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Outline

» Learning nuclear physics from gravity
and the other way around by using
massive pulsars




Exploring the nuclear phase diagram
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The pessible phases of nuclear matter

Neutron stars are the only window to part of the
QCD phase diagram




The whole 1dea 1s based 1n the interpretation of the pulsars,

discovered by Hewish 1n 1967, as neutron stars
(Gold and others)




Neutron star

Mass ~ 1.5 solar mass
~ 20 km diameter

Solid crust
~ Zkm deep

Fluid core

hainly neutrons
with other paricles




Neutron stars are believed to be the final states of massive
stars which are not heavy enough to become black holes.
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Neutrons stars are a natural lab for structure of matter
Conjectures on the possibilty of exotic phases in the inner region

Metallic crust

Y— Various phases of hadron matter

Possibly a quark core




S0 10, L0308 natue U406

A two-solar-mass neutron star measured using
Shapiro delay

P. B. Demorest', T. Pennucel”’, S. M. Ransom', M. S. E. Roberts” & J. W. T. Hessels®
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OBSERVATIONAL CONSTRAINTS ON THE MAXIMUM NEUTRON STAR MASS

H. A. Berue' anp G, E. Brown?
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ABSTRACT

We review estimates of the mass of the compact core in SN 1987A and conclude that the most accurate
determination can be obtained from the known value of ~0075 M, of Ni production in the explosion, With
binding energy correction, this gives an upper limit of gravitational mass of ~ 1.56 M, shightly largcl than
Brown & Bethe's previous estimate of ~ 1.5 M. Observation by OSSE of the ratio of y-rays from *'Co and
%Co indicates that neutron-rich material from the inner regions does not reach the mass cut by convection or
Rayleigh-Taylor instability

Arguments that the core of SN 1987A went into a black hole are reviewed. If one accepts this to be true,
then the maximum compact Core mass g star masses of

= 1.56 M,

IA’ \sl

(gravitational), in rough agreement with Lac e rerirt o oo Bethe

Sublect headings: stars: neutron SUPErnova remnants
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Radio timing observations of the binary millisecond second
pulsar J1614-2230 show a strong Shapiro delay signature
giving a pulsar mass of about 1.97 +/— 0.04 solar mass.
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Demorest et al. 10.1038/nature 09466.




The theory of neutron stars started 1n 1939 with the
seminal work by Oppenheimer-Volkoff and Tolman
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Oppenheimer-Volkov-Tolman equation

d P Gy [e(r)+ P(OIMGr) + 43 P(r)]
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.
General relativistic hydrostatic equilibrium (spherical bodies)

Important relativistic contributions

Must be supplemented with the matter Equation of State
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Oppenheimer—Volkoff and Tolman plus the Equation of State
allows the study of the equilibrium conditions for neutron stars




Therefore we have two possibilities:

a) Assuming we know gravity we can
learn about strong interactions (EoS).

b) Assuming we know strong interactions
we can learn about gravity (Gy).
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So we can rule out most of the exotic scenarios for the
matter of neutron stars (quark matter, hyperons, kaon
condensates) from the EoS in the maket, but perhaps
strongly interacting quark matter (Demorest et all)




Case b) From a given EoS

——— Chuiral Effective Theory
Free neutron gas
Causality limit ¢ <c
Hebeler et al. 2010
Heiselberg & Hjorth-Jensen
Manuel, Tolos 1
Manuel, Tolos 2




We can get information about Gy in an
unexplored new regime (relativistic and high g
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This value 1s compatible with the ones found 1n
other scenarios with much larger accelerations

6.6738(8) 10~ N(m/kg)?




This result may be relevant since many extensions
of GR predict Gy = Gy (g)

For example, arXiv:0410117

Gn ~constant r 0
1 2

Cyx —xr' rox
K

q~10"°

Dozens of works 0901.2963, hep-th /9504014, hep-ph /0207282,
astro-ph /9501066 . ..
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(3 =J0P/dp < ¢




For example the recently propossed based on Chiral
Pertubation Theory which reproduces quite well the nuclear
matter density from first principles

(Chiral Symmetry and consistent momentum power
counting in nuclear matter)

Modern calculations in effective theory

Vr=1 Vr=1
Op5 Op6
Leading Order Next—to-Leading Order
1 2

\ .
Vr=2 \

Op6
Next-to-Leading Order

(Lacour, Oller and Meissner 2009, symmetric nuclear matter
.h..'-, N, :!

Lacour, Oller and Meissner 2009




Causality limit ¢ <c
= = (Chiral Effective Theory
Free neutron gas

(3 = dJdP/dp < ¢




Solving Oppenheimer-Volkov-Tolman equation it 1s possible to
find the acceleration profile for the two-solar-masses neutron star.

PSR J1614-2230




Nuclear EoS supports at most 2.2 solar masses

- - — Free neutron gas
ChEST. no constraint
— Causal ChEfT




Vary the Newton constant:

G (£(r) + P(F))(M(r) + 4mr*P(r))
d‘r r:‘ 1 20 . l.-f: (TI

Where Effective Theory becomes unreliable use the steepmost

equation of state
P P 0+ C "(;' ;’.I’_;]

(lack of knowledge of dense QCD does not alter conclusions)




Variation of G, by more than 12% produce
gravitational collapse E— upper bound on Gy
since there 1s a two-solar-masses neutron star

-== GG =1
GG =0.92
— GG = 0.885
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Setting a new upper bound on Gy at large g.
(12% of the Earth value at he 95% confidence level)
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Summary and open questions

e Pulsars are a very interesting laboratory to study the
interplay between strong interactions and gravity in the
General Relativistic regime.

 The recent finding of a two-solar masses pulsar allows to
rule out many models of strange nuclear matter and to set
bounds on the variation of Gy in a new regime of extremely
high g (12 orders of magnitude the one on Earth).

e This result can be usefull to set new constraints on
modifications of GR such as {(R) or Lovelock theories of
gravities.

e Work is in progress in that direction.







