Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk

Dominika Konikowska Universität Bielefeld

497. Wilhelm und Else Heraeus Seminar "Strong interactions beyond the standard model" Physikzentrum Bad Honnef February 13th, 2012

Dominika Konikowska

Universität Bielefeld

Outline

introduction

at the brane: effective Einstein-like equation

AdS₅ bulk: large-scale structure at the brane?

conclusions

Dominika Konikowska

Universität Bielefeld

beyond General Relativity

- ongoing search for a unified description of
 - ♂ gravity
 - ♂ gauge interactions of the Standard Model
 - \hookrightarrow string theories as the most promising proposal
- Iow-energy effective action in string theories
 - \bigcirc *dilaton* (ϕ): scalar field accompanying gravity
 - () at the leading order (when restricted to gravity and the dilaton)
 - → Einstein gravity coupled to the dilaton
- additional spatial dimensions
 - required by the string theories' formulation
 - A have to be compactified or warped
 - \hookrightarrow dilaton gravity in a 5D brane scenario

beyond General Relativity

- ongoing search for a unified description of
 - ♂ gravity
 - ♂ gauge interactions of the Standard Model
 - \hookrightarrow string theories as the most promising proposal
- low-energy effective action in string theories
 - \circlearrowleft *dilaton* (ϕ): scalar field accompanying gravity
 - ∴ at the leading order (when restricted to gravity and the dilaton)
 - \hookrightarrow Einstein gravity coupled to the dilaton
- additional spatial dimensions
 - \circlearrowleft required by the string theories' formulation
 - have to be compactified or warped
 - \hookrightarrow dilaton gravity in a 5D brane scenario

beyond General Relativity

- ongoing search for a unified description of
 - ♂ gravity
 - ♂ gauge interactions of the Standard Model
 - \hookrightarrow string theories as the most promising proposal
- low-energy effective action in string theories
 - \bigcirc *dilaton* (ϕ): scalar field accompanying gravity
 - ∴ at the leading order (when restricted to gravity and the dilaton)
 - \hookrightarrow Einstein gravity coupled to the dilaton
- additional spatial dimensions
 - ♂ required by the string theories' formulation
 - have to be compactified or warped
 - \hookrightarrow dilaton gravity in a 5D brane scenario

scalar-tensor theories of gravity & conformal frames

- dilaton gravity: a scalar-tensor theory of gravity
 - \hookrightarrow can be formulated in various conformally-related frames
 - ♂ gravitational Lagrangians differ e.g. in the coefficient of the Ricci scalar
 - $\, \hookrightarrow \, \mbox{ (generically) scalar field dependent coefficients}$
 - \bigcirc Einstein frame: $\mathcal{L} = \frac{1}{2\kappa} \mathcal{R} + \cdots$ (coefficient: a constant)
 - \circlearrowleft Jordan frame: e.g. $\mathcal{L} = \frac{1}{16\pi} \phi \, \mathcal{R} + \cdots$

(coefficient: a polynomial function of the scalar field)

$$\circlearrowleft$$
 string frame: e.g. $\mathcal{L} = e^{-\phi} \frac{\alpha_1}{2} \mathcal{R} + \cdots$

(coefficient: an exponential function of the dilaton)

 \circlearrowleft related $(g_{\mu\nu} \& \tilde{g}_{\mu\nu})$ by a conformal (Weyl) transformation: $g_{\mu\nu} = \Omega(x)^2 \tilde{g}_{\mu\nu}$

Dominika Konikowska

Universität Bielefeld

non-minimal matter-dilaton coupling

- if a matter term \mathcal{L}_m is included into the Lagrangian in one frame
 - conformal transformation to another frame will change its coefficient
 - \hookrightarrow if constant in one frame, it will become dilaton dependent in others
- which conformal frame is the natural physical frame?
 - ♂ no clear consensus
 - $\hookrightarrow\,$ in which frame the matter-dilaton coupling should be minimal?
- thus: a general non-minimal coupling $f(\phi) \mathcal{L}_m$

of the dilaton to the matter content of the universe (localized on the brane)

the aim of the game

- framework:
 - ♂ dilaton gravity in a 5D brane scenario
 - \bigcirc non-minimal matter-dilaton coupling $f(\phi) \mathcal{L}_m$
- take assumptions crucial to many models in the modern literature:
 - ♂ bulk: exact anti de Sitter type spacetime (AdS₅)
 - *brane*: matter content of the universe described by a perfect fluid
- and answer the question:

can the large-scale structure of the universe exist on the brane in an AdS-type bulk?

