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Why Flavour Symmetry?

in SM(+Majorana neutrinos) there are a total of 28 Parameters

quarks

Gluogs

Higgs Boson

@ most of them stem from interactions with the Higgs field, other
interactions tightly constrained by symmetry principles

@ in quark sector: small mixing angles and hierarchical masses can be
explained by Frogatt-Nielsen symmeiry

@ in lepton sector: two large and one small mixing angle suggestive of
non-abelian discrete symmetry



Lepton mixing from discrete groups
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Candidate Groups

A(27) = (Z3 x Z3) X Z3

T = 75 A4

[Merle,Zwicky 1110.4891]


http://arxiv.org/abs/1110.4891
http://arxiv.org/abs/1110.4891

A, Symmetry Group
A4 is the smallest symmetry group that can lead to TBM mixing:

Ay 2 (Zy Xla). N Z3 = (S7INS8ET" — (ST)* =

1-d reps.
correspond to
reps. of Z3

W = ei2m/3

(a1b1 + a2bs + asbs)

(a1b1 B2 oD wagbg) E (a,1bl + wagby + w2agbg)

azb; + a1b3
a1ba + a2b;

aszb; — a1bs

asbz — azbs ) 1 azbs + azbo

where (a,l, as, a3), (bl, bg, b3) ~ §
albg A a2b1



An A, Prototype model

o (A4Zs) charge assignments: |~ (3,i), et~ (Li—i), e~ (12-i), 2~ (L3-i) ,x~(3,1),
¢~(31-1)1 5"'(1/-1)

@ auxiliary Z, separates neu’rral and charged lep’ron sectors at LO

L3= <T> | Lo= <S>

[e.g. Ma,Rajasekaran'01, Babu, Ma, Valle ‘03,

VClC uum a l i g nmen 'I' cruc i a l ! Altarelli Feruglio, ‘05,06 ]
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@ SSB: Minimum Energy State exhibits less symmetry than full Lagrangian

@ Most straightforward case: scalar potential in 4D DOES NOT work:

Vo = i (01, b Ol Ooda, £ 286005, Oaa,
has minima (1,1,1) and (1,0,0). Effect of breaking to Z; in another sector can be included
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- ) - o V_ Sl i.e. all non-trivial contractions
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0 Of sy in the potential.
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@ Breaking fo the same subgroup of A; can be realized. The non-trivial couplings,
i.e. (P ®)3(yy)s thus force breaking of group to the same subgroup.

@ the couplings cannot be forbidden by an internal symmetry that commutes with
As, as e.g.(®T ®)s is invariant under the commuting symmetry.
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In models with extra dimensions(ED), it is possible
to locate the various fields at different locations in
the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005
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In models with extra dimensions(ED), it is possible
to locate the various fields at different locations in
the ED, thereby forbidding the cross-couplings.
4
. ¢ J
p needs high flavour scale, hard fo test
7 RN X e LRGSR AR S R0 ST
R-symmetry and additional fields with R- |
i:arge 2(dri;/ing:r]. ﬁleldsl). Iheselﬁeldz ell'llfer I
e superpotential only linearly and allow U1
AP | U(1)= | 0 | 0 (00 2 2 ]2
N Altarelli, Feruglio 2006

- D
Babu and Gabriel(2010) proposed the flavour group (Ss)*XA4, which has the properties

@ leptons transform only under A4 subgroup

o if one takes ®~16, vacuum alignment possible as V=V(®)+V(y)+(® ®)(yx)

@ neutrino masses then generated by coupling to {®*) ~(1,0,0)
¥ b
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e D
In models with extra dimensions(ED), it is possible
to locate the various fields at different locations in
the ED, thereby forbidding the cross-couplings.
e
N ¢ 5
p needs high flavour scale, hard fo test
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the vacuum alignment. : :
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Model is fine-tuned/needs special UV completion: ) G
: T . : | the properties

different mass entries in neutrino mass matrix stem

from operators of very different mass dimensions

(1)3P4+(ll)

@ leptons t

o if one ta 1yl

® non-minimal(size: 15552), needs large
representations
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Scan for Small Groups

@ using the computer algebra system GAP and its SmallGroups catalogue, we have
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Scan for Small Groups

