Natural Vacuum

Alignment from Group

Theory

Martin Holthausen
based on
MH, Michael A. Schmidt
JHEP 1201 (2012) 126 , arXiv: 1111.1730

PT

FOR PRECISION TESTS OF FUNDAMENTAL SYMMMEIRTES

Why Flavour Symmetry?

in SM(+Majorana neutrinos) there are a total of 28 Parameters

Why Flavour Symmetry?

in SM(+Majorana neutrinos) there are a total of 28 Parameters

- most of them stem from interactions with the Higgs field, other interactions tightly constrained by symmetry principles

Why Flavour Symmetry?

in SM(+Majorana neutrinos) there are a total of 28 Parameters

- most of them stem from interactions with the Higgs field, other interactions tightly constrained by symmetry principles
- in quark sector: small mixing angles and hierarchical masses can be explained by Frogatt-Nielsen symmetry

Why Flavour Symmetry?

in SM(+Majorana neutrinos) there are a total of 28 Parameters

- most of them stem from interactions with the Higgs field, other interactions tightly constrained by symmetry principles
- in quark sector: small mixing angles and hierarchical masses can be explained by Frogatt-Nielsen symmetry
- in lepton sector: two large and one small mixing angle suggestive of non-abelian discrete symmetry

Lepton mixing from discrete groups

residual symmetry of (me ${ }^{+} \mathrm{me}$)

$$
G_{e}=Z_{3}
$$

G_{f}

$$
T m_{e} m_{e}^{\dagger} T^{\dagger}=m_{e} m_{e}^{\dagger}
$$

$$
T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Candidate Groups

A4 Symmetry Group

A_{4} is the smallest symmetry group that can lead to TBM mixing:

$$
A_{4} \cong\left(Z_{2} \times Z_{2}\right) \rtimes Z_{3} \cong\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=1\right\rangle
$$

	S	T
$\underline{\mathbf{1}}_{\mathbf{1}}$	1	1
$\underline{\mathbf{1}}_{\mathbf{2}}$	1	ω
$\underline{\mathbf{1}}_{\mathbf{3}}$	1	ω
$\underline{\mathbf{3}}_{\mathbf{1}}$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

	1	T	T^{2}	S
$\mathbf{1}_{\mathbf{1}}$	1	1	1	1
$\mathbf{1}_{\mathbf{2}}$	1	ω	ω^{2}	1
$\mathbf{1}_{\mathbf{3}}$	1	ω^{2}	ω	1
$\underline{\mathbf{3}}$	3	0	0	-1

$\underline{3} \times \underline{3}=\underline{1}_{1}+\underline{1}_{2}+\underline{1}_{3}+\underline{3}_{S}+\underline{3}_{A}$

${ }^{(a b)} \mathbf{1}_{\mathbf{1}}=\frac{1}{\sqrt{3}}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)$
${ }^{(a b)} \underline{\mathbf{1}}_{\mathbf{2}}=\frac{1}{\sqrt{3}}\left(a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3}\right) \quad(a b)_{\mathbf{1}_{\mathbf{3}}}=\frac{1}{\sqrt{3}}\left(a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3}\right)$
$(a b)_{A, \mathbf{3}}=\frac{1}{2}\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right) \quad(a b)_{S, \mathbf{3}}=\frac{1}{2}\left(\begin{array}{l}a_{2} b_{3}+a_{3} b_{2} \\ a_{3} b_{1}+a_{1} b_{3} \\ a_{1} b_{2}+a_{2} b_{1}\end{array}\right)$

An A_{4} Prototype model

- $\left(A_{4}, Z_{4}\right)$ charge assignments: $1 \sim(3, i), e^{c} \sim\left(1_{1},-i\right), \mu^{c} \sim\left(1_{2},-i\right), \tau^{c} \sim\left(1_{3},-i\right), \chi \sim(3,1)$, $\phi \sim(3,-1), \xi \sim(1,-1)$
- auxiliary Z_{4} separates neutral and charged lepton sectors at LO

Vacuum alignment crucial!
[eeg. Ma,Rajasekaran'01, Babu, Ma, Wale '03, Altarelli,Feruglio, '05,'06]

Can Vacuum Alignment be realized?

Can Vacuum Alignment be realized?

- SSB: Minimum Energy State exhibits less symmetry than full Lagrangian

Can Vacuum Alignment be realized?

- SSB: Minimum Energy State exhibits less symmetry than full Lagrangian
- Most straightforward case: scalar potential in 4D DOES NOT work:

$$
V_{\chi}=m_{0}^{2}(\chi \chi)_{\mathbf{1}_{1}}+\lambda_{1}(\chi \chi)_{\mathbf{1}_{1}}(\chi \chi)_{\underline{1}_{1}}+\lambda_{2}(\chi \chi)_{\mathbf{1}_{\mathbf{2}}}(\chi \chi)_{\mathbf{1}_{\mathbf{3}}}
$$

has minima $(1,1,1)$ and $(1,0,0)$. Effect of breaking to Z_{2} in another sector can be included by adding:

$$
V_{s o f t, Z_{2}}=m_{A}^{2} \chi_{1}^{2}+m_{B}^{2} \chi_{2}^{2}+m_{C}^{2} \chi_{2} \chi_{3}
$$

Can Vacuum Alignment be realized?

- SSB: Minimum Energy State exhibits less symmetry than full Lagrangian
- Most straightforward case: scalar potential in 4D DOES NOT work:

$$
V_{\chi}=m_{0}^{2}(\chi \chi)_{\mathbf{1}_{1}}+\lambda_{1}(\chi \chi)_{\mathbf{1}_{1}}(\chi \chi)_{\underline{1}_{1}}+\lambda_{2}(\chi \chi)_{\mathbf{1}_{\mathbf{2}}}(\chi \chi)_{\mathbf{1}_{\mathbf{3}}}
$$

has minima $(1,1,1)$ and $(1,0,0)$. Effect of breaking to Z_{2} in another sector can be included by adding:

$$
V_{s o f t, Z_{2}}=m_{A}^{2} \chi_{1}^{2}+m_{B}^{2} \chi_{2}^{2}+m_{C}^{2} \chi_{2} \chi_{3}
$$

Minimization conditions then give:

$$
\begin{aligned}
& 0=\left[\frac{\partial V}{\partial \chi_{1}}\right]_{\chi_{i}=v^{\prime}}=\frac{2}{\sqrt{3}}\left(m_{0}^{2}+\sqrt{3} m_{A}^{2}\right) v^{\prime}+4 \lambda_{1} v^{\prime 3} \\
& 0=\left[\frac{\partial}{\partial \chi_{2}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=2 m_{B}^{2} v^{\prime} \\
& 0=\left[\frac{\partial}{\partial \chi_{1}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=\left(2 m_{A}^{2}-m_{C}^{2}\right) v^{\prime}
\end{aligned}
$$

Can Vacuum Alignment be realized?