Outline

introduction

at the brane: effective Einstein-like equation

AdS₅ bulk: large-scale structure at the brane?

conclusions

Dominika Konikowska

Universität Bielefeld

conclusions

(Einstein frame)

dilaton gravity at the brane with general matter-dilaton coupling

dilaton gravity in a 5D brane scenario:

 $\mathcal{L} = \frac{\alpha_1}{2} \left[\mathcal{R} - \frac{2}{3} \nabla^{\sigma} \partial_{\sigma}^{(5)} \phi - \frac{1}{3} (\partial^{(5)} \phi)^2 \right] - V(\phi) + \left[f(\phi) \mathcal{L}_m + \lambda(\phi) \right] \delta_{\mathcal{B}}$

- $(\mathcal{R} \frac{2}{3} \nabla^{\sigma} \partial_{\sigma}^{(5)} \phi \frac{1}{3} (\partial^{(5)} \phi)^2 : 5D \text{ dilaton gravity}$
- $\bigcirc \mathcal{L}_m$: (brane localized) matter content of the universe

 $\lambda(\phi)$: 'cosmological constant'-type term on the brane

 \hookrightarrow position of the co-dimension 1 brane: Dirac delta type distribution δ_B

 $\bigcirc f(\phi) \mathcal{L}_m$: (non-minimal) coupling of the dilaton ϕ to brane localized matter \mathcal{L}_m

- induced (projected) brane metric: $h_{\mu\nu} = g_{\mu\nu} n_{\mu}n_{\nu}$ (covariant approace
 - \bigcirc n^{μ} : vector field orthonormal to the brane at its position
- **•** assume a \mathbb{Z}_2 symmetry for the bulk (with its fixed point at the brane p
 - O usually imposed 'automatically'
 - crucial for the existence of the effective brane equations

(Einstein frame)

dilaton gravity at the brane with general matter-dilaton coupling

dilaton gravity in a 5D brane scenario:

 $\mathcal{L} = \frac{\alpha_1}{2} \left[\mathcal{R} - \frac{2}{3} \nabla^{\sigma} \partial_{\sigma}^{(5)} \phi - \frac{1}{3} (\partial^{(5)} \phi)^2 \right] - V(\phi) + \left[f(\phi) \mathcal{L}_m + \lambda(\phi) \right] \delta_{\mathcal{B}}$

- $\circlearrowleft \ \mathcal{R} \frac{2}{3} \nabla^{\sigma} \partial^{(5)}_{\sigma} \phi \frac{1}{3} (\partial^{(5)} \phi)^2 : 5D \text{ dilaton gravity}$
- \circlearrowleft \mathcal{L}_m : (brane localized) matter content of the universe

 $\lambda(\phi)$: 'cosmological constant'-type term on the brane

 \hookrightarrow position of the co-dimension 1 brane: Dirac delta type distribution δ_B

 $\bigcirc f(\phi) \mathcal{L}_m$: (non-minimal) coupling of the dilaton ϕ to brane localized matter \mathcal{L}_m

- induced (projected) brane metric: $h_{\mu\nu} = g_{\mu\nu} n_{\mu}n_{\nu}$ (covariant approach)
 - \bigcirc n^{μ} : vector field orthonormal to the brane at its position
- assume a \mathbb{Z}_2 symmetry for the bulk (with its fixed point at the brane position)
 - Usually imposed 'automatically'
 - ♂ crucial for the existence of the effective brane equations

at the brane: effective Einstein-like equation

consequently, the effective Einstein-like equation at the brane reads

$$\begin{aligned} R_{\mu\nu} - \frac{1}{2} h_{\mu\nu} R &= 8\pi \overline{G}(\phi) \tau_{\mu\nu} - h_{\mu\nu} \overline{\Lambda}(\phi) + \frac{t^2(\phi)}{4\alpha_1^2} \pi_{\mu\nu} - E_{\mu\nu} \\ &+ \frac{2}{9} (\partial_{\mu}\phi)(\partial_{\nu}\phi) - \frac{5}{36} h_{\mu\nu} (\partial\phi)^2 \end{aligned}$$