@ using the computer algebra system GAP and its SmallGroups catalogue, we have

checked all groups with size smaller than 1000 (11,758,814 groups) and we have
found a number of candidates:

® no candidates for T7 or A(27),

] Quotient Group H Structure Description
maybe because here 3 is complex B i 7022 % Ay)
and there are more couplings that 144 127 Z5.(As4 X S3)

: 9N s | Z(Ds x Ay)
have fo be TR 7
number of possible extensions) 144
| 192
A % (Z x As) 5 7
@ all candidates in list have non- 192 Z5.(Z2 X Sa)
trivial centre(=element that commute with 192 22:((Z5 % Zs) % Z2)

192 1007 72.(Z2 x Ay)

all other elements), not necessary true

for all groups(see e.g. (Ss)*xA, studied in
Babu/Gabriel 2010)




Smallest Group

The smallest candidate group that contains A; as a subgroup

is the semidirect product of the quaternion group Qs S, ®
(XREICT — 1, Nl Sideas " — X T
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The smallest candidate group that contains A; as a subgroup
is the semidirect product of the quaternion group Qs S, ®
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with Ay e O
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defined by the additional relations (& the homomorphism @:H—Aut(N) introduced earlier)
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The model

particle SU(3). . SU(2); TSl Qs X Ay Z4
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The model ) = (v

particle SU(3) . SU2) p i Qs X Ay Z4
( 1 2 1/2 5% i
e 1 1 1 1 qsietlioy il AR
H 1 2 1/2 14

X 1 1 0 31

P1 1 1 0 41

o ] 1 0 44 3

LO charged lepton masses:
L5 = ye(€x)1 : e“H /A + v, (Lx) 1, uCH /A + y, (6x) 1, T°H/A +h.c.,
LO neutral lepton masses: '

L) = o (CHIH)y ($162)1 /A wa(CHE)g, - (9162)3, /A° +hc. |




The model () = (', 0, 0)7,

particle SU(3) . SU2) p i Qs X Ay Z4
( 1 2 i 34 i
e® 1 1 1 1 qsietlioy il AR
H 1 2 1/2 14

X 1 1 0 31

P1 1 1 0 41

b 1 1 0 44 3

LO charged lepton masses:
LB = ye(ﬁx)ll e“H /A + yﬂ(éx)lg,ucﬁ//\ i yr(fx)l2’rcﬁ/A + h.c.,
LO neutral lepton masses:

L) = zo(CHLH)y | (91621 /A +za(CHUH)g - ($162)3 /A3+hc

-

@ additional 4, necessary to ge’r correct symmetry breaking (otherwise only
breaking to As)

@ same # of d.o.f. as in case of complex triplet and singlef, no additional driving
fields necessary

@ low flavour symmetry breaking scale possible, testable




Scalar Potential & Vacuum Alignment

The most general scalar potential invariant under the flavour symmetry is given by

(X7 ¢1 ¢2) ( ) e V¢<¢17 ¢2) 3 leX(Xa (rbl ¢2)

with
Vo(@1, 62) =p1(6161)1, +aa(dr1d1)], + 2233 ai(9161)3. - (#1013,
; +13($262)1, +Bi(Pad)], + 2233 Bild202)3, - ($202)3,
i +71(6161)1, ($202)1, + ;4% b161)3. - ($262)3.
Ve (X) = p5(xx) 1, T A1, + A1(><><)2l1 + A2 (0x)1,, (XX) lg

I_Vrmx(x, b1, 92) = Gal(drdn)1, ()1, + Gas(@292)1, (001, G

@ Potential has an accidental symmetry [(Qs X As) X As] X Z4

@ invariant under independent transformations of ® and y

@ note that couplings such as X (¢1¢2)§1 are forbidden by the auxiliary Z,
symmetry that separates the charged and neuftral lepton sectors
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@ The physically distinct minima are therefore characterized by
the conjugacy class G Q={ gQg™: geG} Only conjugacy classes
with an eigenvalue +1 can lead to a non-trivial little group.