- SSB: Minimum Energy State exhibits less symmetry than full Lagrangian
- Most straightforward case: scalar potential in 4D DOES NOT work:

$$
V_{\chi}=m_{0}^{2}(\chi \chi)_{\mathbf{1}_{1}}+\lambda_{1}(\chi \chi)_{\mathbf{1}_{1}}(\chi \chi)_{\mathbf{1}_{1}}+\lambda_{2}(\chi \chi)_{\mathbf{1}_{\mathbf{2}}}(\chi \chi)_{\mathbf{1}_{\mathbf{3}}}
$$

has minima $(1,1,1)$ and $(1,0,0)$. Effect of breaking to Z_{2} in another sector can be included by adding:

$$
V_{s o f t, Z_{2}}=m_{A}^{2} \chi_{1}^{2}+m_{B}^{2} \chi_{2}^{2}+m_{C}^{2} \chi_{2} \chi_{3}
$$

Minimization conditions then give:

$$
\begin{aligned}
& 0=\left[\frac{\partial V}{\partial \chi_{1}}\right]_{\chi_{i}=v^{\prime}}=\frac{2}{\sqrt{3}}\left(m_{0}^{2}+\sqrt{3} m_{A}^{2}\right) v^{\prime}+4 \lambda_{1} v^{\prime 3} \\
& 0=\left[\frac{\partial}{\partial \chi_{2}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=2 m_{B}^{2} v^{\prime} \\
& 0=\left[\frac{\partial}{\partial \chi_{1}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=\left(2 m_{A}^{2}-m_{C}^{2}\right) v^{\prime}
\end{aligned}
$$

- This thus requires $m_{A}=m_{B}=m_{c}=0$, i.e. all non-trivial contractions between Φ and χ have to vanish in the potential.

Can Vacuum Alignment be realized?

- SSB: Minimum Energy State exhibits less symmetry than full Lagrangian
- Most straightforward case: scalar potential in 4D DOES NOT work:

$$
V_{\chi}=m_{0}^{2}(\chi \chi)_{\underline{1}_{1}}+\lambda_{1}(\chi \chi)_{\underline{1}_{1}}(\chi \chi)_{\underline{1}_{1}}+\lambda_{2}(\chi \chi)_{\mathbf{1}_{\mathbf{2}}}(\chi \chi)_{\underline{1}_{\mathbf{3}}}
$$

has minima $(1,1,1)$ and $(1,0,0)$. Effect of breaking to Z_{2} in another sector can be included by adding:

$$
V_{s o f t, Z_{2}}=m_{A}^{2} \chi_{1}^{2}+m_{B}^{2} \chi_{2}^{2}+m_{C}^{2} \chi_{2} \chi_{3}
$$

Minimization conditions then give:

$$
\begin{aligned}
& 0=\left[\frac{\partial V}{\partial \chi_{1}}\right]_{\chi_{i}=v^{\prime}}=\frac{2}{\sqrt{3}}\left(m_{0}^{2}+\sqrt{3} m_{A}^{2}\right) v^{\prime}+4 \lambda_{1} v^{\prime 3} \\
& 0=\left[\frac{\partial}{\partial \chi_{2}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=2 m_{B}^{2} v^{\prime} \\
& 0=\left[\frac{\partial}{\partial \chi_{1}} V-\frac{\partial}{\partial \chi_{3}} V\right]_{\chi_{i}=v^{\prime}}=\left(2 m_{A}^{2}-m_{C}^{2}\right) v^{\prime}
\end{aligned}
$$

- This thus requires $m_{A}=m_{B}=m_{c}=0$, i.e. all non-trivial contractions between Φ and χ have to vanish in the potential.
- Breaking to the same subgroup of A_{4} can be realized. The non-trivial couplings, i.e. $(\Phi \Phi)_{3}(\chi \chi)_{3}$ thus force breaking of group to the same subgroup.
- the couplings cannot be forbidden by an internal symmetry that commutes with A_{4}, as e.g. $\left(\Phi^{\dagger} \Phi\right)_{3}$ is invariant under the commuting symmetry.

Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005

In SUSY, one has to introduce a continuous R-symmetry and additional fields with Rcharge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

Field	φ_{T}	φ_{S}	ξ	$\tilde{\xi}$	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	3	1	1	3	3	1
Z_{3}	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	0	0	0	0	2	2	2

Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005

In SUSY, one has to introduce a continuous R-symmetry and additional fields with Rcharge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

Field	φ_{T}	φ_{S}	ξ	$\tilde{\xi}$	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	3	1	1	3	3	1
Z_{3}	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	0	0	0	0	2	2	2

Altarelli, Feruglio 2006
Babu and Gabriel(2010) proposed the flavour group $\left(S_{3}\right)^{4} \rtimes A_{4}$, which has the properties - leptons transform only under A_{4} subgroup

- if one takes $\Phi \sim 16$, vacuum alignment possible as $\mathrm{V}=\mathrm{V}(\Phi)+\mathrm{V}(\chi)+(\Phi \phi)_{1}(\chi x)_{1}$
- neutrino masses then generated by coupling to $\left\langle\Phi^{4}\right\rangle \sim(1,0,0)$

Problems with the Solutions

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005

In SUSY, one has to introduce a continuous R-symmetry and additional fields with Rcharge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

Field	φ_{T}	φ_{S}	ξ	$\tilde{\xi}$	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	3	1	1	3	3	1
Z_{3}	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	0	0	0	0	2	2	2

Altarelli, Feruglio 2006
Babu and Gabriel(2010) proposed the flavour group $\left(S_{3}\right)^{4} \rtimes A_{4}$, which has the properties - leptons transform only under A_{4} subgroup

- if one takes $\phi \sim 16$, vacuum alignment possible as $V=V(\phi)+V(\chi)+(\phi \phi)_{1}(\chi x)_{1}$
- neutrino masses then generated by coupling to $\left\langle\Phi^{4}\right\rangle \sim(1,0,0)$

Problems with the Solutions

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

needs high flavour scale, hard to test

In SU R-symmetry and additional fields with Rcharge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

Altarelli, Feruglio 2006
Babu and Gabriel(2010) proposed the flavour group $\left(S_{3}\right)^{4} \rtimes A_{4}$, which has the properties - leptons transform only under A_{4} subgroup

- if one takes $\phi \sim 16$, vacuum alignment possible as $V=V(\phi)+V(\chi)+(\phi \phi)_{1}(\chi x)_{1}$
- neutrino masses then generated by coupling to $\left\langle\Phi^{4}\right\rangle \sim(1,0,0)$

Problems with the Solutions

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

needs high flavour scale, hard to test

In SU R-symmetry and additional fields with Rcharge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

Altarelli, Feruglio 2006

Babu and Ga: - leptons t

- if one ta
- neutrino
- Model is fine-tuned/needs special UV completion: different mass entries in neutrino mass matrix stem from operators of very different mass dimensions $(\mathrm{II})_{3} \Phi^{4}+(\mathrm{II})_{1}$
- non-minimal(size: 15552), needs large representations
the properties

TABLE II. The character table for $\left(S_{3} \times S_{3} \times S_{3} \times S_{3}\right) \times A_{4}$.

