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Why Flavour Symmetry?
in SM(+Majorana neutrinos) there are a total of 28 Parameters
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most of them stem from interactions with the Higgs field, other 
interactions tightly constrained by symmetry principles 

in quark sector: small mixing angles and hierarchical masses can be 
explained by Frogatt-Nielsen symmetry

in lepton sector: two large and one small mixing angle suggestive of 
non-abelian discrete symmetry



Lepton mixing from discrete groups

complete flavour group
residual symmetry of (me+me)  residual symmetry of mν

(most general choice if mixing angles do not depend on 
masses & Majorana νs)

(smallest choice, but can also be continuous)
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„tri-bimaximal 
mixing“(TBM) gives 

good LO description of 
lepton mixing

misaligned non-communting 
symmetries lead to

[He, Keum, Volkas ‘06; 
Lam’07,‘08; 
Altarelli,Feruglio‘05]
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Figure 2: The subgroup tree of the crystallographic groups. Note this is only a partial tree.
The entire tree, within our database, is shown in Fig. 5.

In the table, we have used:
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where “cy.” stands for cyclic permutations in the variables x, y, and z. Let us add that
the Molien function for ⌃(216�) di↵ers from the one in [18], but it is the same as in [46],
where the ones for ⌃(360�) and ⌃(168) were also presented. The reader should be able
to find invariants of higher degrees that achieve the same. A subtle point to be stressed is
that not all subgroups relations are apparent from the generators as given in Tab. 1. Thus,
when comparing invariants or checking their invariance with respect to supergroups, one
has to account for this fact by similarity transformations, c.f. App. B.2, as we did for the
case ⌃(36�) ⇢ ⌃(360�) as described in an earlier footnote in this section.
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[Merle,Zwicky 1110.4891]

Candidate Groups

�(27) ⇠= (Z3 ⇥ Z3)o Z3

T7
⇠= Z7 o Z3

T 0 ⇠= Z2.A4

S4
⇠= (Z2 ⇥ Z2)o S3

A4
⇠= (Z2 ⇥ Z2)o Z3

http://arxiv.org/abs/1110.4891
http://arxiv.org/abs/1110.4891


A4 Symmetry Group
A4 is the smallest symmetry group that can lead to TBM mixing:

A4
⇠= (Z2 ⇥ Z2)o Z3

⇠= hS, T |S2 = T 3 = (ST )3 = 1i
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Table 4: Relevant Representations of Q
8

oA
4

in some basis. The first 4 representations are

the unfaithful A
4

representations the leptons are assigned to (therefore X = Y = ). The

last representation is used to break A
4

in the neutrino sector. Note that this representation

is double valued, i.e. X2 = Y 2 = � . Here ! = ei2⇡/3.

The relevant operators for the generation of the lepton masses are `�f c with f being e, µ

or ⌧ as well as `H`H and `H`H�4 for neutrino masses 19.

Unfortunately, the most general VEV configurations � ⇠ (a, a, b,�b) that break the group

to the Z
2

subgroup generated by S cannot be realised in the flavon potential20
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The achievable VEV configurations with a2 = b2 or ab = 0 lead to a restoration of symme-

try in the operator (``)
3

1

�
�4

�
3

1

that generates the (``)
3

1

entry in the mass matrix and

consequently it vanishes in the vacuum, h��4

�
3

1

i ⇠ ab(a2 � b2)21.

This type of model is also not so interesting from a general point of view, as it shares

a couple of unpleasant features with the model of Babu and Gabriel[21] when viewed as an

e↵ective field theory:

• the o↵-diagonal entries in the neutrino mass matrix, generated by (`H`H�4), would be

of very di↵erent order than the diagonal ones generated by the operator (`H`H). To

satisfy neutrino data, the two entries have to be of almost the same size, though.
19Here we again assume the discrete Z

2

symmetry � ! ��, fc ! �fc to separate the charged from the

neutral fermion sector.
20The operator (��)34

· (��)34
, which one would naively expect, can be expressed as a linear combination

of the other operators.
21If one introduces a soft-breaking term that conserves the Z

2

subgroup generated by S, VS = ↵ (�
1

�
2

+ �
3

�
4

)

in the potential, the minimum with a 6= b can then be realised. We do not pursue this option further here, as

we are interested in genuine spontaneous symmetry breaking.
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(a) Character Table
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Table 1: Character table of A
4

as well as matrix representation of generators in 3. Here

! = ei2⇡/3.

