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Introduction

QCD: SU(Nc) gauge theory with Nf quark flavors (fundamental)

❏ Often useful (in holography and otherwise): “quenched” or

“probe” approximation, Nf ≪ Nc

❏ However, many features cannot be captured in such

approximations:

❍ Phase diagram of QCD at zero temperature, baryon

density, and quark mass, varying x = Nf/Nc

❍ The QCD thermodynamics as a function of x
❍ Phase diagram as a function of baryon density

Strong coupling phenomena, hard to analyze → Holographic

methods?
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Introduction: QCD phases

Phase diagram at zero temperature and chemical potential with

massless quarks

❏ Veneziano limit: large Nf , Nc with x = Nf/Nc fixed

❏ Banks-Zaks region, x = 11/2 − ǫ, under perturbative control

❏ Going for smaller x expect a conformal transition at x = xc
[Miransky; Kaplan, Lee, Son, Stephanov, arXiv:0905.4752]

Diagram for N =1 superQCD known, interesting and more complex
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Aim of the talk

I present holographic bottom-up models (V-QCD) that describe

the QCD phase diagram in the Veneziano limit, with:
[MJ, Kiritsis arXiv:1112.1261]

❏ Conformal window for xc < x < xBZ , ChSB for 0 < x < xc

❏ Critical value xc ∼ 4 arising from dynamics

❏ Walking backgrounds for x slightly below xc

We also get:

❏ Reasonable behavior for finite (flavor independent) quark mass

❏ Miransky/BKT scaling as x → xc from below

❏ Efimov vacua for x < xc

After choosing the correct action, these features appear almost

automatically!
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A step back: 5D dilaton gravity

For YM, “improved holographic QCD” (IhQCD): well-tested

string-inspired bottom-up model [Gursoy, Kiritsis, Nitti arXiv:0707.1324, 0707.1349]
[Gubser, Nellore arXiv:0804.0434]

Sg = M 3N 2
c

∫

d5x
√

g

[

R − 4

3
(∂φ)2 + Vg(φ)

]

with Poincaré invariant metric

ds2 = e2A(dr2 + ηµνx
µxν)

❏ Potential Vg ↔ QCD β-function

❍ A → log µ energy scale

❍ eφ → λ ’t Hooft coupling g2Nc

Vg =
12

ℓ2
(1+c1λ+· · · ), λ → 0, Vg ∼ λ4/3

√

log λ, λ → ∞
Agrees well with pure YM, both a zero and finite temperature

[Gursoy, Kiritsis, Mazzanti, Nitti; Panero; . . . ]
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The fusion

① IhQCD: model for glue by using dilaton gravity

② Adding flavor and chiral symmetry breaking via tachyon brane

actions (previous talk!)

Consider ①+②, with full backreaction ⇒ V-QCD model
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The fusion: in terms of actions

SV−QCD = N 2
c M 3

∫

d5x
√

g

[

R − 4

3

(∂λ)2

λ2
+ Vg(λ)

]

−NfNcM
3

∫

d5xVf(λ, T )
√

− det(gab + h(λ)∂aT∂bT )

with Vf(λ, T ) = Vf0(λ) exp(−a(λ)T 2) ; λ = eφ

❏ V-limit Nc → ∞ with x = Nf/Nc fixed: backreacted system

❏ T ↔ q̄q

❏ Probe limit x → 0 ⇒ Vg fixed as before

❏ Must choose Vf0, a, and h

The simplest and most reasonable choices do the job!
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Matching to QCD: UV

As λ → 0 potentials analytic, and we can match:

❏ Vg(λ) with (two-loop) Yang-Mills beta function

❏ Vg(λ) − xVf0(λ) with QCD beta function

❏ a(λ)/h(λ) with the anomalous dimension of the quark

mass/chiral condensate (we will have proper running quark

mass!)

