S parameter at non-zero temperature and chemical potential

Ulrik Ishøj Søndergaard

CP3 - Origins

Particle Physics \& Origin of Mass

February 2012
Søndergaard, Pica, Sannino: Phys. Rev. D 84, 075022 (2011)

Electroweak Precision Observables

α
Electron anomalous magnetic moment

G_{F}

m_{Z}

Muon lifetime

Resonance

JI^S

At Lagrangian level

$$
\mathcal{L}=\mathcal{L}\left(g, g^{\prime}, v\right)
$$

$$
m_{H}^{2} \quad \lambda
$$

At Lagrangian level

$$
\mathcal{L}=\mathcal{L}\left(g, g^{\prime}, v\right)
$$

Broken phase:

$$
m_{H}^{2} \quad \lambda
$$

$$
\mathcal{L}=\mathcal{L}\left(e_{0}, s_{0}, v\right)
$$

Experimental setup: External fermions are light

Experimental setup: External fermions are light

$\Longrightarrow \quad q^{\mu} q^{\nu}$-term in propagators suppressed
$\Longrightarrow \quad$ 'direct' BSM corrections suppressed

Experimental setup: External fermions are light

$\Longrightarrow \quad q^{\mu} q^{\nu}$-term in propagators suppressed
$\Longrightarrow \quad$ 'direct' BSM corrections suppressed

Tree-Level expression Example: Charged Current

$$
\mathcal{M}_{W W}=\frac{e_{0}^{2}}{2 s_{0}^{2}} I_{+} \frac{1}{q^{2}-m_{w, 0}^{2}} I_{-}
$$

Tree-Level expression Example: Charged Current

$$
\mathcal{M}_{W W}=\frac{e_{0}^{2}}{2 s_{0}^{2}} I_{+} \frac{1}{q^{2}-m_{w, 0}^{2}} I_{-}
$$

All Orders Vacuum Polarization

$$
\mathcal{M}_{W W}=\frac{e_{*}^{2}}{2 s_{*}^{2}} I_{+} \frac{Z_{W, *}}{q^{2}-m_{W, *}^{2}} I_{-}
$$

*'ed $^{\text {q }}$ quantities depend on q^{2}

Tree-Level expression Example: Charged Current

$$
\mathcal{M}_{W W}=\frac{e_{0}^{2}}{2 s_{0}^{2}} I_{+} \frac{1}{q^{2}-m_{w, 0}^{2}} I_{-}
$$

All Orders Vacuum Polarization

$$
\mathcal{M}_{W W}=\frac{e_{*}^{2}}{2 s_{*}^{2}} I_{+} \frac{Z_{W, *}}{q^{2}-m_{W, *}^{2}} I_{-}
$$

${\text { *'ed quantities depend on } q^{2}}^{2}$

+ Most SM corrections can be absorbed into these variables (including direct corrections)

Choosing a scheme

$$
S_{W} \equiv ?
$$

Choosing a scheme

$$
\text { 'On shell' } \sin ^{2} \theta_{W}=1-\frac{m_{W}^{2}}{m_{Z}^{2}}
$$

$S_{W} \equiv ?$

Choosing a scheme

'On shell' $\sin ^{2} \theta_{W}=1-\frac{m_{W}^{2}}{m_{Z}^{2}}$
$s_{w} \equiv$?

$$
\sin 2 \theta_{w}=\sqrt{\frac{4 \pi \alpha_{s m *}\left(m_{Z}^{2}\right)}{\sqrt{2} G_{F} m_{Z}^{2}}}
$$

Choosing a scheme

'On shell' $\sin ^{2} \theta_{W}=1-\frac{m_{W}^{2}}{m_{Z}^{2}}$
$s_{w} \equiv ?$

$$
\sin 2 \theta_{w}=\sqrt{\frac{4 \pi \alpha_{s m}\left(m_{Z}^{2}\right)}{\sqrt{2} G_{F} m_{Z}^{2}}}
$$

We can now compute any EW observable as an expression of s_{w}, α, G_{F} and m_{Z}

