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Motivations for Dynamical Electroweak Symmetry
Breaking

There are several motivations for considering dynamical electroweak symmetry breaking
(EWSB). Standard Model (SM) Higgs mechanism for EWSB works but leaves some
questions:

To get EWSB, one sets µ2 < 0 in the scalar potential of the SM Lagrangian,
V (φ) = µ2φ†φ + λ(φ†φ)2, yielding 〈φ〉 =

( 0
v/

√
2

)

. But why should µ2 be negative

rather than positive?

µ2 and hence m2
H = −2µ2 = 2λv2 with v = (2/g)mW = 246 GeV are unstable

to large radiative corrections from much higher energy scales - gauge hierarchy problem,
fine-tuning needed to keep the scalar light.

The SM Yukawa mechanism for generating fermion masses, with mf ≃ yfv/
√

2,
accomodates these masses, but one must use a large range of Yukawa coupling values,
from O(1) for top quark to 10−5 for electron mass (with further inputs necessary to
explain light neutrino masses). What is the origin of this large range of values?



Moreover, in two major previous cases where fundamental scalar fields were used in
phenomenologically modelling spontaneous symmetry breaking, the underlying physics
involved bilinear fermion condensates:

Superconductivity: the Ginzburg-Landau free energy functional was a successful
phenomenological description, using complex scalar field φ with V = c2|φ|2 + c4|φ|4,
with c2 ∝ (T − Tc), so for T < Tc, c2 < 0 and 〈φ〉 6= 0. But the underlying origin
of superconductivity is the dynamical formation of a condensate of Cooper pairs 〈ee〉 in
BCS theory.

Gell-Mann and Lévy constructed a reasonable phenomenological model, the σ model,
for spontaneous chiral symmetry breaking (SχSB) in hadronic physics, with
V = (µ2/2)~φ2 + (λ/4)~φ4, where ~φ = (σ, ~π). In this model, one produces SχSB
by the choice µ2 < 0, leading to 〈σ〉 = fπ 6= 0. But the underlying origin of SχSB
in QCD is the dynamical formation of a 〈q̄q〉 condensate.

These examples suggest the possibility that the underlying physics responsible for
EWSB may also be a dynamically induced fermion condensate.



Indeed, there is one known source of dynamical EWSB via a fermion condensate: the
〈q̄q〉 condensate in QCD breaks electroweak symmetry.

Consider, for simplicity, QCD with Nf = 2 massless quarks, u, d. This theory has a
global SU(2)L × SU(2)R chiral symmetry. The quark condensate
〈q̄q〉 = 〈q̄LqR〉 + 〈q̄RqL〉 transforms as an Iw = 1/2, |Y | = 1 operator and
breaks this symmetry to the diagonal, vectorial isospin SU(2)V . The resultant
Nambu-Goldstone bosons (NGB’s) - π± and π0 - are absorbed to become the
longitudinal components of the W ± and Z, giving them masses:

m2
W =

g2f2
π

4
, m2

Z =
(g2 + g′2)f2

π

4

With fπ ∼ 93 MeV, this yields mW ≃ 30 MeV, mZ ≃ 33 MeV. These masses
satisfy the tree-level relation ρ = 1, where ρ = m2

W/[m2
Z cos2 θW ]. (A gedanken

world in which this is the only source of EWSB is discussed in Quigg and RS, Phys.
Rev. D79, 096002 (2009)).

While the scale here is too small by ∼ 103 to explain the observed W and Z masses,
it suggests how to construct a model with dynamical EWSB.



Basics of Technicolor

Technicolor (TC) is an asymptotically free vectorial gauge theory with gauge group that
can be taken as SU(NTC) and a set of fermions {F} with zero Lagrangian masses,
transforming according to some representation(s) of G. The TC interaction becomes
strong at a scale ΛTC of order the electroweak scale, confining and producing a chiral
symmetry breaking technifermion condensate (Weinberg, Susskind, 1979); recent
review: Sannino, Acta Phys. Polon., arXiv:0911.0931).

Assign technifermions so L (R) components form SU(2)L doublets (singlets). Minimal
choice: “one-doublet” (1DTC) model with fund. rep. for technifermions uses

(

F τ
u

F τ
d

)

L

F τ
uR, F τ

dR

with TC indices τ and Y = 0 (Y = ±1) for SU(2)L doublet (singlets).

The SU(NTC) TC theory is asymptotically free, so as energy scale decreases, αTC

increases, eventually producing condensates; for generic NTC, these are 〈F̄uFu〉,
〈F̄dFd〉 transforming as Iw = 1/2, |Y | = 1, breaking EW symmetry at ΛTC.