	1	8	24	32	16	12	54	108	81	72	144	216	96	216	216	108	432	432	648	1296	\cdots
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	...
1^{\prime}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	.
$1^{\prime \prime}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. \cdot
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-1	-1	-1	-1	-1	. \cdot
İ	1	1	1	1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	1	-1	-1	.
$\tilde{1}^{\prime}$	1	1	1	1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	1	-1	-1	.
$\mathrm{I}^{\prime \prime}$	1	1	1	1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	1	-1	-1	.
3	3	3	3	3	3	-3	3	-3	3	-3	-3	3	-3	3	-3	-1	-1	-1	1	1	.
4	4	4	4	4	4	2	0	-2	-4	2	2	0	2	0	-2	0	0	0	0	0	. \cdot
4^{\prime}	4	4	4	4	4	2	0	-2	-4	2	2	0	2	0	-2	0	0	0	0	0	\cdots
$4^{\prime \prime}$	4	4	4	4	4	2	0	-2	-4	2	2	0	2	0	-2	0	0	0	0	0	\cdots
4	4	4	4	4	4	-2	0	2	-4	-2	-2	0	-2	0	2	0	0	0	0	0	.
π^{\prime}	4	4	4	4	4	-2	0	2	-4	-2	-2	0	-2	0	2	0	0	0	0	0	. \cdot
$4^{\prime \prime}$	4	4	4	4	4	-2	0	2	-4	-2	-2	0	-2	0	2	0	0	0	0	0	\cdots
6	6	6	6	6	6	0	-2	0	6	0	0	-2	0	-2	0	2	2	2	0	0	\cdots
6^{\prime}	6	6	6	6	6	0	-2	0	6	0	0	-2	0	-2	0	-2	-2	-2	0	0	. \cdot
8	8	5	2	-1	-4	6	4	2	0	3	0	1	-3	-2	-1	0	0	0	0	0	\cdots
8^{\prime}	8	5	2	-1	-4	6	4	2	0	3	0	1	-3	-2	-1	0	0	0	0	0	\cdots
$8^{\prime \prime}$	8	5	2	-1	-4	6	4	2	0	3	0	1	-3	-2	-1	0	0	0	0	0	. \cdot
8	8	5	2	-1	-4	-6	4	-2	0	-3	0	1	3	-2	1	0	0	0	0	0	\cdots
8^{\prime}	8	5	2	-1	-4	-6	4	-2	0	-3	0	1	3	-2	1	0	0	0	0	0	\cdots
$8^{\prime \prime}$	8	5	2	-1	-4	-6	4	-2	0	-3	0	1	3	-2	1	0	0	0	0	0	\cdots
16	16	-8	4	-2	1	0	0	0	0	0	0	0	0	0	0	4	-2	1	0	0	. \cdot
16^{\prime}	16	-8	4	-2	1	0	0	0	0	0	0	0	0	0	0	4	-2	1	0	0	. \cdot
$16^{\prime \prime}$	16	-8	4	-2	1	0	0	0	0	0	0	0	0	0	0	4	-2	1	0	0	\cdots
24	24	6	-3	-3	6	12	4	0	0	0	-3	-2	3	1	0	4	1	-2	2	-1	\cdots
24^{\prime}	24	6	-3	-3	6	12	4	0	0	0	-3	-2	3	1	0	-4	-1	2	-2	1	\cdots
24	24	6	-3	-3	6	-12	4	0	0	0	3	-2	-3	1	0	4	1	-2	-2	1	\cdots
24	24	6	-3	-3	6	-12	4	0	0	0	3	-2	-3	1	0	-4	-1	2	2	-1	.
$24^{\prime \prime \prime}$	24	15	6	-3	-12	6	-4	-6	0	3	0	-1	-3	2	3	0	0	0	0	0	\cdots
24	24	15	6	-3	-12	-6	-4	6	0	-3	0	-1	3	2	-3	0	0	0	0	0	\cdots
32	32	-4	-4	5	-4	8	0	0	0	-4	2	0	-1	0	0	0	0	0	0	0	\cdots
32^{\prime}	32	-4	-4	5	-4	8	0	0	0	-4	2	0	-1	0	0	0	0	0	0	0	\cdots
$32^{\prime \prime}$	32	-4	-4	5	-4	8	0	0	0	-4	2	0	-1	0	0	0	0	0	0	0	\cdots
$\widetilde{32}$	32	-4	-4	5	-4	-8	0	0	0	4	-2	0	1	0	0	0	0	0	0	0	\cdots
$\widetilde{32}^{\prime}$	32	-4	-4	5	-4	-8	0	0	0	4	-2	0	1	0	0	0	0	0	0	0	. \cdot
$\widetilde{32}^{\prime \prime}$	32	-4	-4	5	-4	-8	0	0	0	4	-2	0	1	0	0	0	0	0	0	0	-
48	48	-24	12	-6	3	0	0	0	0	0	0	0	0	0	0	-4	2	-1	0	0	\cdots
48	48	12	-6	-6	12	0	-8	0	0	0	0	4	0	-2	0	0	0	0	0	0	. \cdot

- if one ta
- neutrino

Group extensions and vacuum alignment

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$
- there therefore exist representations ρ_{i}, which are directly related to the representations ρ_{i} of H by, via $\rho_{i} \equiv \rho H \circ \xi$.

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$
- there therefore exist representations ρ_{i}, which are directly related to the representations ρ_{i} of H by, via $\rho_{i} \equiv \rho H \circ \xi$.
- to keep the same flavour structure as within H, we assign SM fermions to these representations, also flavon $\chi \sim 3 \mathrm{H} \circ \xi$.

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$
- there therefore exist representations ρ_{i}, which are directly related to the representations ρ_{i} of H by, via $\rho_{i} \equiv \rho H \circ \xi$.
- to keep the same flavour structure as within H, we assign SM fermions to these representations, also flavon $\chi \sim 3 \mathrm{H} \circ \xi$.
- We further demand the existence of an irreducible representation Φ, whose product Φ^{n} contains the triplet representation that the leptons transform under.

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$
- there therefore exist representations ρ_{i}, which are directly related to the representations ρ_{i} of H by, via $\rho_{i} \equiv \rho H \circ \xi$.
- to keep the same flavour structure as within H, we assign SM fermions to these representations, also flavon $\chi \sim 3 \mathrm{H} \circ \xi$.
- We further demand the existence of an irreducible representation Φ, whose product Φ^{n} contains the triplet representation that the leptons transform under.
- Furthermore, we demand that the renormalizable scalar potential formed out of such a triplet flavon χ and Φ exhibits an accidental symmetry $\mathrm{G} \times \mathrm{H}$, i.e. $\mathrm{V}=\mathrm{V}(\Phi)$ $+\mathrm{V}(\chi)+(\Phi \Phi)_{1}(\chi \chi)_{1}$.

Group extensions and vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successfull groups $H=A_{4}, T_{7}, S_{4}, T^{\prime}$ or $\left.\Delta(27)\right]$.
- demand that there should be a a surjective homomorphism $\xi: G \rightarrow H$
- there therefore exist representations ρ_{i}, which are directly related to the representations ρ_{i} of H by, via $\rho_{i} \equiv \rho H \circ \xi$.
- to keep the same flavour structure as within H, we assign SM fermions to these representations, also flavon $\chi \sim 3 \mathrm{H} \circ \xi$.
- We further demand the existence of an irreducible representation Φ, whose product Φ^{n} contains the triplet representation that the leptons transform under.
- Furthermore, we demand that the renormalizable scalar potential formed out of such a triplet flavon χ and Φ exhibits an accidental symmetry $\mathrm{G} \times \mathrm{H}$, i.e. $\mathrm{V}=\mathrm{V}(\Phi)$ $+\mathrm{V}(\chi)+(\Phi \Phi)_{1}(\chi \chi)_{1}$.