Up to corrections from new physics!
M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 \leftarrow SM mw calc. + others

Choosing a scheme

$$
\begin{array}{ll}
S_{W} \equiv ? & \text { 'On shell' } \sin ^{2} \theta_{W}=1-\frac{m_{W}^{2}}{m_{Z}^{2}} \\
& \quad \text { Better: } \\
\sin 2 \theta_{w}=\sqrt{\frac{4 \pi \alpha_{s m *}\left(m_{Z}^{2}\right)}{\sqrt{2} G_{F} m_{Z}^{2}}}
\end{array}
$$

We can now compute any EW observable as an expression of s_{w}, α, G_{F} and m_{Z}

Up to corrections from new physics!
EX: $\quad \begin{array}{c}\frac{m_{W}^{2}}{m_{Z}^{2}}-\cos ^{2} \theta_{w} \\ =\frac{\alpha c^{2}}{c^{2}-s^{2}}[-\frac{1}{2} \underbrace{16 \pi\left(\Pi_{33}^{\prime}(0)-\Pi_{30}^{\prime}(0)\right)}_{\equiv S}+\underbrace{c^{2}}_{\equiv T} \underbrace{s^{2} c^{2} m_{2}^{2}}_{\equiv U}\left(\Pi_{11}(0)-\Pi_{33}(0)\right)\end{array}+\frac{c^{2}-s^{2}}{4 s^{2}} \underbrace{16 \pi\left(\Gamma_{1}\right.}_{\equiv T\left(\Pi_{11}(0)-\Pi_{33}^{\prime}(0)\right)}]$
M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 \leftarrow SM mw calc. + others

DIAS

GFITTER

Definitions

Peskin-Takeuchi

$$
\begin{aligned}
S & =16 \pi\left(\Pi_{33}^{\prime}(0)-\Pi_{3 \varrho}^{\prime}(0)\right) \\
& =-16 \pi \Pi_{3 \gamma}^{\prime}(0)
\end{aligned}
$$

Definitions

Peskin-Takeuchi $\quad S=16 \pi\left(\Pi_{33}^{\prime}(0)-\Pi_{3 Q}^{\prime}(0)\right)$

$$
q^{2} \rightarrow 0 \uparrow=-16 \pi \Pi_{3 Y}^{\prime}(0)
$$

He-Polonsky-Su

$$
S=-\left.16 \pi \frac{\Pi_{3 Y}\left(q^{2}\right)-\Pi_{3 Y}(0)}{q^{2}}\right|_{q^{2}=m_{Z}^{2}}
$$

We will not do this

Definitions

Peskin-Takeuchi $\quad S=16 \pi\left(\Pi_{33}^{\prime}(0)-\Pi_{3 Q}^{\prime}(0)\right)$

$$
q^{2} \rightarrow 0 \uparrow=-16 \pi \Pi_{3 Y}^{\prime}(0)
$$

He-Polonsky-Su $\quad S=-\left.16 \pi \frac{\Pi_{3 Y}\left(q^{2}\right)-\Pi_{3 Y}(0)}{q^{2}}\right|_{q^{2}=m_{Z}^{2}}$

$$
\begin{gathered}
\substack{T \rightarrow 0 \\
\mu \rightarrow 0} \\
S=-16 \pi \frac{\Pi_{3 \gamma}\left(q^{2}, x, T, \mu\right)-\Pi_{3 \gamma}(0, x, T, \mu)}{q^{2}} \\
q_{0}=x|\mathbf{q}|, \quad q^{2}=q_{0}^{2}-\mathbf{q}^{2} \quad x=\operatorname{coth} \eta \geq 1
\end{gathered}
$$

S at zero T and μ

Degenerate technifermions: No Y dependence

$$
\begin{aligned}
S\left(q^{2} / m_{T F}^{2}\right) & =\frac{\sharp}{6 \pi}\left[1+\frac{1}{10} \frac{q^{2}}{m_{T F}^{2}}+\frac{1}{70} \frac{q^{4}}{m_{T F}^{4}}+\mathcal{O}\left(\frac{q^{6}}{m_{T F}^{6}}\right)\right] \\
\sharp & =d[r] N_{T F} / 2 \\
\text { fund: } & =N_{T C} N_{T F} / 2
\end{aligned}
$$