Just as in the QCD example above, the W and Z pick up masses, but now involving
the TC scale:



m2
W ≃ g2 F 2

TC ND

4
, m2

Z ≃ (g2 + g′2) F 2
TC ND

4

again satisfying the tree-level relation ρ = 1 because of the Iw and Y of 〈F̄ F 〉. Here
FTC ∼ ΛTC is the TC analogue to fπ ∼ ΛQCD and ND = number of SU(2)L

technidoublets. For this minimal example, ND = 1, so FTC = 250 GeV. One may
also add SM-singlet technifermions to this model, as discussed further below.

Another class of TC models that was studied in the past (but is now disfavored) used
one SM family of technifermions (1FTC)

(

Uaτ

Daτ

)

L

Uaτ
R , Daτ

R

(

N τ

Eτ

)

L

N τ
R, Eτ

R

(a, τ color, TC indices) with usual Y assignments. Similar condensate formation, with
approx. equal condensates 〈F̄ F 〉 for F = Ua, Da, N, E, generating dynamical
technifermion masses ΣTC ∼ ΛTC, analogous to constituent quark mass ∼ ΛQCD in
QCD. Resultant m2

W and m2
Z given by formula above with ND = Nc + 1 = 4, so

FTC ≃ 125 GeV for 1FTC.



Technicolor has several appealing properties:

• Given the asymptotic freedom of the TC theory, the condensate formation and hence
EWSB are automatic, as in QCD, and do not require a specific parameter choice like
µ2 < 0 in the SM.

• Because TC has no fundamental scalar field, there is no hierarchy problem.

• Because 〈F̄ F 〉 = 〈F̄LFR〉 + 〈F̄RFL〉, technicolor explains why the chiral part of
GSM is broken and the residual exact gauge symmetry, SU(3)c × U(1)em, is
vectorial (also explained in SM).

However, TC by itself is not a complete theory; to give masses to quarks and leptons
(which are technisinglets), one must communicate the EWSB in the TC sector to these
SM fermions. For this purpose, one embeds TC in a larger, extended technicolor (ETC)
gauge theory with ETC gauge bosons transforming SM fermions into technifermions
(Dimopoulos and Susskind; Eichten and Lane, 1979-80).

An ETC theory thus gauges the SM fermion generation index and combines it with TC
gauge indices in the full ETC symmetry group.



To satisfy constraints on flavor-changing neutral current (FCNC) processes, ETC gauge
bosons must have large masses. These masses are envisioned as arising from sequential
breaking of the ETC chiral gauge symmetry.

Diagrams for generating SM fermion masses involve virtual exchanges of ETC gauge
bosons, so resultant masses depend on inverse powers of mETC,i. To account for the
hierarchy in the three generations of SM fermion masses, the ETC theory should break
sequentially at three corresponding scales, Λ1 > Λ2 > Λ3, e.g., Λ1 ≃ 103 TeV,
Λ2 ≃ 50 − 100 TeV, Λ3 ≃ few TeV.

The ETC theory is constructed to be asymptotically free, so as energy decreases from a
high scale, ETC coupling αETC grows, eventually becomes large enough to form
condensates that sequentially break the ETC symmetry to a residual exact subgroup,
which is the TC gauge group; so GETC ⊃ GTC.

An ETC theory is much more ambitious than the SM or MSSM because a successful
ETC model would predict the entries in the SM fermion mass matrices and the
resultant values of the quark and lepton masses and mixings. It would explain
longstanding mysteries like the mass ratios me/mµ, mu/md, md/ms, etc. Not
surprisingly, no fully realistic ETC model has yet been constructed, and TC/ETC
models face many stringent constraints.



Mass Generation Mechanism for Fermions

The ETC gauge bosons enable SM fermions, which are TC singlets, to transform into
technifermions and back. This provides a mechanism for generating SM fermion
masses. The figure shows a one-loop graph contributing to diagonal entries in mass
matrix for SM fermion f i. Basic ETC vertex is f i → f j + V i

j , with V i
j = ETC

gauge boson, 1 ≤ i, j ≤ 5; here we distinguish the first three ETC indices, which
refer to SM fermion generations, and additional ETC indices that are TC indices, by
denoting the latter as τ (with any color indices suppressed):

×

f i

R
F τ

R
F τ

L f i

L

V i

τ

Rough estimate:

M
(f)
ii ≃ 2α

ETC
C2(R)

π

∫

dk2 k2ΣTC(k)