Scan for Small Groups

- using the computer algebra system GAP and its SmallGroups catalogue, we have checked all groups with size smaller than 1000 ($11,758,814$ groups) and we have found a number of candidates:
- no candidates for T_{7} or $\Delta(27)$, maybe because here 3 is complex and there are more couplings that have to be forbidden (also smaller number of possible extensions)
- all candidates in list have nontrivial centre(=element that commute with all other elements), not necessary true for all groups(see e.g. $\left(S_{3}\right)^{4} \times A_{4}$ studied in Babu/Gabriel 2010)

Subgroup H	Order of G	GAP	Structure Description	$Z(G)$
A_{4}	96	204	$Q_{8} \rtimes A_{4}$	Z_{2}
	288	860	$T^{\prime} \rtimes A_{4}$	Z_{2}
	384	617, 20123	$\left(\left(Z_{2} \times Q_{8}\right) \rtimes Z_{2}\right) \rtimes A_{4}$	Z_{2}
	576	8273	$\left(Z_{2} . S_{4}\right) \rtimes A_{4}$	Z_{2}
	768	1083945	$\left(Z_{4} \cdot Z_{4}^{2}\right) \rtimes A_{4}$	Z_{4}
		1085279	$\left(\left(Z_{2} \times Q_{16}\right) \rtimes Z_{2}\right) \rtimes A_{4}$	Z_{2}
S_{4}	192	1494	$Q_{8} \rtimes S_{4}$	Z_{2}
	384	$\begin{gathered} 18133,20092 \\ 20096 \end{gathered}$	$\begin{gathered} \left(Z_{2} \times Q_{8}\right) \rtimes S_{4} \\ \left(\left(Z_{4} \times Z_{2}\right) \rtimes Z_{2}\right) \rtimes S_{4} \end{gathered}$	$\begin{aligned} & Z_{2} \\ & Z_{4} \end{aligned}$
	576	8282	$T^{\prime} \rtimes S_{4}$	Z_{2}
	576	8480	$\left(Z_{3} \times Q_{8}\right) \rtimes S_{4}$	Z_{6}
	768	1086052, 1086053	$\left(\left(Z_{2} \times Q_{8}\right) \rtimes Z_{2}\right) \rtimes S_{4}$	Z_{2}
	960	11114	$\left(Z_{5} \times Q_{8}\right) \rtimes S_{4}$	Z_{10}
T^{\prime}	192	1022	$Q_{8} \rtimes T^{\prime}$	Z_{2}^{2}
	648	533	$\Delta(27) \rtimes T^{\prime}$	Z_{3}
	768	1083573, 1085187	$\left(\left(Z_{2} \times Q_{8}\right) \rtimes Z_{2}\right) \rtimes T^{\prime}$	Z_{2}^{2}

Groups of the structure $G=N \rtimes H, H$ is subgroup of G

Scan for Small Groups

- using the computer algebra system GAP and its SmallGroups catalogue, we have checked all groups with size smaller than 1000 ($11,758,814$ groups) and we have found a number of candidates:
- no candidates for T_{7} or $\Delta(27)$, maybe because here 3 is complex and there are more couplings that have to be forbidden (also smaller number of possible extensions)
- all candidates in list have nontrivial centre(=element that commute with all other elements), not necessary true for all groups(see e.g. $\left(S_{3}\right)^{4} \times A_{4}$ studied in Babu/Gabriel 2010)

Quotient Group H	Order of G	GAP	Structure Description
A_{4}	96	201	$Z_{2} \cdot\left(Z_{2}^{2} \times A_{4}\right)$
	144	127	$Z_{2} \cdot\left(A_{4} \times S_{3}\right)$
	192	1017	$Z_{2} \cdot\left(D_{8} \times A_{4}\right)$
	96	67,192	$Z_{4} \cdot S_{4}$
	144	121,122	$Z_{6} \cdot S_{4}$
	192	187,963	$Z_{8} \cdot S_{4}$
	192	987,988	$Z_{2} \cdot\left(\left(Z_{2}^{2} \times A_{4}\right) \rtimes Z_{2}\right)$
	192	1483,1484	$Z_{2} \cdot\left(Z_{2}^{2} \times S_{4}\right)$
	192	1492	$Z_{2} \cdot\left(\left(Z_{2}^{4} \rtimes Z_{3}\right) \rtimes Z_{2}\right)$
	192	1007	$Z_{2}^{2} \cdot\left(Z_{2}^{2} \times A_{4}\right)$

Groups for which H is not a subgroup of G

Smallest Group

The smallest candidate group that contains A_{4} as a subgroup is the semidirect product of the quaternion group Q_{8}

$$
\left\langle X, Y \mid X^{4}=1, X^{2}=Y^{2}, Y^{-1} X Y=X^{-1}\right\rangle
$$

with A_{4}

$$
\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=1\right\rangle
$$

defined by the additional relations (\Leftrightarrow the homomorphism $\varphi: H \rightarrow$ Aut (N) introduced earlier)

$$
S X S^{-1}=X, \quad S Y S^{-1}=Y^{-1}, \quad T X T^{-1}=Y X, \quad T Y T^{-1}=X
$$

Smallest Group

The smallest candidate group that contains A_{4} as a subgroup is the semidirect product of the quaternion group Q_{8}

$$
\left\langle X, Y \mid X^{4}=1, X^{2}=Y^{2}, Y^{-1} X Y=X^{-1}\right\rangle
$$

with A_{4}

$$
\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=1\right\rangle
$$

defined by the additional relations $(\Leftrightarrow$ the homomorphism $\varphi: H \rightarrow$ Aut (\mathbb{N}) introduced earlier)

$$
S X S^{-1}=X, \quad S Y S^{-1}=Y^{-1}, \quad T X T^{-1}=Y X, \quad T Y T^{-1}=X
$$

Representations:

$$
\begin{aligned}
& \underline{3}_{\mathbf{i}} \times \underline{3}_{\mathbf{i}}=\underline{1}_{1}+\underline{1}_{2}+\underline{1}_{3}+\underline{3}_{i S}+\underline{3}_{i_{A}} \\
& \underline{\mathbf{3}}_{\mathbf{i}} \times \underline{\mathbf{3}}_{\mathbf{j}}=\sum_{\substack{k=1 \\
k \neq i, j}}^{5} \underline{\mathbf{3}}_{\mathrm{k}} \\
& (i \neq j) \\
& \underline{3}_{\mathbf{i}} \times \underline{4}_{\mathbf{j}}=\underline{4}_{1}+\underline{4}_{2}+\underline{4} 3 \\
& \underline{4}_{1} \times \underline{4}_{1}=\underline{1}_{1_{S}}+\underline{3}_{1_{A}}+\underline{3}_{2 S}+\underline{3}_{3 S}+\underline{3}_{4_{S}}+\underline{3}_{5} \\
& \underline{4}_{1} \times \underline{4}_{2}=\underline{1}_{2 S}+\underline{3}_{1_{A}}+\underline{\mathbf{3}}_{2}+\underline{\mathbf{3}}_{3}+\underline{3}_{\mathbf{4}_{S}}+\underline{3}_{5_{A}}
\end{aligned}
$$

faithful representation Φ is what we were looking for.
($\Phi \Phi$) only contains non-trivial contraction of the A_{4} subgroup.