2 VEV Alignment in A
4

Revisited

In this section, we want to remind the reader about the di�culties one encounters when

minimising flavon potentials [16; 17]. Here we focus on the problem one faces in the most

straightforward case – namely the case of a nonsupersymmetric scalar potential. The case of

softly-broken supersymmetry is included in this analysis as SUSY only further restricts the

dimensionless couplings of the potential while care has to be taken not to have flat directions

in the cubic superpotential. We will come back to the SUSY case in sec. 7.

For simplicity, we consider A
4

, the symmetry group of the tetrahedron, which is the

smallest discrete group with a three dimensional irreducible representation. It is presented by⌦
S, T |S2 = T 3 = (ST )3 = 1

↵
. As we have discussed in the introduction, tri-bimaximal mixing

is generated by breaking this group to its subgroups generated by S and T in the neutrino

and charged lepton sectors, respectively. The character table and the representation matrices

for the three dimensional representation are given in Table 1.

Let us look at the potential4
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of a real scalar triplet � of A
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that couples to charged leptons via the operators `H̃f c�/⇤ and

should therefore acquire a VEV h�i = (v0, v0, v0)T conserving the Z
3

subgroup generated by

T. The symmetry breaking of A
4

to hSi ⇠= Z
2

(which might or might not be due to the VEV

of another triplet � in the neutrino sector with h�i = (w, 0, 0)T ), will lead to the following

soft terms in the potential:

Vsoft,Z
2

= m2

A�
2

1

+m2

B�
2

2

+m2

C�2

�
3

(3)

The minimisation conditions of the full potential V = V� + Vsoft,Z
2

evaluated at the desired

4Here, we have assumed a discrete symmetry (� ! ��, fc ! �fc, with f = e, µ, ⌧) that separates the

charged lepton from the neutrino sector, as it is common practice. The operator (��)31
· (��)31

, which one

would naively expect, can be expressed as a linear combination of the other operators.

5

1-d reps. 
correspond to 
reps. of Z3

3⇥ 3 = 11 + 12 + 13 + 3S + 3A

on the same order, which is not the case in their model.

Finally, it might be worthwhile to look into other extensions of flavour groups used in the

lepton sector to address for example the quark sector. One prominent existing example is

the extension of A
4

to T 0, which enables to describe the lepton and quark flavour structure

simultaneously. We expect that our approach described in sec. 3 will be a useful tool for

model building in this direction.
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A Clebsch-Gordan Coe�cients

In this section, we present the Clebsch-Gordan coe�cients, which are relevant for the discus-

sion.

A.1 A4

The only non-trivial Kronecker product of A
4

is given by
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3

+ 3S + 3A , (45)

where the indices S and A indicate whether the representation is in the symmetric or an-

tisymmetric part, respectively. The corresponding Clebsch-Gordan coe�cients, which have

been computed using [40], are
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An A4 Prototype model
(A4,Z4) charge assignments: l∼ (3,i), ec∼ (11,-i), 𝜇c∼ (12,-i), 𝜏c∼ (13,-i) ,𝜒∼(3,1), 
Φ∼(3,-1), 𝜉∼(1,-1)

auxiliary Z4 separates neutral and charged lepton sectors at LO

A4〈𝜒〉∼(1,1,1) 〈Φ〉∼(1,0,0)

Z3=〈T〉 Z2=〈S〉

(ll)3Φ+(ll)1𝜉(L𝜒)ec
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H⇤, and the neutrino masses are generated from the e↵ective interactions
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The notation should be self-explanatory and the relevant Kronecker products are given in

appendix A. We will show in the next section that the vacuum configuration
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and it is of course non-unique as there are many more physically identical patterns that can

be obtained by acting with the group generators on this vacuum. This VEV configuration

breaks the flavour symmetry to the Z
2

subgroup generated by S. There are also physically

inequivalent minima of the potential that break to the Z
2

subgroups generated by SY and

SY X which lead to the same structure h(�
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i / (1, 0, 0)T . We will comment on this

more in sec. 4.3.
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4

models[16] and it is well-known that the mod-

erate tuning |ã| ⇠ |d̃| is needed in order to accommodate the correct neutrino spectrum[27].