Scalar Potential & Vacuum Alignment

® Characterization of Minima

@ If there is a minimum, in which the symmetry generator QeG is
left unbroken, i.e. Q (®) = (P} ,there are degenerate

minima {®%) =g (%) that leave gQg ! unbroken, with geG.

@ The physically distinct minima are therefore characterized by
the conjugacy class G Q={ gQg™: geG} Only conjugacy classes
with an eigenvalue +1 can lead to a non-trivial little group.

@ For 4 there are 5 such classes
There are three physically distinct minima of ¢, that preserve a Z5 sub-

group:
o (P1) = %(a, a,b,—b)’ results in the little group (S),
e (¢1) = (0,a,b,0)! in (SY) and
o (1) = \%(—a, b,—a,b)! in (SYX) .

In addition, there is one preserving a Z3 subgroup:

o (¢1) = \%(a,a,a,b)T preserves (T') (as well as (T?) = (T)).



Scalar Potential & Vacuum Alignment

® Characterization of Minima

@ If there is a minimum, in which the symmetry generator QeG is
left unbroken, i.e. Q (®) = (P} ,there are degenerate

minima {®%) =g (%) that leave gQg ! unbroken, with geG.

@ The physically distinct minima are therefore characterized by
the conjugacy class G Q={ gQg™: geG} Only conjugacy classes
with an eigenvalue +1 can lead to a non-trivial little group.

@ For 4 there are 5 such classes
There are three physically distinct minima of ¢, that preserve a Z5 sub-

group:
o (¢1) = %(a,a,b, —b)? results in the little group (S), <<¢1¢2)§1> il %(bc — ad, 0, O)T
e (¢1) =(0,a,b,0)" in (SY) and T
=—> ((6162)1,) = S(ac+bd)

o (¢1) = L(_a’ b, —a,b)T BRI B
9§ 075 (a,b) replaced by (c,d) in

In addition, there is one preserving a Z3 subgroup:

o (¢1) = \%(a,a,a,b)T preserves (T') (as well as (T?) = (T)).



Scalar Potential & Vacuum Alignment

(= )
Minimum Conditions
a (oz+ (a2 + b2) 0’ (a2 = b2) e (c = d2) == gt (02 d2) “= Ul) + I'bed = 0
b (Oé_|_ (a2 -+ b2) — o (a2 — b2) s Yol (c + d2) A (02 d2) + Ul) + T'acd =0
c (6+ (02 + d2) + B= (02 - d2) el (a = 62) o) (a2 = b2) s Ug) + T'abd = 0
d (ﬁJr (02 -+ dz) — B_ (02 — d2) vy (a + b2) oA (a2 — b2) + Ug) + I'abc =0
v’ (4\/§Alv’2 3oyl 2 e R hE Y o (e d2)) =
\_ J
i oo all o g;j;és for £ = a, B for (S) , similar relations for {(SY) , Us =8 %(“z + V3Gis v/ )
Ny = \/_47\1/-_F’Y47 Y= 724\}%3 and T = % (sYX)

@ eleven minimization conditions reduce to these 5 equations for 5
VEVs there is therefore generally a solution

@ note that e.qg. a=b=0 or c=d=0 is also a solution, here the singlet and
triplet contraction vanishes

@ we have performed a numerical study to show that there is finite
region of parameter space where (S) is the global minimum



Higher Order Corrections

@ NLO Corrections to vacuum potential

1 5(LM)
o Y Y w {ququ) (¢M¢M)3.} -
L . M—dsg.7=2 J §]_
3
+20 (80732 + 08 (81011, + 057 (620)1, ) o =0fori 2

® leads to shifts in VEVs

(x) = (V' + vy, v + 6vh, v’ + dvh),
1
(1) = 72

1
75 (e 8b1, ¢+ 8o, d 4 O, —d + oba)"

@ generic size of shifts

ou

L
U A

(x2) — (x3) = O(1/A?)