The model

particle	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{8} \rtimes A_{4}$	Z_{4}
ℓ	1	2	$-1 / 2$	$\underline{\mathbf{3}}_{1}$	i
$e^{c}+\mu^{c}+\tau^{c}$	1	1	1	$\underline{\mathbf{1}}_{1}+\underline{\mathbf{1}}_{2}+\underline{\mathbf{1}}_{3}$	-i
H	1	2	$1 / 2$	$\underline{\mathbf{1}}_{1}$	1
χ	1	1	0	$\underline{\mathbf{3}}_{1}$	1
ϕ_{1}	1	1	0	$\underline{\mathbf{n}}_{1}$	1
ϕ_{2}	1	1	0	$\underline{\mathbf{4}}_{1}$	-1

Tค\& $\quad\langle\chi\rangle=\left(v^{\prime}, v^{\prime}, v^{\prime}\right)^{T}$,

particle	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{8} \rtimes A_{4}$	Z_{4}
ℓ	1	2	$-1 / 2$	$\underline{3}_{1}$	i
$e^{c}+\mu^{c}+\tau^{c}$	1	1	1	$\underline{1}_{1}+\underline{1}_{2}+\underline{1}_{3}$	-i
H	1	2	$1 / 2$	$\underline{1}_{1}$	1
χ	1	1	0	$\underline{\mathbf{3}}_{1}$	1
ϕ_{1}	1	1	0	$\underline{4}_{1}$	1
ϕ_{2}	1	1	0	$\underline{4}_{1}$	-1

VEVs:

$$
\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T}
$$

$$
\left\langle\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}(c, c, d,-d)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{\mathbf{3}}_{\mathbf{1}}\right\rangle=\frac{1}{2}(b c-a d, 0,0)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right)_{\underline{1}_{1}}\right\rangle=\frac{1}{2}(a c+b d)
$$

The model

$$
\langle\chi\rangle=\left(v^{\prime}, v^{\prime}, v^{\prime}\right)^{T}
$$

particle	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{8} \rtimes A_{4}$	Z_{4}
ℓ	1	2	$-1 / 2$	$\underline{\mathbf{3}}_{1}$	i
$e^{c}+\mu^{c}+\tau^{c}$	1	1	1	$\underline{1}_{1}+\underline{\mathbf{1}}_{2}+\underline{\mathbf{1}}_{3}$	-i
H	1	2	$1 / 2$	$\underline{1}_{1}$	1
χ	1	1	0	$\underline{\mathbf{3}}_{1}$	1
ϕ_{1}	1	1	0	$\underline{4}_{1}$	1
ϕ_{2}	1	1	0	$\underline{4}_{1}$	-1

VEVs:

$$
\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T},
$$

$$
\left\langle\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}(c, c, d,-d)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{\mathbf{}}_{1}\right\rangle=\frac{1}{2}(b c-a d, 0,0)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right)_{1_{1}}\right\rangle=\frac{1}{2}(a c+b d)
$$

LO charged lepton masses:

$$
\mathcal{L}_{e}^{(5)}=y_{e}(\ell \chi) \underline{1}_{1} e^{c} \tilde{H} / \Lambda+y_{\mu}(\ell \chi)_{1_{3}} \mu^{c} \tilde{H} / \Lambda+y_{\tau}(\ell \chi)_{\mathbf{1}_{2}} \tau^{c} \tilde{H} / \Lambda+\text { h.c. }
$$

$$
\mathbf{m}_{e} \sim\left(\begin{array}{ccc}
y_{e} & y_{\mu} & y_{\tau} \\
y_{e} & \omega y_{\mu} & \omega^{2} y_{\tau} \\
y_{e} & \omega^{2} y_{\mu} & \omega y_{\tau}
\end{array}\right)
$$

The model
 $$
\langle\chi\rangle=\left(v^{\prime}, v^{\prime}, v^{\prime}\right)^{T},
$$

particle	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{8} \rtimes A_{4}$	Z_{4}
ℓ	1	2	$-1 / 2$	$\underline{\mathbf{3}}_{1}$	i
$e^{c}+\mu^{c}+\tau^{c}$	1	1	1	$\underline{\mathbf{1}}_{1}+\underline{\mathbf{1}}_{2}+\underline{\mathbf{1}}_{3}$	-i
H	1	2	$1 / 2$	$\underline{1}_{1}$	1
χ	1	1	0	$\underline{\mathbf{3}}_{1}$	1
ϕ_{1}	1	1	0	$\underline{\mathbf{n}}_{1}$	1
ϕ_{2}	1	1	0	$\underline{4}_{1}$	-1

VEVs:

$$
\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T}
$$

$$
\left\langle\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}(c, c, d,-d)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{\mathbf{3}}_{1}\right\rangle=\frac{1}{2}(b c-a d, 0,0)^{T}
$$

$$
\left\langle\left(\phi_{1} \phi_{2}\right)_{1_{1}}\right\rangle=\frac{1}{2}(a c+b d)
$$

LO charged lepton masses:

$$
\mathcal{L}^{(5)}=y_{e}(\ell \chi)_{1_{1}} e^{c} \tilde{H} / \Lambda+y_{\mu}(\ell \chi)_{1} \mu^{c} \tilde{H} / \Lambda+y_{\tau}(\ell \chi)_{1_{2}} \tau^{c} \tilde{H} / \Lambda+\text { h.c. }
$$

LO neutral lepton masses:

$$
\mathcal{L}_{\nu}^{(7)}=x_{a}(\ell H \ell H)_{\mathbf{1}_{1}}\left(\phi_{1} \phi_{2}\right)_{\mathbf{1}_{1}} / \Lambda^{3}+x_{d}(\ell H \ell H) \underline{\mathbf{x}}_{1} \cdot\left(\phi_{1} \phi_{2}\right)_{\mathbf{x}_{1}} / \Lambda^{3}+\text { h.c. }
$$

$$
\mathbf{m}_{e} \sim\left(\begin{array}{ccc}
y_{e} & y_{\mu} & y_{\tau} \\
y_{e} & \omega y_{\mu} & \omega^{2} y_{\tau} \\
y_{e} & \omega^{2} y_{\mu} & \omega y_{\tau}
\end{array}\right)
$$

$$
\mathbf{m}_{V} \sim\left(\begin{array}{ccc}
\tilde{a} & 0 & 0 \\
0 & \tilde{a} & \tilde{d} \\
0 & \tilde{d} & \tilde{a}
\end{array}\right)
$$

?