However, in the usual A
4

models the contributions to ã and d̃ stem from completely di↵erent

VEVs, while in our model both stem from VEVs of the same fields, and a similar order of

magnitude might therefore be considered more natural. Indeed, in the numerical minimisation

of the potential, we found a tendency for a similar size of the two � contractions.

22The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual

way.
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0 ã d̃

0 d̃ ã

1

CA , (19)

with

ã = xa
1

2
(ac+ bd), d̃ = xd

1

2
(bc� ad) and hHi =

 
0

v/
p
2

!
. (20)

The mass matrices can be diagonalized by

U
0

=
1p
3

0

B@
1 1 1

1 ! !2

1 !2 !

1

CA , U⌫ =

0

B@
0 1 0
1p
2

0 � ip
2

1p
2

0 ip
2

1

CA (21)

such that U †
0

Me = v0vp
2⇤

diag(ye, yµ, y⌧ ) 22, UT
⌫ M⌫U⌫ = v2

2

p
3⇤

3

diag(ã + d̃, ã,�ã + d̃) and the

resulting mixing matrix UMNS = U †
0

U⌫ is given by the HPS matrix (1). This construction is

of course completely analogous to the usual A
4

models[16] and it is well-known that the mod-

erate tuning |ã| ⇠ |d̃| is needed in order to accommodate the correct neutrino spectrum[27].

However, in the usual A
4

models the contributions to ã and d̃ stem from completely di↵erent

VEVs, while in our model both stem from VEVs of the same fields, and a similar order of

magnitude might therefore be considered more natural. Indeed, in the numerical minimisation

of the potential, we found a tendency for a similar size of the two � contractions.

22The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual

way.
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me∼ m𝜈∼TBM

Vacuum alignment crucial!
(Z2xZ2  symmetry accidental)

[e.g. Ma,Rajasekaran’01, Babu, Ma, Valle ’03, 
Altarelli,Feruglio, ’05,’06]
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i.e. all non-trivial contractions 
between Φ and 𝜒 have to vanish 
in the potential.

Breaking to the same subgroup of A4 can be realized. The non-trivial couplings, 
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Scan for Small Groups
using the computer algebra system GAP and its SmallGroups catalogue, we have 
checked all groups with size smaller than 1000 (11,758,814 groups) and we have 
found a number of candidates:

Subgroup H Order of G GAP Structure Description Z(G)

A
4

96 204 Q
8

oA
4

Z
2

288 860 T 0
oA

4

Z
2

384 617, 20123 ((Z
2

⇥Q
8

)o Z
2

)oA
4

Z
2

576 8273 (Z
2

.S
4

)oA
4

Z
2

768
1083945 (Z

4

.Z2

4

)oA
4

Z
4

1085279 ((Z
2

⇥Q
16

)o Z
2

)oA
4

Z
2

S
4

192 1494 Q
8

o S
4

Z
2

384
18133, 20092 (Z

2

⇥Q
8

)o S
4

Z
2

20096 ((Z
4

⇥ Z
2

)o Z
2

)o S
4

Z
4

576
8282 T 0

o S
4

Z
2

8480 (Z
3

⇥Q
8

)o S
4

Z
6

768 1086052, 1086053 ((Z
2

⇥Q
8

)o Z
2

)o S
4

Z
2

960 11114 (Z
5

⇥Q
8

)o S
4

Z
10

T 0

192 1022 Q
8

o T 0 Z2

2

648 533 �(27)o T 0 Z
3

768 1083573, 1085187 ((Z
2

⇥Q
8

)o Z
2

)o T 0 Z2

2

Table 2: Candidate groups G up to order 1000 that may be written as non-trivial semidirect

products G = N oH for the groups H = A
4

, T
7

, S
4

, T 0, �(27) and that lead to an enhanced

symmetry in the scalar potential making the correct vacuum alignment possible. No such

groups were found for H = T
7

, �(27). Details of the groups may be accessed using the

computer algebra system GAP by using the command SmallGroup(Order,GAP). Q
8

denotes

the quaternion group, which is defined in sec. 4 and the generalized quaternion group of order