(a + dai,a+ das, b+ daz, —b + 5a4)T,

(p2) =

; generic size of shifts for scalar potential
VEV allgnmen’r not desfroyed! parameters of order one



Higher Order Corrections

sin’(6,3)
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Sinz( 012)

(b) sin® 62 vs. sin® O3
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-
=
S
~

=
L
g

sin?( 60y3)

0.05 0.10

sin:(ﬂn) maxul/A

C sin2 013 VS. Sil'l2 023 d) Siﬂz 013 vs, maxjuj
A

@ sin°Oi3=.1 as suggested by T2K can be accomodated at NLO

@ or by introducing additional non-trivial singlet field & ~ (12,i)[does not
destroy VEV alignment] [Lin'10, Shimizu, Tanimoto, Watanabe*11,Luhn,King'11]



UV Completion

For Seesaw UV completion, introduce fermionic singlets N~ (31,-i), Sa~ (42,i), S3~ (43,-i):

L =x/yNlHN + zNaNS291 + xn3NS3@2 + mSaS3 + 1235253x + h.c.

generates singlet masses (N):

A 0 O
my = 2N AT\ ( 0 A B ) with A= —2(ac+bd) and B =iv3(bc—ad).
0 B A

the light neutrino mass matrix ™M = Ziyv my is of TBM form

1 1 1

T ;
v I/:d PP
U =it 1ag(B+A 1 B—A)

Accidental degeneracy of m; and ms is lifted by introduction of additional Sz or Ss.



Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

Initialization

In[8):= Needs["Discrete ModelBuildingTools™ "];

In[11]:~ Group = MBloadGAPGroup ["AlternatingGroup(4)"];

starting GAP generating AlternatingGroup(4)...
...finished

StructureDescription:A4
Size of Group:12
Number of irreps: 4

Dimensions of irreps:
1 2 3 4

1 1 1 3

Character Table:
1 1 1

2157
1 1 ¢ 2

2157
1 e 3

1 0




Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation etc.

In[193]:~ X = MBgetRepVector [Group, 4, xc] ]
L = MBgetRepVector [Group,, 4,, Lc) n[195]:~ MBmultiply[Group, x, L]

Out[195] {{{w -

— P
44

put(193]= {{}, {}, {}, {{xcl, xc2, xc3}}} V3

1 | g fr— 19
—{2VY3 Lelxel - (3i+V3 | Le2 x€2 - {-31i4+V3 | Le3 '\C3' .
put(1943= {{}, {}, {}, [{Lel, Lc2, Le3}}} {{s ~- XCL =334V 3 JLe2XxCe - (=31 +N 3 13 XC3) 110

1, - -
{{g (24/3 Leixel - (-31+3/3 ) Le2xe2 - (3143 Le3 xe3) }},

in[197]:~ MBmultiply [Group, {Xx, X, X, L, L}] [[1]] [{Le3 xc2, Lel xe3, Le2 xel}, {Le2 xe3, Le3 xel, Lel xc2 )

Out[197]= {{ (Le1? + Le2? + Le3?) xel xe2 xe3},
(Le2 Le3 xel + Lel Led xe2 + Lel Le2 xe3) (xel? + xe2? + xe3?)
Lcl Le3 xc2 xc3? + Le2 xcl (Le3 xc2? + Lel xcl xe3) |
Lc2 Le3 xcl xe3? + Lel /cz (Le3 xcl? + Le2 xc2 xc3)

‘.‘1'3
——{LelLe3 xe2 (- {-31++3 ) xc1? + 23 xc2? - (3143 ) xe3?) +

(5
{
{—_
(=

LC2 (Lelxed (- (3143 | xel® - (-31+ /3 ) xe2® + 23 xe3?)
Le3 xel (23 xe1? - (31443 ) xc2? - (-31 43 xe3?)))},




Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want fo use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation efc.

@ reduce set covariants to a smaller set of independent covariants

@ calculate flavon potentials

In[200]):~ MBgetFlavonPotential [Group, x, 4, 2]

a2nl (xcl? + xc2? + xc3?)
Out[200)= A3nlxyclxc2xc3 + —— — o 4 [see also SUtree, Merle

V3
Zwicky]

) 1 ) y 21 1
adnl (xel® + xc2® + xc3%) + 3 A4n2 (xc2® xc3* + xel?® (xc2® + xc3%) )



Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation etc.

@ reduce set covariants to a smaller set of independent covariants
@ calculate flavon potentials

@ available at http://projects.hepforge.org/discrete/
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