particle	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{8} \rtimes A_{4}$	Z_{4}
ℓ	1	2	$-1 / 2$	$\underline{\mathbf{3}}_{1}$	i
$e^{c}+\mu^{c}+\tau^{c}$	1	1	1	$\underline{\mathbf{1}}_{1}+\underline{\mathbf{1}}_{2}+\underline{\mathbf{1}}_{3}$	-i
H	1	2	$1 / 2$	$\underline{1}_{1}$	1
χ	1	1	0	$\underline{\mathbf{3}}_{1}$	1
ϕ_{1}	1	1	0	$\underline{4}_{1}$	1
ϕ_{2}	1	1	0	$\underline{4}_{1}$	-1

LO charged lepton masses:

VEVs:

$$
\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T},
$$

$$
\left\langle\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}(c, c, d,-d)^{T}
$$

$$
\begin{gathered}
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{\mathbf{x}}_{1}\right\rangle=\frac{1}{2}(b c-a d, 0,0)^{T} \\
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{1}_{1}\right\rangle=\frac{1}{2}(a c+b d)
\end{gathered}
$$

$$
\mathcal{L}_{e}^{(5)}=y_{e}(\ell \chi)_{1_{1}} e^{c} \tilde{H} / \Lambda+y_{\mu}(\ell \chi)_{1_{3}} \mu^{c} \tilde{H} / \Lambda+y_{\tau}(\ell \chi)_{\mathbf{1}_{2}} \tau^{c} \tilde{H} / \Lambda+\text { h.c. }
$$

LO neutral lepton masses:

$$
\mathcal{L}_{\nu}^{(7)}=x_{a}(\ell H \ell H)_{\underline{1}_{1}}\left(\phi_{1} \phi_{2}\right)_{\underline{1}_{1}} / \Lambda^{3}+x_{d}(\ell H \ell H)_{\mathbf{x}_{1}} \cdot\left(\phi_{1} \phi_{2}\right)_{\mathbf{x}_{1}} / \Lambda^{3}+\text { h.c. }
$$

- additional 4_{1} necessary to get correct symmetry breaking (otherwise only breaking to A_{4})
- same \# of d.o.f. as in case of complex triplet and singlet, no additional driving fields necessary
- low flavour symmetry breaking scale possible, testable

Scalar Potential \& Vacuum Alignment
The most general scalar potential invariant under the flavour symmetry is given by

$$
V\left(\chi, \phi_{1}, \phi_{2}\right)=V_{\chi}(\chi)+V_{\phi}\left(\phi_{1}, \phi_{2}\right)+V_{\operatorname{mix}}\left(\chi, \phi_{1}, \phi_{2}\right)
$$

with

$$
\begin{aligned}
& V_{\phi}\left(\phi_{1}, \phi_{2}\right)=\mu_{1}^{2}\left(\phi_{1} \phi_{1}\right)_{\underline{1}_{\mathbf{1}}}+\alpha_{1}\left(\phi_{1} \phi_{1}\right)_{\underline{1}_{\mathbf{1}}}^{2}+\sum_{i=2,3} \alpha_{i}\left(\phi_{1} \phi_{1}\right) \underline{\mathbf{3}}_{\mathbf{i}} \cdot\left(\phi_{1} \phi_{1}\right) \underline{\mathbf{3}}_{\mathbf{i}} \\
& +\mu_{2}^{2}\left(\phi_{2} \phi_{2}\right)_{\underline{\mathbf{1}}_{\mathbf{1}}}+\beta_{1}\left(\phi_{2} \phi_{2}\right)_{\underline{\mathbf{1}}_{\mathbf{1}}}^{2}+\sum_{i=2,3} \beta_{i}\left(\phi_{2} \phi_{2}\right) \underline{\mathbf{3}}_{\mathbf{i}} \cdot\left(\phi_{2} \phi_{2}\right) \underline{\mathbf{3}}_{\mathbf{i}} \\
& +\gamma_{1}\left(\phi_{1} \phi_{1}\right)_{\mathbf{1}_{1}}\left(\phi_{2} \phi_{2}\right)_{\mathbf{1}_{1}}+\sum_{i=2,3,4} \gamma_{i}\left(\phi_{1} \phi_{1}\right) \underline{\mathbf{3}}_{\mathbf{i}} \cdot\left(\phi_{2} \phi_{2}\right) \underline{\mathbf{3}}_{\mathbf{i}} \\
& V_{\chi}(\chi)=\mu_{3}^{2}(\chi \chi)_{\underline{1}_{\mathbf{1}}}+\rho_{1}(\chi \chi \chi)_{\mathbf{1}_{\mathbf{1}}}+\lambda_{1}(\chi \chi)_{\underline{\mathbf{1}}_{\mathbf{1}}}^{2}+\lambda_{2}(\chi \chi)_{\mathbf{1}_{\mathbf{2}}}(\chi \chi)_{\underline{\mathbf{1}}_{\mathbf{3}}} \\
& V_{\operatorname{mix}}\left(\chi, \phi_{1}, \phi_{2}\right)=\zeta_{13}\left(\phi_{1} \phi_{1}\right)_{1_{1}}(\chi \chi)_{1_{1}}+\zeta_{23}\left(\phi_{2} \phi_{2}\right)_{1_{1}}(\chi \chi)_{\underline{1}_{1}}
\end{aligned}
$$

- Potential has an accidental symmetry $\left[\left(Q_{8} \rtimes A_{4}\right) \times A_{4}\right] \times Z_{4}$
- invariant under independent transformations of Φ and χ
- note that couplings such as $\chi \cdot\left(\phi_{1} \phi_{2}\right) \underline{\boldsymbol{z}}_{1}$ are forbidden by the auxiliary Z_{4} symmetry that separates the charged and neutral lepton sectors

Scalar Potential \& Vacuum Alignment

Scalar Potential \& Vacuum Alignment

- Characterization of Minima
- If there is a minimum, in which the symmetry generator $Q \in G$ is left unbroken, i.e. $Q\left\langle\Phi_{i}\right\rangle=\left\langle\phi_{i}\right\rangle$,there are degenerate minima $\left\langle\phi_{\mathrm{i}}^{\prime}\right\rangle=\mathrm{g}\left\langle\phi_{\mathrm{i}}^{\prime}\right\rangle$ that leave gQg^{-1} unbroken, with $\mathrm{g} \in \mathrm{G}$.
- The physically distinct minima are therefore characterized by the conjugacy class $G Q=\left\{\mathrm{gQg}^{-1}: g \in G\right\}$ Only conjugacy classes with an eigenvalue +1 can lead to a non-trivial little group.

Scalar Potential \& Vacuum Alignment

- Characterization of Minima
- If there is a minimum, in which the symmetry generator $Q \in G$ is left unbroken, i.e. $Q\left\langle\Phi_{i}\right\rangle=\left\langle\phi_{i}\right\rangle$,there are degenerate minima $\left\langle\phi_{\mathrm{i}}^{\prime}\right\rangle=\mathrm{g}\left\langle\phi_{\mathrm{i}}^{\prime}\right\rangle$ that leave gQg^{-1} unbroken, with $\mathrm{g} \in \mathrm{G}$.
- The physically distinct minima are therefore characterized by the conjugacy class $G Q=\left\{\mathrm{gQg}^{-1}: g \in G\right\}$ Only conjugacy classes with an eigenvalue +1 can lead to a non-trivial little group.
- For 4_{1} there are 5 such classes

There are three physically distinct minima of ϕ_{1}, that preserve a Z_{2} subgroup:

- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T}$ results in the little group $\langle S\rangle$,
- $\left\langle\phi_{1}\right\rangle=(0, a, b, 0)^{T}$ in $\langle S Y\rangle$ and
- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(-a, b,-a, b)^{T}$ in $\langle S Y X\rangle$.