[k2 + ΣTC(k)2][k2 + M 2
i ]

where Mi ≃ (g
ETC

/2)Λi ≃ Λi is the mass of the ETC gauge bosons that gain mass
at scale Λi, C2(R) = quadratic Casimir invariant. For Euclidean k ≫ ΛTC,
ΣTC(k) ≃ ΣTC(0)[ΣTC(0)/k]2−γ. In walking TC (WTC), γ may be ∼ O(1), so



ΣTC(k) ≃ ΣTC(0)2/k; contrast with QCD, where Σ(k) ≃ Σ(0)3/k2 for

k ≫ ΛQCD. In general, the TC/ETC calculation of M
(f)
ii gives

M
(f)
ii ≃ κ C2(R) η Λ3

TC

Λ2
i

where κ ≃ O(10) is a numerical factor from the integral and η is a RG factor,
discussed further below, that enhances the mass. This is only a rough estimate, since
ETC coupling is strong, so higher-order diagrams are also important.

The sequential breaking of the ETC symmetry at the highest scale, Λ1, the
intermediate scale, Λ2, and the lowest scale, Λ3, thus produces the generational
hierarchy in the SM fermion masses. Since these ETC scales enter as inverse powers in
the resultant SM fermion masses and since Λ1 is the largest ETC scale, it follows that
first-generation fermion masses are the smallest, and since Λ3 is the smallest ETC
scale, third-generation fermion masses are the largest.



There are mixings among the interaction eigenstates of the ETC gauge bosons to form
mass eigenstates. Insertions of these on ETC gauge boson lines lead to CKM and
lepton mixing ( Appelquist and RS, Phys. Lett. B 548, 204 (2002); Appelquist and RS,
Phys. Rev. Lett. 90, 201801 (2003); Appelquist, Piai, RS, Phys. Rev. D 69, 015002
(2004); Christensen and RS, Phys. Rev. D 74, 015004 (2006)).

Since SM fermion masses arise dynamically, the running mass mfi
(p) of a SM fermion

of generation i is constant up to the ETC scale Λi and has the power-law decay
(Christensen and RS, Phys. Rev. Lett. 94, 241801 (2005)):

mfi
(p) ∼ mfi(0)

Λ2
i

p2

for Euclidean momenta p ≫ Λi (neglect subdominant logarithmic factors).

Thus, e.g., the third-generation quark masses mt(p) and mb(p) decay like Λ2
3/p2 for

p ≫ Λ3, while the first-generation quark masses mu(p) and md(p) are hard up to
the much higher scale Λ1, eventually decaying like Λ2

1/p2 for p ≫ Λ1.



UV to IR Evolution and Walking (Quasi-Conformal) TC

TC models that behaved simply as scaled-up versions of QCD were excluded by their
inability to produce sufficiently large fermion masses (especially for the third generation)
without having ETC scales so low as to cause excessively large FCNC.

Modern TC theories are constructed to have a coupling g
TC

that gets large, but runs
slowly (“walks”) over an extended interval of energy (WTC) (Holdom, Yamawaki et al.,
Appelquist, Wijewardhana...).

This walking (quasi-conformal) behavior arises naturally from an approximate IR zero of
the perturbative beta function:

β(α
TC

) =
dαTC

dt
= −

α2
TC

2π

(

b1 +
b2 α

TC

4π
+ O(α2

TC
)

)

where t = ln µ, with b1 > 0 - asymp. freedom. For sufficiently many technifermions,
b2 < 0, so β has a second zero (approximate IR fixed point of RG) at
α

TC
= −4πb1/b2 ≡ α

IR
.



If Nf < Nf,cr (depending on technifermion rep. of GTC, R), as the theory evolves
from the UV to IR, α

TC
gets large, but runs slowly because β approaches this zero at

α
IR

. For TC, we want to choose Nf so that α
IR

is slightly greater than the minimal
value αcr for technifermion condensation. Then the TC theory has quasi-conformal
behavior, with a large α

TC
(µ) over an extended interval of energies µ.

As α
TC

(µ) eventually exceeds αcr at µ ∼ ΛTC, the technifermion condensate 〈F̄ F 〉
forms, the technifermions gain dynamical masses, and in the low-energy theory at
smaller µ, they are integrated out, so the TC beta function changes, and α

TC
evolves

away from α
IR

which is thus an approximate IR fixed point (IRFP).

Because WTC has approx. dilatational invariance, which is dynamically broken by the
〈F̄ F 〉 condensate, it has been suggested that this could lead to a light approx.
Nambu-Goldstone boson (NGB), the techidilaton (Yamawaki..Goldberger, Grinstein,
and Skiba; Sannino...; Appelquist and Bai; see also Bardeen et al.; Holdom and
Terning). This might be as light as 125 GeV and could have couplings to SM fields
similar to those of the SM Higgs.

