O O

(JB, C. S. Fischer, H. Gies, ’10)

|⇥| < 1 |⇥| > 1

O ⇠ kSB / ⇤|N cr
f �Nf |

1
|⇥|

exp

 
� const.p|N cr

f �Nf |

!
✓(N cr

f �Nf)



What is       ? 
What is            ?

N cr
f

�(N cr
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UV
�k=�

�t�k =
1
2
Tr

�tRk

�(2)
k + Rk

RG flow equation: determines the change 
of the scale-dependent effective action 

with the variation of the (momentum) scale

“Theory space”:
spanned by all couplings

IR
RG flow

(C. Wetterich ’93)

Functional Renormalization Group

�k!0



RG flow for the chiral QCD sector

•effective action:

•four-fermion interactions                       : “QCD universality class”
�

lim
��⇥

�i = 0
⇥

•truncation checks: momentum dependencies, regulator dependencies, higher      
order interactions (H. Gies, J. Jaeckel, C. Wetterich ’04, H. Gies, C. Wetterich ’02, JB ‘08)

•no Fierz-ambiguity

�k =
�

x

⌅ ḡ2

g2
F a

µ⇥F a
µ⇥ + w2(F a

µ⇥F a
µ⇥)2 + w3(F a

µ⇥F a
µ⇥)3 + . . .

⇧

+
�

x

⌅
⇥̄(iZ⌅⇧/ + Z1ḡA/)⇥ +

1
2

⇥��
k2

(V �A) +
�+

k2
(V + A)

+
�⇤

k2
(S� P) +

�VA

k2
[2(V �A)adj + (1/Nc)(V �A)]
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Nf,cr ⇡ 4.0Nc

Nf,cr ⇡ 3.4Nc

  (H. Gies & J. Jaeckel ’05; JB & H. Gies ’05, ‘06)•critical number (RG error estimate): Nf,cr ' 10 .. 12

Nf,cr < Nf < 16.5

no asymptotic 
freedom

�SB



Many-flavor QCD

(Appelquist, Fleming, Neil ’08, ‘09; 
Deuzeman, Lombardo, Pallante ’08; Fodor et al. ’08, ’09;

Fodor, Holland, Kuti, Nogradi, Schroeder ’09;
Jin, Mawhinney ’09)

•state-of-the-art lattice studies:

•consistent with rainbow-ladder approximation &  
SUSY inspired all-order    -function �

(Miransky & Yamawaki ’96; Appelquist et al. ’96; 
Sannino & Schechter ’99; Sannino & Tuominen '05; 

Dietrich & Sannino '07; Ryttov & Sannino '07,'08,'09; 
Sannino '08; Fukano & Sannino ‘10)
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Scaling Behavior Close to the QPT?

(Pisarski, Wilczek ’84)

O
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Many-flavor QCD and Scaling: The 3-color case
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Nc 2 3 4 5 6 7

None
f,cr 7.6 11.7 15.7 19.7 23.6 27.6

Nall
f,cr 7.9 11.9 15.9 19.9 23.8 27.8

N4�loop
f,cr 6.8 10.0 13.4 16.8 20.2 23.6

�N2�loop
f 0.36 0.27 0.31 0.36 0.42 0.48

Table 6.1: Critical number of flavors Nf,cr for various values of Nc as obtained from
di↵erent approximations: one-channel approximation with two-loop running gauge cou-
pling (None

f,cr ), all-channels approximation with two-loop running gauge coupling (Nall
f,cr),

and all-channels approximation with four-loop running gauge coupling (N4�loop
f,cr ). The

di↵erence between Nall
f,cr and N4�loop

f,cr can be considered as an error estimate for the
uncertainty arising due to the truncated gauge sector in our study. In the bottom row,
we give estimates for the size of the regime in which the exponential scaling behavior
dominates. These estimates have been obtained from Eq. (6.32) by using the one-
channel approximation together with a two-loop running gauge coupling. We observe
that �N2�loop

f increases only slightly with Nc, i. e. (�N2�loop
f )/Nc ⌧ 1.