In addition, there is one preserving a Z_{3} subgroup:

- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, a, b)^{T}$ preserves $\langle T\rangle$ (as well as $\left.\left\langle T^{2}\right\rangle=\langle T\rangle\right)$.

Scalar Potential \& Vacuum Alignment

- Characterization of Minima
- If there is a minimum, in which the symmetry generator $Q \in G$ is left unbroken, i.e. $Q\left\langle\Phi_{i}\right\rangle=\left\langle\phi_{i}\right\rangle$,there are degenerate minima $\left\langle\phi_{\mathrm{i}}^{\prime}\right\rangle=\mathrm{g}\left\langle\Phi_{i}^{\prime}\right\rangle$ that leave gQg^{-1} unbroken, with $\mathrm{g} \in \mathrm{G}$.
- The physically distinct minima are therefore characterized by the conjugacy class $G Q=\left\{\mathrm{gQg}^{-1}: g \in G\right\}$ Only conjugacy classes with an eigenvalue +1 can lead to a non-trivial little group.
- For 4_{1} there are 5 such classes

There are three physically distinct minima of ϕ_{1}, that preserve a Z_{2} subgroup:

- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, b,-b)^{T}$ results in the little group $\langle S\rangle$,
- $\left\langle\phi_{1}\right\rangle=(0, a, b, 0)^{T}$ in $\langle S Y\rangle$ and
- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(-a, b,-a, b)^{T}$ in $\langle S Y X\rangle$.

$$
\begin{gathered}
\left\langle\left(\phi_{1} \phi_{2}\right) \underline{\mathbf{x}}_{\mathbf{1}}\right\rangle=\frac{1}{2}(b c-a d, 0,0)^{T} \\
\left\langle\left(\phi_{1} \phi_{2}\right)_{\boldsymbol{1}_{\mathbf{1}}}\right\rangle=\frac{1}{2}(a c+b d) \\
(\mathrm{a}, \mathrm{~b}) \text { replaced by }(c, \mathrm{~d}) \text { in } \Phi_{2}
\end{gathered}
$$

In addition, there is one preserving a Z_{3} subgroup:

- $\left\langle\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(a, a, a, b)^{T}$ preserves $\langle T\rangle$ (as well as $\left.\left\langle T^{2}\right\rangle=\langle T\rangle\right)$.

Scalar Potential \& Vacuum Alignment

Minimum Conditions

$$
\begin{array}{r}
a\left(\alpha_{+}\left(a^{2}+b^{2}\right)+\alpha_{-}\left(a^{2}-b^{2}\right)+\gamma_{+}\left(c^{2}+d^{2}\right)+\gamma_{-}\left(c^{2}-d^{2}\right)+U_{1}\right)+\Gamma b c d=0 \\
b\left(\alpha_{+}\left(a^{2}+b^{2}\right)-\alpha_{-}\left(a^{2}-b^{2}\right)+\gamma_{+}\left(c^{2}+d^{2}\right)-\gamma_{-}\left(c^{2}-d^{2}\right)+U_{1}\right)+\Gamma a c d=0 \\
c\left(\beta_{+}\left(c^{2}+d^{2}\right)+\beta_{-}\left(c^{2}-d^{2}\right)+\gamma_{+}\left(a^{2}+b^{2}\right)+\gamma_{-}\left(a^{2}-b^{2}\right)+U_{2}\right)+\Gamma a b d=0 \\
d\left(\beta_{+}\left(c^{2}+d^{2}\right)-\beta_{-}\left(c^{2}-d^{2}\right)+\gamma_{+}\left(a^{2}+b^{2}\right)-\gamma_{-}\left(a^{2}-b^{2}\right)+U_{2}\right)+\Gamma a b c=0 \\
v^{\prime}\left(4 \sqrt{3} \lambda_{1} v^{\prime 2}+3 \rho_{1} v^{\prime}+2 \mu_{3}^{2}+\zeta_{13}\left(a^{2}+b^{2}\right)+\zeta_{23}\left(c^{2}+d^{2}\right)\right)=0
\end{array}
$$

with

$$
\xi_{+}=\frac{\xi_{1}}{2}, \xi_{-}=\frac{\xi_{2}+\xi_{3}}{2 \sqrt{3}} \text { for } \xi=\alpha, \beta \quad \text { for }\langle\mathrm{S}\rangle, \text { similar relations for }\langle\mathrm{SY}\rangle, \quad U_{i}=\frac{1}{2}\left(\mu_{i}^{2}+\sqrt{3} \zeta_{i 3} v^{\prime 2}\right)
$$

$$
\gamma_{+}=\frac{\sqrt{3} \gamma_{1}+\gamma_{4}}{4 \sqrt{3}}, \quad \gamma_{-}=\frac{\gamma_{2}+\gamma_{3}}{4 \sqrt{3}} \quad \text { and } \Gamma=\frac{\gamma_{4}}{\sqrt{3}} \quad\langle S Y X\rangle
$$

- eleven minimization conditions reduce to these 5 equations for 5 VEVs there is therefore generally a solution
- note that e.g. $a=b=0$ or $c=d=0$ is also a solution, here the singlet and triplet contraction vanishes
- we have performed a numerical study to show that there is finite region of parameter space where 〈S〉 is the global minimum

Higher Order Corrections

- NLO Corrections to vacuum potential

$$
\begin{aligned}
V^{(5)}=\sum_{L, M=1}^{2} & \sum_{i, j=2}^{4} \frac{\delta_{i j}^{(L M)}}{\Lambda} \chi \cdot\left\{\left(\phi_{L} \phi_{L}\right) \underline{\mathbf{3}}_{\mathbf{i}} \cdot\left(\phi_{M} \phi_{M}\right)_{\underline{\mathbf{x}}_{\mathbf{j}}}\right\}_{\underline{\mathbf{B}}_{\mathbf{1}}}+ \\
& +\frac{\chi^{3}}{\Lambda}\left(\delta_{1}^{(3)} \chi^{2}+\delta_{2}^{(3)}\left(\phi_{1} \phi_{1}\right)_{\underline{1}_{\mathbf{1}}}+\delta_{3}^{(3)}\left(\phi_{2} \phi_{2}\right)_{\underline{1}_{\mathbf{1}}}\right)
\end{aligned}
$$

$$
\delta_{i j}^{(L M)}=0 \text { for } i \geq j
$$

- leads to shifts in VEVs

$$
\begin{aligned}
\langle\chi\rangle & =\left(v^{\prime}+\delta v_{1}^{\prime}, v^{\prime}+\delta v_{2}^{\prime}, v^{\prime}+\delta v_{2}^{\prime}\right)^{T} \\
\left\langle\phi_{1}\right\rangle & =\frac{1}{\sqrt{2}}\left(a+\delta a_{1}, a+\delta a_{2}, b+\delta a_{3},-b+\delta a_{4}\right)^{T} \\
\left\langle\phi_{2}\right\rangle & =\frac{1}{\sqrt{2}}\left(c+\delta b_{1}, c+\delta b_{2}, d+\delta b_{3},-d+\delta b_{4}\right)^{T}
\end{aligned}
$$