Currently, there are initial indications in ATLAS and CMS data of a possible state at
about 125 GeV, seen in several channels. If confirmed, this might be the SM Higgs, but
it might instead be a technidilaton. Further experimental and theoretical studies are
necessary to decide this question.



For Nf > Nf,cr, the theory would evolve from the UV to the IR in a chirally
symmetric manner, without ever producing 〈F̄ F 〉, so the (initially massless)
technifermions remain massless, and the IRFP is exact. This IR-conformal phase
(“conformal window”) is of basic field-theoretic interest, although for TC
model-building, we should choose the technifermion content so that we are in the phase
with SχSB, as is necessary for EWSB.

Walking TC has several desirable features.

• SM fermion masses are enhanced by the factor

ηi = exp

[
∫ Λi

ΛTC

dµ

µ
γ(α

TC
(µ))

]

If γ is approximately constant over this range of µ, then ηi = (Λi/ΛTC)γ, which
can be substantially larger than 1.

• Hence, one can increase ETC scales Λi for a fixed mfi
, reducing FCNC effects.



To analyze this, study the Dyson-Schwinger (DS) equation for the fermion propagator;
for α > αcr, this yields a nonzero sol. for a dynamically generated fermion mass.
Simple ladder approx. to DS eq. gives αcrC2(R) ∼ O(1), where R is fermion rep.
Detailed studies for higher-dim. R: Sannino, Dietrich, Ryttov...

As number of technifermions, Nf , increases, α
IR

decreases, and Nf ր Nf,cr as
α

IR
ց αcr. This yielded the estimate Nf,cr ≃ 4NTC.

Corrections to the conventional DS equation analysis to take account of confinement
and instantons tend to cancel each other, as regards Nf,cr (Brodsky and RS, Phys.
Lett. 666, 95 (2008)). For discussion on condensates, see Roberts’ talk at this conf.

Lattice gauge simulations provide a fully nonperturbative determination of Nf,cr and
measurement of the anomalous dimension γ that describes the running of m and the
bilinear operator, F̄ F as a function of ln µ. In recent years, intensive work using
lattice methods to determine these quantities for SU(3), SU(2), and various fermion
representations, including fundamental, adjoint, and 2-index symmetric tensor reps.



Higher-loop corrections to UV → IR evolution of gauge
theories

Because of the strong-coupling nature of the physics at an approximate IRFP of interest
to TC theories, there are generically significant higher-order corrections to results
obtained from the two-loop β function.

This motivates the calculation of the location of the IR zero in β and the value of
γ = γ(α) for an SU(N ) gauge thy. evaluated at α = α

IR
to higher-loop order. We

have done this to 3-loop and 4-loop order (Ryttov and RS, PRD 83, 056011 (2011),
arXiv:1011.4542; see also Pica and Sannino, PRD 83,035013 (2011), arXiv:1011.5917).
This is of general field-theoretic interest, beyond the specific application to technicolor.

We have recently extended this analysis to an N = 1 supersymmetric SU(N ) theory
in Ryttov and RS, arXiv:1202.1297. First discuss nonsupersymmetric theory.

Although the coefficients in the beta function at 3-loop and higher-loop order are
scheme-dependent, the results give a measure of the accuracy of the 2-loop calculation
of the IR zero, and similarly with the value of γ evaluated at this IR zero. We use the
MS scheme, for which the coefficients of β and γ have been calculated up to 4-loop
order by Vermaseren, Larin, and van Ritbergen.



Analytic and numerical results are presented in our paper; here we only list numerical
results. We find that for given SU(N ) (N ≡ NTC) and fermion content for which ∃
IR zero of β, the 3- and 4-loop values of α

IR
are smaller than the 2-loop value.

Results for Nf technifermions in the fundamental rep. of SU(N ) for N = 2, 3:

N Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ

2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398



Similarly, we find that for given N , R, and Nf , the value of γ calculated to 3-loop and
4-loop order and evaluated at the value of α

IR
calculated to the same order is

somewhat smaller than the 2-loop value:

For Nf technifermions in R = fundamental rep. of SU(N ) for N = 2, 3:

N Nf γ2ℓ(αIR,2ℓ) γ3ℓ(αIR,3ℓ) γ4ℓ(αIR,4ℓ)
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259



Figure 1: Anomalous dimension γ for SU(2) for Nf fermions in the fundamental representation; (i) blue:

2-loop; (ii) red: 3-loop; (iii) brown: 4-loop calculation (Nf,max = 11).