(terms quadratic in the brane energy-momentum tensor)

 \circlearrowleft bulk's influence on the brane gravity: $E_{\mu\nu} = n^{\alpha} h^{\beta}_{\mu} n^{\gamma} h^{\delta}_{\nu} C_{\alpha\beta\gamma\delta}$

(bulk Weyl tensor projected on the brane (generically non-vanishing))

consistency condition (on the brane sources):

e sources): $D_{\lambda}(f(\phi)\tau_{\mu}^{\lambda}) = f(\phi)\tau_{\phi}(\partial_{\mu}\phi)$

(brane: 'generalized' covariant conservation of the energy-momentum tensor)

Dominika Konikowska

Outline

introduction

at the brane: effective Einstein-like equation

AdS₅ bulk: large-scale structure at the brane?

conclusions

Dominika Konikowska

Universität Bielefeld

on the brane: spatial derivative of the energy density

- ► OR: inhomogeneous perfect fluid on the brane in AdS₅ bulk?
- assumptions:
 - \bigcirc bulk: exact anti de Sitter type spacetime: AdS₅ $\rightarrow E_{\mu\nu} = 0$

(no bulk influence on the brane gravity)

 \bigcirc brane (matter content of the universe): perfect fluid $\rightarrow \tau_{\mu\nu} = \rho_m t_\mu t_\nu + p_m \gamma_{\mu\nu}$

($\gamma_{\mu\nu}$: 3d spatial metric, ρ_m : (dark) matter & radiation)

- calculus ingredients:
 - \bigcirc 4D Bianchi identity: $D^{\nu} \left(R_{\mu\nu} \frac{1}{2} h_{\mu\nu} R \right) = 0$
 - ♂ effective gravitational (Einstein-like) equation at the brane:

$$\begin{aligned} R_{\mu\nu} - \frac{1}{2} h_{\mu\nu} R &= 8\pi \overline{G}(\phi) \tau_{\mu\nu} - h_{\mu\nu} \overline{\Lambda}(\phi) + \frac{t^2(\phi)}{4\alpha_1^2} \pi_{\mu\nu} - E_{\mu\nu} \\ &+ \frac{2}{9} (\partial_\mu \phi) (\partial_\nu \phi) - \frac{5}{36} h_{\mu\nu} (\partial\phi)^2 \end{aligned}$$

 \circlearrowleft consistency condition (on the brane sources): $D_{\lambda}(f(\phi)\tau_{\mu}^{\lambda}) = f(\phi) \tau_{\phi}(\partial_{\mu}\phi)$

on the brane: late universe

> consequently, the spatial derivative of the matter energy density reads

$$\rho_{m,i} = -\left(\frac{f'}{f}\rho_m - \frac{\lambda'}{f}\right)\phi_{,i} + \frac{\alpha_1^2}{3f^2(\rho_m + p_m)}\left[D^{\nu}\partial_i\phi - \dot{\phi}^{-1}\phi_{,i}D^{\nu}\partial_t\phi\right](\partial_{\nu}\phi)$$

 \hookrightarrow imposes a strict condition on the matter content of the universe (constraint on spatial inhomogeneities in brane matter)

• (at least) late universe: terms $O((\partial \phi)(D\partial \phi))$ can be neglected, as $\circ \dot{\phi}_0 \leq 2.4 H_0 \simeq 1.8 (10^{10} \text{ yr})^{-1}$

(derived: model-independent bound set by current observational data)

 $\circlearrowleft ~~ |\ddot{\phi}_0| \ll \dot{\phi}_0^2~~$ can be assumed / expected

otherwise: currently observed $\phi_{0}pprox \mathrm{const}$ would be another coincidence problem)