16, Q
16

, is defined by Q
16

=
⌦
x, y|x8 = 1, x2 = y4, y�1xy = y�1

↵
. The expression of the form

N.H is the GAP notation of a central extension, i.e. N is a normal subgroup of G, which is

contained in the centre of G, and H is the quotient group G/N ⇠= H. Note that there can be

more than one semidirect product of N by H.

the scalar potential. This might be related to the fact that these groups have complex three-

dimensional representations, and there are more couplings that would have to be forbidden

by the additional symmetries than in the case of H = A
4

, T 0 and S
4

, which have real three

dimensional representations. Additionally, there are simply less groups up to order 1000,

which can be considered as an extension of T
7

or �(27) compared to the other groups.

Looking at the list of candidate groups, we further note that the normal subgroup N

is non-abelian for all our candidate groups. In addition, the defining homomorphism 12 of

each semidirect product is injective for H = A
4

, S
4

13 and in case of H = T 0, each group

N o T 0 allows for a defining homomorphism with image A
4

or T 0. The quaternion group Q
8

,

which frequently appears in Tab. 2, is the smallest non-abelian group allowing for a defining

12Equivalently to the previous definition, a semidirect product N oH can be defined via a homomorphism

' : H ! Aut(N), where Aut(N) denotes the group of all automorphisms of N , i.e. the isomorphisms N ! N .

The defining homomorphism is sometimes indicated as index of o, i.e. N o' H.
13The same applies for the wreath product S4

3

oA
4

introduced by Babu and Gabriel [21].

9

no candidates for T7 or Δ(27), 
maybe because here 3 is complex 
and there are more couplings that 
have to be forbidden (also smaller 
number of possible extensions)

all candidates in list have non-
trivial centre(=element that commute with 
all other elements), not necessary true 
for all groups(see e.g. (S3)4⋊A4 studied in 
Babu/Gabriel 2010)

Groups of the Structure G ⋍N⋊H, H is 
subgroup of G
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Table 3: Candidate groupsG up to order 200, which can not be written as semidirect product.

The expression of the form N.H in the last column is the GAP notation of a central extension,

i.e. N is a normal subgroup of G, which is contained in the centre of G, and H is the quotient

group G/N ⇠= H. Here, we explicitly choose N = Z(G) and therefore N.H = Z(G).G/Z(G).

The candidate groups of order 200-500 can be found in Tab. 8.

Hence, as soon as there is a surjective homomorphism ⇠ : G ! H, there are representations

⇢i with the desired property. Therefore, is it enough to look for groups G and a surjective

homomorphism ⇠ : G ! H. This automatically implies the existence of a normal subgroup

N = ker ⇠ and a quotient group G/N ⇠= H. Thus, we are only dropping the condition that

H is a subgroup of G. Actually, this type of extension is a general problem in group theory,

which aims to find all possible groups G given two groups N and H, such that G/N ⇠= H. In

the mathematical literature, this is denoted by short exact sequence. One example of such an

extension is T 0. A
4

is not a subgroup of T 0, but A
4

⇠= T 0/Z
2

. In T 0 models [14], the flavour

structure of the lepton sector is essentially described by the quotient group T 0/Z
2

⇠= A
4

and the additional group structure, i.e. the two dimensional representations 2

i

, are used to

describe the quark sector. Hence, group extensions of the kind we described are not limited

to the VEV alignment, but can be used more generally to lift properties of one group H

to a larger group G, which addresses additional questions in flavour physics. Therefore, we

propose to use these kind of constructions more systematically.