Figure 2: Anomalous dimension γ for SU(3) for Nf fermions in the fundamental representation; (i) blue:

2-loop; (ii) red: 3-loop; (iii) brown: 4-loop calculation (Nf,max = 16.5).



The value of our higher-loop calculations to 3-loop and 4-loop order is evident from
these figures. A necessary condition for a perturbative calculation to be reliable is that
higher-order contributions do not modify the result too much. One sees from the tables
and figures that as Nf decreases and hence α

IR
increases, there is a substantial

decrease in α
IR

and γ when one goes from 2-loop to 3-loop order, but for a reasonable
range of Nf , the 3-loop and 4-loop results are close to each other.

Thus, our higher-loop calculations of α
IR

and γ allow us to probe the theory reliably
down to smaller values of Nf , stronger couplings. Of course, because of the increase in
α

IR
as Nf decreases, perturbative calcs. of α

IR
and γ eventually get less reliable.

Values of γ in parentheses are unphysically large.

In the phase with confinement and SχSB, α
IR

is only an approximate IRFP and γ is
only an effective quantity describing the theory at scales µ where α is near to α

IR
. In

the conformal phase, an IRFP is exact (although our perturbative calculation of it is
only approximate), and γ describes the scaling of the bilinear F̄ F at this IRFP.



Some examples of comparison with lattice measurements:

For SU(3) with Nf = 12, from the table above,

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

Lattice results:

γ = 0.414 ± 0.016 (Appelquist, Fleming, Lin, Neil, Schaich, PRD 84, 054501
(2011), arXiv:1106.2148, analyzing data of Kuti et al., PLB 703, 348 (2011),
arXiv:1104.3124, inferring consistency with conformality)

γ ∼ 0.35 (DeGrand, arXiv:1109.1237, also analyzing Kuti et al. data ).

So here the 2-loop value is slightly larger than, and the 3-loop and 4-loop values closer
to, these lattice measurements.

Thus, this improved agreement with lattice results using our higher-order calculations
also shows the value of these computations.



We have also carried out these higher-loop calculations for fermions in larger
representations. For fermions in the adjoint representation, Nf ≤ 2 to maintain
asymptotic freedom. For Nf = 2 we find

N αIR,2ℓ,adj αIR,3ℓ,adj αIR,4ℓ,adj

2 0.628 0.459 0.493
3 0.419 0.306 0.323

N γ2ℓ,adj(αIR,2ℓ,adj) γ3ℓ,adj(αIR,3ℓ,adj) γ4ℓ,adj(αIR,4ℓ,adj)
2 0.820 0.543 0.571
3 0.820 0.543 0.561

For SU(2) with Nf = 2 fermions in the adjoint rep., lattice results include (caution:
various groups quote uncertainties differently):

γ = 0.49 ± 0.13 (Catterall, Del Debbio et al., arXiv:1010.5909, PoS(Lat2010) 057)

γ = 0.31 ± 0.06 (DeGrand, Shamir, Svetitsky, PRD 83, 074507 (2011)

γ = 0.17 ± 0.05 (Appelquist et al., PRD 84, 054501 (2011), arXiv:1106.2148)

−0.6 < γ < 0.6 (Catterall, Del Debbio, et al., arXiv:1108.3794)



It is of interest to carry out a similar analysis in an asymptotically free N = 1
supersymmetric gauge theory with vectorial chiral superfield content Φ, Φ̃ in the
R, R̄ reps. for various R, since here Nf,cr is known (Seiberg for F = R; Ryttov and
Sannino for higher R).

We have done this for an SU(N ) gauge theory in Ryttov and RS, arXiv:1202.1297. In
the susy case, there is a bound γ ≤ 1 for a theory in the IR conformal phase. Insofar
as perturbative calculations are reliable, they indicate that γ increases (from 0) as Nf

decreases from Nf,max. So we get a perturbative estimate for Nf,cr by setting the
perturbatively calculated γ = 1 and solving for Nf .

For example, for R = F , fundamental rep., Nf,max = 3N ,
Nf,cr = (1/2)Nf,max = (3/2)N . Perturbative estimates are approx. 1.3 to 1.4
times larger than exact result. Similar results for higher-dim. reps.

So via this comparison, we find that perturbative results slightly overestimate the value
of Nf,cr compared with the exact results, i.e., slightly underestimate the size of the
IR-conformal phase.



Some Constraints on TC/ETC Models

Early studies of ETC considered the TC theory as an effective low-energy theory and
added various plausible four-fermion operators linking SM fermions and technifermions.

Part of our work has focused on constructing reasonably UV-complete ETC models that
predict the forms and coefficients of the four-fermion operators in the effective
low-energy technicolor theory.