The matching allows to mark the BZ point, that we normalize at

x = 11/2

After this, a single undetermined parameter in the UV: W0

Vg(λ) = V0 + O(λ) , Vf0(λ) = W0 + O(λ)

V0 − xW0 = 12/ℓ2
UV
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Matching to QCD: IR

In the IR, the tachyon has to diverge ⇒ the tachyon action

∝ e−T 2

becomes small

❏ Vg(λ) chosen as for Yang-Mills, so that a “good” IR singularity

exists, as well as linear confinement

❏ Vf0(λ), a(λ), and h(λ) chosen to produce tachyon

divergence: several possibilities

❏ Phase structure essentially independent of IR choices!

(Here “essentially” means that you can also screw this up if

you try)
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Background analysis

Analysis of the backgrounds (classical vacua) at zero temperature

(T is tachyon)

❏ Expect two kinds of solutions (Elias’ talk), with

① Nontrivial tachyon profile

② Identically vanishing tachyon

❏ Fully backreacted system ⇒ rich dynamics, analysis

complicated . . .

However, main features can be understood without going to

details
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Effective potential

For solutions with T = T∗ = const

S = M 3N 2
c

∫

d5x
√

g

[

R − 4

3

(∂λ)2

λ2
+ Vg(λ) − xVf(λ, T∗)

]

IhQCD with an effective potential

Veff(λ) = Vg(λ)−xVf(λ, T∗) = xVg(λ)−Vf0(λ) exp(−a(λ)T 2
∗ )

Minimizing for T∗ we obtain T∗ = 0 and T∗ = ∞
❏ T∗ = 0: Veff(λ) = Vg(λ) − xVf0(λ)

❏ T∗ → ∞: Veff(λ) = Vg(λ) (like YM, no fixed points)
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Effective potential

Start from Banks-Zaks region, T∗ = 0, chiral symmetry

conserved (T ↔ q̄q), Veff(λ) = Vg(λ) − xVf0(λ)

❏ Veff defines a β-function as in IhQCD – Fixed point guaranteed

in the BZ region, moves to higher λ with decreasing x

❏ Fixed point λ∗ runs to ∞ either at finite x(<xc) or as x→0

Banks-Zaks Conformal Window

x → 11/2 x > xc x < xc ??

2 4 6 8 10
Λ

-0.2

0.2

0.4

0.6
Β

Λ*

5 10 15 20
Λ

-0.2

0.2

0.4

0.6
Β

Λ*

50 100 150 200
Λ

-50

50

100

150

200

250
Β

Λ*

Matti Järvinen 15 February 2012 11/25



Effective potential

Banks-Zaks Conformal Window

x → 11/2 x > xc x < xc
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T ≡ 0 T ≡ 0 T 6= 0

❏ For x < xc vacuum has nonzero tachyon (checked by

calculating free energies)

❏ The tachyon screens the fixed point

❏ In the deep IR T diverges, Veff → Vg ⇒ dynamics is YM-like
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Where is x c?

How is the edge of the conformal window stabilized?

Tachyon IR mass at λ = λ∗ ↔ quark mass dimension

−m2
IRℓ2

IR = ∆IR(4 − ∆IR) =
24a(λ∗)

h(λ∗)(Vg(λ∗) − xV0(λ∗))

γ∗ = ∆IR − 1

Breitenlohner-Freedman

(BF) bound (horizontal line)

−m2
IRℓ2

IR = 4 ⇔ γ∗ = 1

defines xc

xc
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Why γ∗ = 1 at x = x c?