In this article, however, we are mainly interested in a solution to the vacuum alignment

problem, and therefore, we do not consider these other possibilities further, but perform

another scan looking for groups solving the vacuum alignment problem and we relaxed the

first condition of the previous scan to

1. G/N ⇠= H with H being one of the groups A
4

, T
7

, T 0 18, S
4

, �(27),

while keeping the other conditions. It turns out that there are only candidates for A
4

, T 0 and

S
4

up to order 1000. We collect all candidates up to order 200, which are not contained in

18We included T 0 in this scan, although T 0 is an extension of A
4

via T 0/Z
2

⇠= A
4

. However, the second

condition excludes several candidates for T 0, because the Z
2

in T 0/Z
2

⇠= A
4

is a subgroup of the N in the

second condition.
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Groups for which H is not a subgroup of G



Smallest Group
The smallest candidate group that contains A4 as a subgroup 
is the semidirect product of the quaternion group Q8

⌦
X,Y |X4 = 1, X2 = Y 2, Y �1XY = X�1

↵

with A4 ⌦
S, T |S2 = T 3 = (ST )3 = 1

↵

defined by the additional relations (⇔ the homomorphism 𝜑:H→Aut(N) introduced earlier)

SXS�1 = X, SY S�1 = Y �1, TXT�1 = Y X, TY T�1 = X .

Representations: 1 T SY X SY Y 2 T 2 TY S SX X STY T

11 1 1 1 1 1 1 1 1 1 1 1
12 1 ! 1 1 1 !2 ! 1 1 1 !2

13 1 !2 1 1 1 ! !2 1 1 1 !
31 3 . -1 -1 3 . . -1 -1 3 .
32 3 . 3 -1 3 . . -1 -1 -1 .
33 3 . -1 3 3 . . -1 -1 -1 .
34 3 . -1 -1 3 . . 3 -1 -1 .
35 3 . -1 -1 3 . . -1 3 -1 .
41 4 1 . . -4 1 -1 . . . -1
42 4 !2 . . -4 ! -!2 . . . -!
43 4 ! . . -4 !2 -! . . . -!2

unfaithful A4 reps 
for leptons, 𝜒

faithful rep for Φ

X2

1

X

X3

YX3 YX2

Y YX
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↵
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↵
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Representations:

X2

1

X

X3

YX3 YX2

Y YX

A4 reps

3i ⇥ 3i = 11 + 12 + 13 + 3iS + 3iA

3i ⇥ 3j =
5X

k=1
k 6=i,j

3k (i 6= j)

3i ⇥ 4j = 41 + 42 + 43

41 ⇥ 41 = 11S + 31A + 32S + 33S + 34S + 35A

41 ⇥ 42 = 12S + 31A + 32S + 33S + 34S + 35A

S T X Y

11 1 1 1 1

12 1 ! 1 1

13 1 !2 1 1

31

0

@
1 0 0
0 �1 0
0 0 �1

1

A

0

@
0 1 0
0 0 1
1 0 0

1

A

0

@
1 0 0
0 1 0
0 0 1

1

A

0

@
1 0 0
0 1 0
0 0 1

1

A

41

0

BB@

0 1 0 0
1 0 0 0
0 0 0 �1
0 0 �1 0

1

CCA

0

BB@

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

1

CCA

0

BB@

0 0 �1 0
0 0 0 1
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faithful representation Φ is what 
we were looking for.

(Φ Φ) only contains non-trivial 
contraction of the A4 subgroup.
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ec + µc + ⌧ c 1 1 1 11 + 12 + 13 �i
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1p
2
(a, a, b,�b)T ,

h�2i =
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VEVs:

h(�1�2)31
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2
(bc� ad, 0, 0)T
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with H̃ = i�
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H⇤, and the neutrino masses are generated from the e↵ective interactions
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The notation should be self-explanatory and the relevant Kronecker products are given in

appendix A. We will show in the next section that the vacuum configuration

h�i = (v0, v0, v0)T , h�
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i = 1p
2
(a, a, b,�b)T , h�
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i = 1p
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and it is of course non-unique as there are many more physically identical patterns that can

be obtained by acting with the group generators on this vacuum. This VEV configuration

breaks the flavour symmetry to the Z
2

subgroup generated by S. There are also physically

inequivalent minima of the potential that break to the Z
2

subgroups generated by SY and

SY X which lead to the same structure h(�
1

�
2

)
3

1

i / (1, 0, 0)T . We will comment on this

more in sec. 4.3.

The leading-order mass matrices are given by
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=
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resulting mixing matrix UMNS = U †
0

U⌫ is given by the HPS matrix (1). This construction is

of course completely analogous to the usual A
4

models[16] and it is well-known that the mod-

erate tuning |ã| ⇠ |d̃| is needed in order to accommodate the correct neutrino spectrum[27].