Typically, ETC is arranged to be an asymptotically free chiral gauge theory, and includes
a set of SM-singlet, ETC-nonsinglet fermions chosen so that as the scale decreases
from the deep UV, the ETC gauge coupling becomes large enough to produce
condensates of these SM-singlet fermions, which break the ETC gauge symmetry.

Since this involves strongly coupled gauge interactions, it is not precisely calculable, but
the pattern of condensate formation can be plausibly determined by the most attractive
channel (MAC) criterion. Some studies include Appelquist and Terning, PRD 50, 2116
(1994); Appelquist and RS, PLB 548, 204 (2002); PRL 90, 201801 (2003); Appelquist,
Piai, RS, PRD 69, 015002 (2004); Christensen and RS, PRD 74, 015004 (2006); Ryttov
and RS PRD 81, 115013 (2010); Ryttov and RS, PRD 84, 056009 (2011).



To account for the three generations of SM fermion masses, there is a sequential
breaking of the ETC gauge symmetry, at the three scales Λi, i = 1, 2, 3. Although
the full ETC theory is chiral, we focus here on ETC models with vectorial couplings to
quarks and charged leptons, denoted VSM ETC models.

At the highest scale, Λ1, GETC breaks to HETC, and the gauge bosons in the coset
GETC/HETC gain masses ∼ g

ETC
Λ1 ∼ Λ1, and so forth for the breakings at the

two lower scales Λ2 and Λ3.

Studies of reasonably UV-complete models showed how not just diagonal, but also
off-diagonal, elements of SM fermion mass matrices could be produced, via nondiagonal
propagator corrections to ETC gauge bosons, V i

τ → V j
τ , where i, j are generation

indices and τ is a TC index (Appelquist, Piai, RS, PRD 69, 015002 (2004)).

A feature that was found in these studies of reasonably UV-complete ETC models was
the presence of approximate residual generational symmetries that naturally suppress
these ETC gauge boson propagator corrections and hence also off-diagonal elements of
SM fermion mass matrices.

Further, a possible mechanism to account for the very small neutrino masses was
presented. This made use of suppressed Dirac and Majorana neutrino masses leading to
a low-scale seesaw (Appelquist and RS, PLB 548, 204 (2002); PRL 90, 201801 (2003)).



TC/ETC theories are constrained by FCNC processes. These can be suppressed by
making the ETC breaking scales Λi sufficiently large, but this is restricted by the
requirement that one not cause excessive suppression of SM fermion masses.

One insight from studies of reasonably UV-complete ETC models was that the
approximate residual generational symmetries suppress the FCNC effects.

For example, consider K0 − K̄0 mixing and resultant KL − KS mass difference
∆mKLKS

. SM contribution consistent with experimental value
∆mKLKS

/mK ≃ 0.7 × 10−14.

Simple effective Lagrangian used in early studies without a UV-complete ETC theory:
Leff = c[sγµd]2 with coefficient c ∼ 1/Λ2

ETC, usually with just a single generic
ETC scale.

Now in terms of ETC eigenstates, an sd̄ in a K̄0 produces a V 2
1 ETC gauge boson,

but this cannot directly yield a ds̄ in the final-state K0; the latter is produced by a
V 1

2 . So this requires either the ETC gauge boson mixing V 2
1 → V 1

2 or the related
mixing of ETC quark eigenstates to produce mass eigenstates.

The ETC gauge boson propagator insertion 1
2Π

2
1 required for this breaks the

generational symmetries associated with the i = 1 and i = 2 generations, and hence



|12Π2
1| <∼ Λ2

2

Therefore, the contribution to K̄0 → K0 transition from V 2
1 → V 1

2 :

|c| <∼
1

Λ2
1

1
2Π

2
1

1

Λ2
1

∼ Λ2
2

Λ2
1

1

Λ2
1

≪ 1

Λ2
1

With above values for Λ1 and Λ2, the suppression factor is (Λ2/Λ1)
2 ≃ 10−2. So

rather than the naive result ∆mKLKS
/mK ∼ Λ2

QCD/Λ2
1, this yields the considerably

smaller result

∆mKLKS

mK

∼
Λ2

2 Λ2
QCD

Λ4
1

∼ 10−15

which agrees with experimental limits on new-physics contributions.



Similar analysis applies to ETC contributions to a number of other FCNC processes.
Some studies of FCNC constraints that take account of these approximate generational
symmetries include Appelquist, Piai, RS, PLB 593, 175 (2004); PLB 595, 442 (2004);
Appelquist, Christensen, Piai, RS, PRD 70, 093010 (2004). TC theories may also
provide viable dark matter candidates, as discussed by Nussinov, Sannino...