No time to go into details . . . the question boils down to the

linearized tachyon solution at the fixed point

❏ For ∆IR(4 − ∆IR) < 4 (x > xc):

T (r) ∼ mqr
∆IR + σr4−∆IR

❏ For ∆IR(4 − ∆IR) > 4 (x < xc):

T (r) ∼ Cr2 sin [(Im∆IR) log r + φ]

Rough analogy:

Tachyon EoM ↔ Gap equation in Dyson-Schwinger approach

Similar observations have been made in other holographic

frameworks
[Kutasov, Lin, Parnachev arXiv:1107.2324, 1201.4123]
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“Prediction” for x c

Dependence on the UV parameter W0 and (reasonable) “IR

choices” for the potentials

Resulting variation of the

edge of conformal window

xc = 3.7 . . . 4.2
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γ∗ in the conformal window

Comparison to other guesses

V-QCD (dashed: variation

due to W0)

Dyson-Schwinger

2-loop PQCD

All-orders β
[Pica, Sannino arXiv:1011.3832]
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Backgrounds at zero quark mass

Color code:

λ, A, T
UV: r = 0
IR: r = ∞
A ∼ log µ ∼ − log r -30 -20 -10 10
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Metrics similar to earlier simplified approaches
[MJ, Sannino arXiv:0911.2462; Alanen, Kajantie, Tuominen arXiv:1003.5499]
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Holographic β-functions

Generalization of the holographic RG flow of IhQCD

β(λ, T ) ≡ dλ

dA
; γ(λ, T ) ≡ dT

dA
linked to

dgQCD

d log µ
;

dm

d log µ

The full equations of motion boil down to two first order partial

non-linear differential equations for β and γ
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Holographic β-functions

“Good” solutions numerically (unique)
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Walking region

Beta functions along the RG flow (evaluated on the background),

zero tachyon, YM xc ≃ 3.9959
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Parameters

Understanding the generic solutions requires discussing

parameters

❏ YM or QCD with massless quarks: no parameters

❏ QCD with flavor-independent mass m: a single

(dimensionless) parameter m/ΛQCD

❏ In this model, after rescalings, this parameter can be mapped

to a parameter (T0 or r1) that controls the diverging tachyon in

the IR

❏ x has become continuous in the Veneziano limit
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Map of all solutions

All “good” solutions (T 6= 0) obtained varying x and T0 or r1

Contouring: quark mass (zero mass is the red contour)

“Potentials I” ↔ T0 “Potentials II” ↔ r1
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Mass dependence and Efimov vacua

T0

m

T0

m

Conformal window (x > xc)

❏ For m = 0, unique solu-

tion with T ≡ 0
❏ For m > 0, unique “stan-

dard” solution with T 6= 0

Low 0 < x < xc: Efimov vacua

❏ Unstable solution with T ≡ 0
and m = 0

❏ “Standard” stable solution,

with T 6= 0, for all m ≥ 0
❏ Tower of unstable Efimov vacua

(small |m|)
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Miransky/BKT scaling

As x → xc 〈q̄q〉∼σ∼exp(−2κ/
√

xc−x)
with known κ ΛUV/ΛIR∼exp(κ/

√
xc−x)
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Conclusion

❏ A class of holographic bottom-up models (V-QCD)

was obtained by a fusion of IhQCD with tachyonic

brane action

❏ The models capture many interesting features of

QCD at finite Nf/Nc

❏ Work in progress: calculation of mass spectra,

oblique corrections, and thermodynamics (with Alho,

Arean, Iatrakis, Kajantie, Kiritsis, and Tuominen)

❏ Lots of work TBD: finite density, hydrodynamics,

four-fermion interactions, . . .
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Extra slides

Extra slides . . .
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sQCD phases

The case of N = 1 SU(Nc) superQCD with Nf quark multiplets is known and provides an
interesting (and more complex) example for the nonsupersymmetric case. From Seiberg we
have learned that:

❏ x = 0 the theory has confinement, a mass gap and Nc distinct vacua associated with a
spontaneous breaking of the leftover R symmetry ZNc

.

❏ At 0 < x < 1, the theory has a runaway ground state.

❏ At x = 1, the theory has a quantum moduli space with no singularity. This reflects
confinement with ChSB.

❏ At x = 1 + 1/Nc, the moduli space is classical (and singular). The theory confines, but
there is no ChSB.