However, in the usual A
4

models the contributions to ã and d̃ stem from completely di↵erent

VEVs, while in our model both stem from VEVs of the same fields, and a similar order of

magnitude might therefore be considered more natural. Indeed, in the numerical minimisation

of the potential, we found a tendency for a similar size of the two � contractions.

22The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual

way.
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1

CA , (19)

with
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The model
particle SU(3)c SU(2)L U(1)Y Q8 oA4 Z4

` 1 2 -1/2 31 i
ec + µc + ⌧ c 1 1 1 11 + 12 + 13 �i

H 1 2 1/2 11 1

� 1 1 0 31 1

�1 1 1 0 41 1
�2 1 1 0 41 �1

L(5)
e = ye(`�)11

ecH̃/⇤+ yµ(`�)13
µcH̃/⇤+ y⌧ (`�)12

⌧ cH̃/⇤+ h.c. ,

L(7)
⌫ = xa(`H`H)11

(�1�2)11
/⇤3 + xd(`H`H)31

· (�1�2)31
/⇤3 + h.c. .

LO charged lepton masses:

LO neutral lepton masses:

h�i = (v0, v0, v0)T ,

h�1i =
1p
2
(a, a, b,�b)T ,

h�2i =
1p
2
(c, c, d,�d)T

VEVs:

h(�1�2)31
i = 1

2
(bc� ad, 0, 0)T

h(�1�2)11
i = 1

2
(ac+ bd)

additional 41 necessary to get correct symmetry breaking (otherwise only 
breaking to A4)

same # of d.o.f. as in case of complex triplet and singlet, no additional driving 
fields necessary

low flavour symmetry breaking scale possible, testable



Scalar Potential & Vacuum Alignment
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The most general scalar potential invariant under the flavour symmetry is given by
V (�,�

1

,�
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) = V�(�) + V�(�1

,�
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) + V
mix

(�,�
1

,�
2

)

with

[(Q8 oA4)⇥A4]⇥ Z4Potential has an accidental symmetry 

invariant under independent transformations of Φ and 𝜒

note that couplings such as                are forbidden by the auxiliary Z4 
symmetry that separates the charged and neutral lepton sectors

� · (�1�2)31



Scalar Potential & Vacuum Alignment



Scalar Potential & Vacuum Alignment
Characterization of Minima 

If there is a minimum, in which the symmetry generator Q∈G is  
left unbroken, i.e. Q〈Φi〉=〈Φi〉,there are degenerate 

minima〈Φ‘i〉=g 〈Φ‘i〉that leave gQg -1 unbroken, with g∈G.

The physically distinct minima are therefore characterized by 
the conjugacy class G Q={ gQg-1: g∈G} Only conjugacy classes 
with an eigenvalue +1 can lead to a non-trivial little group.
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The physically distinct minima are therefore characterized by 
the conjugacy class G Q={ gQg-1: g∈G} Only conjugacy classes 
with an eigenvalue +1 can lead to a non-trivial little group.

For 41 there are 5 such classes
There are three physically distinct minima of �1, that preserve a Z2 sub-

group:

• h�1i = 1p
2
(a, a, b,�b)T results in the little group hSi,

• h�1i = (0, a, b, 0)T in hSY i and

• h�1i = 1p
2
(�a, b,�a, b)T in hSY Xi .

In addition, there is one preserving a Z3 subgroup:

• h�1i = 1p
2
(a, a, a, b)T preserves hT i (as well as

⌦
T 2

↵
= hT i).



Scalar Potential & Vacuum Alignment
Characterization of Minima 

If there is a minimum, in which the symmetry generator Q∈G is  
left unbroken, i.e. Q〈Φi〉=〈Φi〉,there are degenerate 

minima〈Φ‘i〉=g 〈Φ‘i〉that leave gQg -1 unbroken, with g∈G.

The physically distinct minima are therefore characterized by 
the conjugacy class G Q={ gQg-1: g∈G} Only conjugacy classes 
with an eigenvalue +1 can lead to a non-trivial little group.

For 41 there are 5 such classes
There are three physically distinct minima of �1, that preserve a Z2 sub-

group:

• h�1i = 1p
2
(a, a, b,�b)T results in the little group hSi,

• h�1i = (0, a, b, 0)T in hSY i and

• h�1i = 1p
2
(�a, b,�a, b)T in hSY Xi .