It remains challenging to construct a TC/ETC model (e.g. VSM type) that does
everything that is demanded of it, including sufficient suppression of FCNC effects and
accounting for realistic quark, charged lepton, and neutrino masses and quark and
lepton mixing. Example of a recent study, invoking additional interactions: Ryttov and
RS, Phys. Rev. D 82, 055012 (2010).



Constraints from precision electroweak data: ∆ρ = αem(mZ)T and S, where

αemS

sin2(2θW )
=

ΠZZ(m2
Z) − ΠZZ(0)

m2
Z

S is sensitive to heavy fermion loop contributions to Z propagator.

From experimental data, SM fits obtain allowed regions in S and T , depending on an
assumed value of mH mass; in general, S <∼ 0.2 (90 % CL).

Naive perturbative estimate (which is not applicable, since TC is nonperturbative at
scale mZ):

(∆S)TC,pert. ≃ dim(RTC) ND

6π

where dim(RTC) is the dimension of the TC fermion rep., e.g., dim(RTC) = NTC

for fundamental. If TC were QCD-like, nonperturbative effects would yield
(∆S)TC ≃ 2(∆S)TC,pert. (Peskin-Takeuchi, 1990), which, together with too-small
SM fermion masses, showed that TC could not be a scaled-up QCD-like theory.



A viable TC model must have a reduction in (∆S)TC wrt. its QCD-like value. This
motivates building TC models with the minimal content of SU(2)L-nonsinglet
technifermions.

Studies of Dyson-Schwinger equations have shown that (∆S)TC (per EW doublet) is
somewhat reduced in walking TC as compared with its QCD-like value: Harada,
Kurachi and Yamawaki, Prog. Theor. Phys. 115, 765 (2006); Kurachi and RS, Phys.
Rev. D 74, 056003 (2006); Kurachi, RS, Yamawaki, Phys. Rev. D 76, 035003 (2007).
Further analytic work in Sannino, Phys. Rev. D82, 081701 (2010).

Lattice simulations (Appelquist et al., (LSD Collab.), with SU(3) with Nf = 6, fund.
rep., have also found a reduction in (∆S)TC (per EW doublet) wrt. its QCD-like value
(PRL 106, 231601 (2011)).

In general, the constraint from the S parameter remains a crucial and stringent one for
TC/ETC theories.



Collider signals for TC/ETC theories and constraints from
early LHC data

Although TC/ETC theories have been constrained indirectly from flavor physics,
precision electroweak quantities, and searches at the Tevatron, key tests are now
forthcoming with the data from the LHC.

Some collider signals for TC depend on the type of model. A general signature that
applies to all technicolor models results from the property that the technihadrons
include a techni-ρ, denoted ρTC. In QCD the ρ couples strongly to ππ and decays to
ππ with a large width, so also in technicolor.

In TC, the technipions are absorbed to become the longitudinal components of the
W ± and Z. Hence at sufficiently high energy the scattering of longitudinally polarized
W and Z’s will be enhanced by resonant s-channel contributions:

W +
L W −

L → ρ0
TC → W +

L W −
L

W +
L ZL → ρ+

TC → W +
L ZL



The ρTC mass, mρTC
mass can be roughly estimated from

mρTC

mρ

≃ ΛTC

ΛQCD

≃ fTC

fπ

(

Nc

NTC

)1/2

where fTC ≃ 250 GeV for a one-doublet TC theory. With fπ = 93 MeV and
mρ = 775 MeV, this yields

mρTC
≃ (2.0 TeV)

(

Nc

NTC

)1/2

Studies of meson masses in WTC (Kurachi and RS, JHEP 12, 034 (2006)) obtained an
approx. 30 % increase in mρTC

/mρ relative to this QCD-like estimate, suggesting

that mρTC
≃ (2.6 TeV)

√

Nc/NTC in a WTC theory.

By analogy with ρ → ππ in QCD, the ρTC would decay as ρ0
TC → W +W − and

ρ+
TC → W +Z. For the width of such a technihadron, a rough estimate is

ΓρTC

Γρ

∼ ΛTC

ΛQCD

so, with Γρ ≃ 150 MeV, one has ΓρTC
∼ 250 GeV. Similar for other technihadrons.



LHC can search for this resonant behavior, but this will require substantially more
integrated luminosity than the present

∫ Ldt = 5 fb−1 per experiment. Recent
analysis of TC signatures for the LHC: J. Andersen et al., arXiv:1104.1255; estimates
suggest that clear observation of this resonant behavior may require
∫ Ldt ∼ 50 − 100 fb−1 at

√
s = 14 TeV.