- generic size of shifts

$$
\begin{gathered}
\frac{\delta u}{u} \sim \frac{u}{\Lambda} \\
\left\langle\chi_{2}\right\rangle-\left\langle\chi_{3}\right\rangle=\mathcal{O}\left(1 / \Lambda^{2}\right)
\end{gathered}
$$

VEV alignment not destroyed!
generic size of shifts for scalar potential parameters of order one

Higher Order Corrections

- $\sin ^{2} \theta_{13} \approx .1$ as suggested by T2K can be accomodated at NLO
- or by introducing additional non-trivial singlet field $\xi \sim\left(1_{2}, i\right)$ [does not destroy VEV alignment]

UV Completion

For Seesaw UV completion, introduce fermionic singlets $N \sim\left(3_{1,-}\right)$, $S_{2 \sim}(42, i), S_{3 \sim}(43,-i)$:

$$
\mathcal{L}=x_{\ell N} \ell H N+x_{N 2} N S_{2} \phi_{1}+x_{N 3} N S_{3} \phi_{2}+m S_{2} S_{3}+x_{23} S_{2} S_{3} \chi+\text { h.c. },
$$

generates singlet masses (N):

$$
m_{N}=\frac{x_{N 2} x_{N 3}}{m}\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A & B \\
0 & B & A
\end{array}\right) \text { with } A=-2(a c+b d) \text { and } B=\mathrm{i} \sqrt{3}(b c-a d) \text {. }
$$

the light neutrino mass matrix $m_{\nu}=x_{\ell N}^{2} v^{2} m_{N}^{-1}$ is of TBM form

$$
U_{\nu}^{T} m_{\nu} U_{\nu}=\operatorname{diag}\left(\frac{1}{B+A}, \frac{1}{A}, \frac{1}{B-A}\right)
$$

Accidental degeneracy of m_{1} and m_{3} is lifted by introduction of additional S_{2} or S_{3}.

Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use

Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.

```
In[193]:= \chi = MBgetRepVector [Group, 4, \chic]
    L = MBgetRepVector [Group, 4, Lc]
Out[193]={{},{},{},{{\chic1,\chic2,\chic3}}}
Dut[194]={{},{},{},{{Lc1, Lc2, Lc3}}}
```


$\operatorname{In}[197]:=\operatorname{MBmultipl} \mathbf{Y}[$ Group,$\{x, x, x, L, L\}][[1]]$
Out[197] $=\left\{\left\{\left(\operatorname{Lc} 1^{2}+\operatorname{Lc} 2^{2}+\right.\right.\right.$ Lc $\left.\left.^{2}\right) \chi \mathrm{C} 1 \chi \mathrm{C} 2 \chi \mathrm{C} 3\right\}$,
$\left\{\frac{1}{3}(\operatorname{LC} 2 \operatorname{Lc} 3 \chi \mathrm{C} 1+\operatorname{LC} 1 \mathrm{Lc} 3 \times \mathrm{C} 2+\operatorname{LC} 1 \mathrm{Lc} 2 \chi \mathrm{C} 3)\left(\chi \mathrm{C} 1^{2}+\chi \mathrm{C} 2^{2}+\chi \mathrm{C} 3^{2}\right)\right\}$,
$\left\{\frac{\text { Lc } 1 \mathrm{Lc} 3 \chi \mathrm{C} 2 \chi \mathrm{C} 3^{2}+\mathrm{Lc} 2 \chi \mathrm{C} 1\left(\operatorname{Lc} 3 \chi \mathrm{C} 2^{2}+\mathrm{Lc} 1 \chi \mathrm{C} 1 \chi \mathrm{C} 3\right)}{\sqrt{3}}\right\}$,
$\left\{\frac{\operatorname{Lc} 2 \operatorname{Lc} 3 \chi \mathrm{C} 1 \chi \mathrm{C} 3^{2}+\operatorname{Lc} 1 \chi \mathrm{C} 2\left(\operatorname{Lc} 3 \chi \mathrm{C} 1^{2}+\operatorname{Lc} 2 \chi \mathrm{C} 2 \chi \mathrm{C} 3\right)}{\sqrt{3}}\right\}$,
$\left\{\frac{1}{6 \sqrt{3}}\left(\operatorname{Lc} 1 \operatorname{Lc} 3 \times \mathrm{C} 2\left(-(-3 i+\sqrt{3}) \times \mathrm{c} 1^{2}+2 \sqrt{3} \chi \mathrm{c} 2^{2}-(3 i+\sqrt{3}) \times \mathrm{c} 3^{2}\right)+\right.\right.$
Lc2 $\left(\operatorname{Lc} 1 \chi \mathrm{c} 3\left(-(3 i+\sqrt{3}) \chi \mathrm{c} 1^{2}-(-3 i+\sqrt{3}) \chi \mathrm{c}^{2}+2 \sqrt{3} \chi \mathrm{c} 3^{2}\right)+\right.$
Lc3 $\left.\left.\left.\chi \mathrm{c} 1\left(2 \sqrt{3} \times \mathrm{c} 1^{2}-(3 i+\sqrt{3}) \times \mathrm{c} 2^{2}-(-3 i+\sqrt{3}) \times \mathrm{c} 3^{2}\right)\right)\right)\right\}$,

Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.
- reduce set covariants to a smaller set of independent covariants
- calculate flavon potentials

Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.
- reduce set covariants to a smaller set of independent covariants
- calculate flavon potentials
- available at http://projects.hepforge.org/discrete/

Conclusions

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models
- We have identified the minimal set of symmetries needed to extend the smallest flavor groups $\left(A_{4}, T^{\prime}, S_{4}, \ldots\right)$

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models
- We have identified the minimal set of symmetries needed to extend the smallest flavor $\operatorname{groups}\left(A_{4}, T^{\prime}, S_{4}, \ldots\right)$
- We have presented a model based on Q8×A4, the smallest extension of A_{4}

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models
- We have identified the minimal set of symmetries needed to extend the smallest flavor $\operatorname{groups}\left(A_{4}, T^{\prime}, S_{4}, \ldots\right)$
- We have presented a model based on Q8×A4, the smallest extension of A_{4}
- vacuum alignment natural \Rightarrow TBM predicted at LO

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models
- We have identified the minimal set of symmetries needed to extend the smallest flavor $\operatorname{groups}\left(A_{4}, T^{\prime}, S_{4}, \ldots\right.$)
- We have presented a model based on Q8×A4, the smallest extension of A_{4}
- vacuum alignment natural \Rightarrow TBM predicted at LO
- low symmetry-breaking scale possible

Conclusions

- Group Extensions may be used to solve the vacuum alignment problem in flavor models
- We have identified the minimal set of symmetries needed to extend the smallest flavor $\operatorname{groups}\left(A_{4}, T^{\prime}, S_{4}, \ldots\right.$)
- We have presented a model based on Q8×A4, the smallest extension of A_{4}
- vacuum alignment natural \Rightarrow TBM predicted at LO
- low symmetry-breaking scale possible