 \circlearrowleft typical models: $|\phi_{,i}| \lesssim c_1 |\dot{\phi}|$

 $(c_1 > 0 \text{ and of order 1})$

(any initial inhomogeneities of the dilaton washed out by inflation)

hereafter: $\lambda \neq \lambda(\phi)$ ('cosmological constant'-type term in the energy-momentum tensor on the brane) (only a contribution to the effective brane cosmological constant $\overline{\Lambda}(\phi)$)

on the brane: late universe

> consequently, the spatial derivative of the matter energy density reads

$$\rho_{m,i} = -\left(\frac{t'}{f}\rho_m - \frac{\lambda'}{f}\right)\phi_{,i} + \frac{\alpha_1^2}{3f^2(\rho_m + p_m)}\left[D^{\nu}\partial_i\phi - \dot{\phi}^{-1}\phi_{,i}D^{\nu}\partial_t\phi\right](\partial_{\nu}\phi)$$

 \hookrightarrow imposes a strict condition on the matter content of the universe (constraint on spatial inhomogeneities in brane matter)

► (at least) late universe: terms $O((\partial \phi)(D\partial \phi))$ can be neglected, as

 $\circlearrowleft ~\dot{\phi}_0 \lesssim$ 2.4 $H_0 \simeq$ 1.8 (10¹⁰ yr)⁻¹

(derived: model-independent bound set by current observational data)

 $\circlearrowleft ~~ec{\phi}_0ert \ll \dot{\phi}_0^2~~ ext{can be assumed / expected}$

(otherwise: currently observed $\phi_0 pprox {
m const}$ would be another coincidence problem)

 \bigcirc typical models: $|\phi_{,i}| \lesssim c_1 |\dot{\phi}|$

 $(c_1 > 0 \text{ and of order 1})$

(any initial inhomogeneities of the dilaton washed out by inflation)

• hereafter: $\lambda \neq \lambda(\phi)$ ('cosmological constant'-type term in the energy-momentum tensor on the brane) (only a contribution to the effective brane cosmological constant $\overline{\Lambda}(\phi)$)

late universe: spatial derivative of the energy density

hence for the late universe we obtain

$$\rho_{m0}, i \simeq -\frac{f'}{f} \rho_{m0} \phi_{0}, i$$

spatial inhomogeneities in matter energy density are highly constrained

for the common assumptions of AdS5 bulk and perfect fluid on the brane

- Inhomogeneous perfect fluid (pm,i ≠ 0) on the brane? only if: matter content of the universe coupled non-minimally (f' ≠ 0) to the dilaton
- if dilaton spatially homogeneous: no matter inhomogeneities

 \hookrightarrow already: $\dot{\phi}_0 \lesssim$ 2.4 $H_0 \simeq$ 1.8 $(10^{10} \text{ yr})^{-1}$

let's quantify the constraint on ρ_{m0} , i:

• current observational limits: $|\dot{\overline{G}}_0/\overline{G}_0| < (10^{11} \, \mathrm{yr})^{-1}$

(pulsar timing, solar system, stellar, cosmological constraints)

 $\hookrightarrow \left| \frac{f'}{7} \phi_{0,i} \right| \lesssim 3.3 \, c_1 \left(10^5 \, \mathrm{Mpc} \right)^{-1} \qquad \text{(for } |\phi_{i,i}| \lesssim c_1 |\dot{\phi}|) \qquad \text{resulting in} \\ |\rho_{m0,i}| \lesssim 3.3 \, c_1 \, \rho_{m0} \left(10^5 \, \mathrm{Mpc} \right)^{-1}$

late universe: spatial derivative of the energy density

hence for the late universe we obtain

$$\rho_{m0}, i \simeq -\frac{f'}{f} \rho_{m0} \phi_{0}, i$$

spatial inhomogeneities in matter energy density are highly constrained

for the common assumptions of AdS5 bulk and perfect fluid on the brane

- Inhomogeneous perfect fluid (pm,i ≠ 0) on the brane? only if: matter content of the universe coupled non-minimally (f' ≠ 0) to the dilaton
- if dilaton spatially homogeneous: no matter inhomogeneities