For an example of how current LHC data are useful in constraining technicolor models,
consider the one-family TC model. This is already in some tension with precision
electroweak constraints, since it yields (∆S)TC,pert. = NTC ND/(6π). Now
ND = Nc + 1 = 4 in this one-family model, so even if one takes the minimum value,
NTC = 2, this is (∆S)TC,pert. = 4/(3π) = 0.4 (reduced somewhat in WTC).

The one-family TC model makes two predictions for techni-hadrons that are tested with
current LHC data.

The first is a large number of pseudo-NGB’s (PNGB’s). If one neglects ETC effects and
uses the fact that the SM gauge interactions are weak at the EW scale, then a generic
one-family TC model has an SU(8)L × SU(8)R global chiral symmetry (where
8 = Nw(Nc + 1)). The technifermion condensates break this to SU(8)V , yielding 63
(P)NGB’s, of which 3 NGB’s are eaten. The PNGB’s gain masses from color and ETC
interactions that break the above global chiral symmetry, but some of them include



color-nonsinglet states and could have masses of order several 100 GeV. There is no
evidence for these at the LHC.

In particular, the one-family TC model predicts color-octet Q̄a(Tα)a
bQ

b pseudoscalar
and vector states, where Q are techniquarks and Tα,α = 1, ..., 8 are SU(3)c

generators. The mass of the color-octet ρ
(8)
TC can be estimated as above, with

fTC ≃ 125 GeV, yielding m
ρ
(8)
TC

≃ 1.3
√

Nc/NTC TeV. Walking might raise this

mass slightly, as noted above.

CMS and ATLAS have set lower bounds on color-octet resonances of 2.5 TeV. Although
the mass estimates for TC theories have significant uncertainties owing to the strongly
coupled nature of the TC physics, this causes tension with the one-family TC model.

Note that minimal technicolor models are consistent with these LHC data. They use
only color-singlet technifermions, so there are no color-nonsinglet technihadrons, and
they have only one SU(2)L doublet of left-handed technifermions (with corresponding
SU(2)L-singlet right-handed technifermions), so the resultant three SM-nonsinglet
NGB’s are all eaten by the W ± and Z and there are no residual SM-nonsinglet
(P)NGB’s. Because they use a minimal SM-nonsinglet technifermion content, they also
have the potential to yield an acceptably small value of S.



Some Further Model-Building Results

LHC results thus motivate further study of TC (1DTC) models with minimal
technifermion content, consisting of one (color-singlet) SU(2)L doublet with
corresponding right-handed components. In general, these models have additional
SM-singlet technifermions.

A number of studies of this type of theory using higher-dim. reps. for technifermions by
Sannino and coworkers (Dietrich, Tuominen, Ryttov, incl. Dietrich, Sannino, and
Tuominen, PRD 72, 055001 (2005), Sannino review in arXiv:0911.0931). A recent
study using technifermions in fundamental rep. is Ryttov, RS, PRD 84, 056009 (2011).

Another question concerns the extent to which one can embed TC, ETC in a theory
having higher gauge unification, using dynamical symmetry breaking. This would be
desirable in order to explain features not explained by the standard model:

• unification of quarks and leptons

• charge quantization

We have shown how, in principle, this is possible, using an extended strong-EW gauge
group SU(4)PS × SU(2)L × SU(2)R (Appelquist and RS, PRL 90, 201801 (2003)).



Prospects for possible higher unification of both TC and SM symmetries have also been
studied; recent discussions include Christensen and RS, PR D72, 035013 (2005);
Gudnason, Ryttov, Sannino, PR D76, 015005 (2007); Chen and RS, PR D78, 035002
(2008); Chen, Ryttov, and RS, PR D82, 116006 (2010)).



Conclusions

Dynamical electroweak symmetry breaking via technicolor is an interesting and
well-motivated possibility. Its embedding in ETC is very ambitious and encounters a
number of challenges. So far, model-building work has shown

• how a new gauge interaction that becomes strongly coupled on the TeV scale
naturally produces EWSB, W and Z masses

• how an associated large but slowly running gauge coupling can result from an
approximate IR fixed point, enhancing fermion mass generation and leading to
reduction in TC modifications of precision electroweak quantities; higher-loop
calculations have been valuable in understanding the UV to IR evolution of such a
theory

• how fermion generations could arise, by sequential breaking of ETC symmetry; how
the EWSB could be communicated to the fermions and hence how quark and lepton
masses could arise

• Dynamical EWSB has distinctive experimental signatures that can be probed at the
LHC, including resonant scattering of longitudinally polarized W and Z, and also a
possible light technidilaton.