❏ At 1 + 2/Nc < x < 3/2 the theory is in the non-abelian magnetic IR-free phase, with
the magnetic gauge group SU(Nf − Nc) IR free.

❏ At 3/2 < x < 3, the theory flows to a CFT in the IR. Near x = 3 this is the Banks-Zaks
region where the original theory has an IR fixed point at weak coupling. Moving to lower
values, the coupling of the IR SU(Nc) gauge theory grows. However near x = 3/2 the
dual magnetic SU(Nf − Nc) is in its Banks-Zaks region, and provides a weakly coupled
description of the IR fixed point theory.

❏ At x > 3, the theory is IR free.
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Saturating the BF bound (sketch)

Why is the BF bound saturated at the phase transition (massless

quarks)??
∆IR(4 − ∆IR) =

24a(l∗)

h(l∗)(Vg(l∗) − xV0(l∗))
❏ For ∆IR(4 − ∆IR) < 4:

T (r) ∼ mqr
4−∆IR + σr∆IR

❏ For ∆IR(4 − ∆IR) > 4:

T (r) ∼ Cr2 sin [(Im∆IR) log r + φ]

❏ Saturating the BF bound, the tachyon solutions will engtangle

→ required to satisfy boundary conditions

❏ Nodes in the solution appear trough UV → massless solution
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Saturating the BF bound (sketch)

Does the nontrivial (ChSB) massless tachyon solution exist?

Two possibilities:

❏ x > xc: BF bound satisfied at the fixed point ⇒ only trivial

massless solution (T ≡ 0, ChS intact, fixed point hit)

❏ x < xc: BF bound violated at the fixed point ⇒ a nontrivial

massless solution exist, which drives the system away from the

fixed point

Conclusion: phase transition at x = xc

As x → xc from below, need to approach the fixed point to satisfy

the boundary conditions ⇒ nearly conformal, “walking” dynamics
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Potentials I

Vg(λ) = 12 +
44

9π2
λ +

4619

3888π4

λ2

(1 + λ/(8π2))2/3

√

1 + log(1 + λ/(8π2))

Vf (λ, T ) = Vf0(λ)e−a(λ)T 2

Vf0(λ) =
12

11
+

4(33 − 2x)

99π2
λ +

23473 − 2726x + 92x2

42768π4
λ2

a(λ) =
3

22
(11 − x)

h(λ) =
1

(

1 + 115−16x
288π2 λ

)4/3

In this case the tachyon diverges exponentially:

T (r) ∼ T0 exp

[

81 35/6(115 − 16x)4/3(11 − x)

812944 21/6

r

R

]
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Potentials II

Vg(λ) = 12 +
44

9π2
λ +

4619

3888π4

λ2

(1 + λ/(8π2))2/3

√

1 + log(1 + λ/(8π2))

Vf (λ, T ) = Vf0(λ)e−a(λ)T 2

Vf0(λ) =
12

11
+

4(33 − 2x)

99π2
λ +

23473 − 2726x + 92x2

42768π4
λ2

a(λ) =
3

22
(11 − x)

1 + 115−16x
216π2 λ + λ2/(8π2)2

(1 + λ/(8π2))4/3

h(λ) =
1

(1 + λ/(8π2))4/3

In this case the tachyon diverges as

T (r) ∼ 27 23/431/4

√
4619

√

r − r1

R
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More backgrounds

Massless backgrounds with x < xc ≃ 3.9959 (λ, A, T )
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Free energy

The free energy difference

between the ChS and ChSB

mq = 0 solutions

Chiral symmetry breaking so-

lution favored whenever it ex-

ists (x < xc)
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Mass dependence

For m > 0 the conformal transition disappears

The ratio of typical UV/IR scales ΛUV/ΛIR varies in a natural way

m/ΛUV = 10−6, 10−5, . . . , 10 x = 2, 3.5, 3.9, 4.25, 4.5
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γ-functions

Massless backgrounds: gamma functions γ
T = d log T

dA
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