 \hookrightarrow already: $\dot{\phi}_0 \lesssim$ 2.4 $H_0 \simeq$ 1.8 (10¹⁰ yr)⁻¹

let's quantify the constraint on $\rho_{m0,i}$:

• current observational limits: $|\dot{\overline{G}}_0/\overline{G}_0| < (10^{11} \text{ yr})^{-1}$ $(\overline{G} = \overline{G}(\phi)!)$

(pulsar timing, solar system, stellar, cosmological constraints)

 $\hookrightarrow \left| \frac{f'}{f} \phi_{0,i} \right| \lesssim 3.3 c_1 \left(10^5 \,\mathrm{Mpc} \right)^{-1} \qquad \text{(for } |\phi_{,i}| \lesssim c_1 |\dot{\phi}|) \qquad \text{resulting in} \\ \left| \rho_{m0,i} \right| \lesssim 3.3 c_1 \rho_{m0} \left(10^5 \,\mathrm{Mpc} \right)^{-1}$

confrontation with large-scale structure (LSS) data

compare: the model's prediction (constraint) on $\rho_{m0,i}$ with the observational data

- galaxy distribution: probed by galaxy redshift surveys
 - (e.g. Sloan Digital Sky Survey (SDSS))

(addressed: content and statistical properties of the LSS)

approximations:

(aim: just an estimation - allowing for the comparison)

- \bigcirc for the spatial derivative: $\rho_{m,i} \simeq \frac{\rho_m(x_1) \rho_m(x_2)}{|x_1 x_2|}$
- 5 LSS surveys probe the overall baryonic matter distribution
- spatial distributions of baryonic and dark matter similar

(typical of dark matter models)

 \rightsquigarrow and the outcome is \ldots

 $\rho_{m,i}$ (max. model prediction) $\ll \rho_{m,i}$ (LSS data)

(within the entire range of measured scales)

i.e. brane scenario of dilaton gravity with AdS₅ bulk

(and matter content of the universe described by a perfect fluid)

means NO today's large scale structure

confrontation with large-scale structure (LSS) data

compare: the model's prediction (constraint) on $\rho_{m0,i}$ with the observational data

- galaxy distribution: probed by galaxy redshift surveys
 - (e.g. Sloan Digital Sky Survey (SDSS))

(addressed: content and statistical properties of the LSS)

approximations:

(aim: just an estimation - allowing for the comparison)

- \bigcirc for the spatial derivative: $\rho_{m,j} \simeq \frac{\rho_m(x_1) \rho_m(x_2)}{|x_1 x_2|}$
- Surveys probe the overall baryonic matter distribution
- spatial distributions of baryonic and dark matter similar

(typical of dark matter models)

 \rightsquigarrow and the outcome is \ldots

$\rho_{m,i}$ (max. model prediction) $\ll \rho_{m,i}$ (LSS data)

(within the entire range of measured scales)

 $_{\text{i.e.}}$ brane scenario of dilaton gravity with AdS_5 bulk

(and matter content of the universe described by a perfect fluid)

means NO today's large scale structure

Outline

introduction

at the brane: effective Einstein-like equation

AdS₅ bulk: large-scale structure at the brane?

conclusions

Dominika Konikowska

Universität Bielefeld

conclusions

- dilaton gravity studied in a 5D brane scenario
 - \circlearrowleft brane localized matter coupled to dilaton non-minimally: $f(\phi)\mathcal{L}_m$
 - $\,\hookrightarrow\,$ derived: effective gravitational equations at the brane
- o can large-scale structure of the universe exist on the brane?

(inhomogeneous matter content of the universe)

 $\hookrightarrow \text{ investigated for } AdS_5 \text{ bulk \& perfect fluid on the brane} \text{ (matter content of the universe)}$

- → spatial derivative of matter energy density constrained
 - on non-minimal dilaton-matter coupling essential
 - ♂ result quantified with current limits

from (non-)variation of the Newton's constant

- \circlearrowleft and confronted with observational data from galaxy surveys
- \rightarrow up to scales of the order of 10⁴ Mpc (larger scales: measurements consistent with 0)

NO large-scale structure as observed today

dilaton gravity brane scenario ruled out? for exact AdS5 bulk only!