Ref. [29], we find [73]

None
f,cr =

169N6
c �136N4

c +132N2
c �68

p
N4

c (3N2
c �8)N3

c

58N5
c �64N3

c �26
p

N4
c (3N2

c �8)N2
c +6

p
N4

c (3N2
c �8)+36Nc

(Nc=3)
⇡ 11.7 (6.45)

for the one-channel approximation. In the all-channels approximation we obtain

Nall
f,cr ⇡ 11.9 (6.46)

for Nc = 3. We may use our analytic estimate for Nf,cr from the one-channel approxi-
mation to estimate Nf,cr in the limit Nc !1:

None
f,cr

Nc
=

68
p

3� 169

2
�
13
p

3� 29
� ⇡ 4.0 . (6.47)

These results for Nf,cr are in accordance with the results from Dyson-Schwinger equa-
tions in the rainbow-ladder approximation, see e. g. Refs. [79, 306, 339], as well as
with those from current lattice simulations [315–328].

In Fig. 6.6 we show the zero-temperature phase diagram of strongly-flavored SU(Nc)
gauge theories in the (Nf, Nc)-plane, see also Tab. 6.1. Within the RG framework
this phase diagram has first been computed in Ref. [29]. The upper solid (black)
line represents the boundary at which asymptotic freedom is lost. The shaded area
depicts the conformal window. We observe that the absolute size of the conformal
window increases with Nc. However, the relative size (Na.f.

f � Nf,cr)/Na.f.
f ⇡ 3/11 is

approximately independent of Nc. In addition, we find that the size of the conformal

size of the regime in which 
Miransky scaling dominates     

(JB ’11)

Power-law scaling might be more relevant 
for lattice simulations which probe the 

theory at integer NfNf
(JB, C. S. Fischer, H. Gies, ’10)



Many-flavor QCD at finite temperature
(JB, H. Gies ’05,’06, ‘09)

(under investigation using lattice simulations, 
cf. Deuzeman, Lombardo, Miura, Pallante) 

T
�
[M

eV
]

Nc = 3 , Nf,cr ⇡ 12
Lattice QCD, 
hotQCD ‘10
Lattice QCD,

     Aoki et al. ‘09

QCD in the T, Nf plane 

Kohtaroh Miura 
Lat2011

T� ⇠ |Nf �Nf,cr|
1

|⇥|



Conclusions
• universal corrections to Miransky (BKT) scaling

• critical number of quark flavors: 

• scaling of physical observables near           is determined by the underlying IR 
fixed point scenario (testable prediction!)

Outlook
• corrections to scaling due to (current) quark mass (and finite volume) (cf. Dietrich ‘10)

• testing other theories: e. g. QED3 (together with C. S. Fischer, H. Gies, L. Jansen, D. Roscher), adjoint 
matter, ... 

• confining dynamics vs. chiral dynamics in aQCD (together with T. K. Herbst, to appear soon)

Nf,cr

Nf,cr ' (3.4 . . . 4.0)⇥Nc



Dyson-Schwinger Equations and Miransky ScalingMiransky Scaling ?
⇤ gap equation [PHYSIK.UNI-GRAZ.AT/ITP/SICQFT]

⇤ approximation: � = � $ ↵ = const .

k

SB

⇠ ⇤ exp

 
� const .p

g

2 � g

2
cr

!

(MIRANSKY’94; MIRANSKY,YAMAWAKI’97)

⇤ chiral observables:

Tc, f⇡, h ̄ i1/3, m

c.q., · · · ⇠ k

SB

•Dyson-Schwinger equation for the fermion propagator [ physik.uni-graz.at/itp/sicqft ]

•approximations:               ;                          ;  � = � g2 = const. g2 � g2cr ⇠ |N cr
f �Nf |+ . . .

kSB / ⇤✓(N cr
f �Nf) exp

 
� ⇡

2✏
p
|↵1||N cr

f �Nf |

!
•symmetry breaking scale:

(Miransky ’85; Miransky, Yamawaki ’97)