In addition, there is one preserving a Z3 subgroup:

• h�1i = 1p
2
(a, a, a, b)T preserves hT i (as well as

⌦
T 2

↵
= hT i).

⇒ h(�1�2)31
i = 1

2 (bc� ad, 0, 0)T

h(�1�2)11
i = 1

2 (ac+ bd)

(a,b) replaced by (c,d) in Φ2 



Scalar Potential & Vacuum Alignment
Minimum Conditions
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with for〈S〉, similar relations for 〈SY〉,

〈SYX〉 

eleven minimization conditions reduce to these 5 equations for 5 
VEVs there is therefore generally a solution

note that e.g. a=b=0 or c=d=0 is also a solution, here the singlet and 
triplet contraction vanishes

we have performed a numerical study to show that there is finite 
region of parameter space where 〈S〉 is the global minimum
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Higher Order Corrections

NLO Corrections to vacuum potential
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generic size of shifts

generic size of shifts for scalar potential 
parameters of order oneVEV alignment not destroyed!



Higher Order Corrections

[Lin’10, Shimizu,Tanimoto, Watanabe‘11,Luhn,King’11]

sin2𝛳13≈.1 as suggested by T2K can be accomodated at NLO

or by introducing additional non-trivial singlet field ξ ∼ (12,i)[does not 
destroy VEV alignment]



UV Completion
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Figure 4: Neutrino masses in the UV completion.

particle SU(3)c SU(2)L U(1)Y Q
8
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Z
4

` 1 2 -1/2 3

1

i
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�
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1

�
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1 1 0 4

1

-1

S 1 1 0 1

1

1

Table 7: Chiral Superfield Particle Content.

7 Supersymmetrization

Supersymmetrization of the model is rather straightforward. One only has to ensure that

there are no flat directions in the potential:

V = V
SUSY

+ V
soft

(41)

with

V
SUSY

=
X

i

����
@W

@'i

����
2

(42)

where W denotes the superpotential and 'i is any of the fields in Table 7. V
soft

contains all

supersymmetry-breaking soft terms invariant under the flavour symmetry.

As there is no cubic invariant containing the �
1,2 fields only and the quadratic term

�2

1,2 =
P

i �
i
1,2

2

is SO(4)2 invariant under the individual rotations of �
1

and �
2

, we have to

add the singlet S and the triplet �̃ ⇠ 3

2

, to get a superpotential without flat directions in

the cubic terms and without a continuous accidental symmetry. We thus have the schematic

superpotential

W = S(�2

1

+ �2

2

+ �2 + �̃2)
1

1

+ S3 + S2 + S + �2

1

+ �2

2

+ �2 + �3 + �̃(�2

1

+ �2

2

)
3

2

+ �̃2 + �̃3.

(43)

We have studied the potential resulting from this superpotential and the most general soft-

breaking terms and we have found a portion of parameter space with the right vacuum
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For Seesaw UV completion, introduce fermionic singlets N∼ (31,-i), S2∼ (42,i), S3∼ (43,-i):

generates singlet masses (N):

m⌫ = x

2
`Nv

2
m

�1
N

L = x`N`HN + xN2NS2�1 + xN3NS3�2 +mS2S3 + x23S2S3�+ h.c. ,

UT
⌫ m⌫U⌫ = diag(

1

B +A
,
1

A
,

1

B �A
)

the light neutrino mass matrix 

mN =
xN2xN3

m

0

@
A 0 0
0 A B

0 B A

1

A with A = �2(ac+bd) and B = i
p
3(bc�ad) .

is of TBM form

Accidental degeneracy of m1  and m3 is lifted by introduction of additional S2 or S3. 
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Mathematica Package Discrete
We have developed a Mathematica Package that can be used to facilitate model 

building using discrete groups. It has the features:

has access to groups catalogue of GAP, which contains all groups one 
would ever want to use

calculate Kronecker products, Clebsch-Gordon coefficients, covariants 
formed out of product of any representation etc.

reduce set covariants to a smaller set of independent covariants 

calculate flavon potentials

available at http://projects.hepforge.org/discrete/
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