S at zero T and μ

Degenerate technifermions: No Y dependence

$$
S\left(q^{2} / m_{T F}^{2}\right)=\frac{\#}{6 \pi}\left[1+\frac{1}{10} \frac{q^{2}}{m_{T F}^{2}}+\frac{1}{70} \frac{q^{4}}{m_{T F}^{4}}+\mathcal{O}\left(\frac{q^{6}}{m_{T F}^{6}}\right)\right]
$$

$$
\begin{aligned}
\sharp & =d[r] N_{T F} / 2 \\
\text { fund: } & =N_{T C} N_{T F} / 2
\end{aligned}
$$

S at zero T and μ

Degenerate technifermions: No Y dependence

$$
S\left(q^{2} / m_{T F}^{2}\right)=\frac{\sharp}{6 \pi}\left[1+\frac{1}{10} \frac{q^{2}}{m_{T F}^{2}}+\frac{1}{70} \frac{q^{4}}{m_{T F}^{4}}+\mathcal{O}\left(\frac{q^{6}}{m_{T F}^{6}}\right)\right]
$$

$$
\begin{aligned}
\sharp & =d[r] N_{T F} / 2 \\
\text { fund: } & =N_{T C} N_{T F} / 2
\end{aligned}
$$

$$
S(0)=\frac{\#}{6 \pi}
$$

2-loop perturbation

2-loop perturbation

WSR + vector dominance + Large N rescaling

$$
S(0) \simeq 1.57 \frac{\#}{6 \pi}>\frac{\#}{6 \pi}
$$

2-loop perturbation

$>\frac{\#}{6 \pi}$

WSR + vector dominance + Large N rescaling

$$
S(0) \simeq 1.57 \frac{\#}{6 \pi}>\frac{\#}{6 \pi}
$$

WSR + more sophisticated approx + Large N rescaling

$$
S(0) \simeq 1.88 \frac{\sharp}{6 \pi}>\frac{\#}{6 \pi}
$$

Calculation

For a degenerate technifiermion doublet: $\Pi_{3 Y}=\frac{1}{2} \Pi_{L R}$

$$
\begin{aligned}
\quad \Pi_{L H}^{\mu \nu} & =T \sum_{l=-\infty}^{\infty} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{\mu} P_{L} \frac{p p+m}{p^{2}-m^{2}} \gamma^{v} P_{H} \frac{q+\not p+m}{(q+p)^{2}-m^{2}}\right] \\
p^{0} & =i(2 l+1) \pi T+\mu
\end{aligned}
$$

$$
S=-8 \pi \frac{\Pi_{L R}\left(x, q^{2}, T, \mu\right)-\Pi_{L R}(x, 0, T, \mu)}{q^{2}}
$$

Results

Cold ($\beta \mathrm{m} \gg 1$):

$$
S_{+}=-\frac{\#}{6 \pi} \frac{\cosh (\beta \mu) \operatorname{sech}^{4}(\eta \eta}{1-\left(\frac{q(m)}{2 \cosh \eta}\right)^{2}} \frac{3 \sqrt{2 \pi}}{(\beta m)^{3 / 2}} e^{-\beta m} \cdot\left(1+\mathcal{O}\left(\frac{1}{\beta m}\right)\right)
$$

Results

Cold ($\beta m \gg 1$):

$$
S_{+}=-\frac{\#}{6 \pi} \frac{\cosh (\beta \mu) \operatorname{sech}^{4}(\eta)}{1-\left(\frac{q / m}{2 \cosh n}\right)^{2}} \frac{3 \sqrt{2 \pi}}{(\beta m)^{3 / 2}} e^{-\beta m} \cdot\left(1+\mathcal{O}\left(\frac{1}{\beta m}\right)\right)
$$

Hot ($\beta \mathrm{m} \ll 1$): Result factorizes

$$
\begin{aligned}
& S_{+}=-S_{0}+\operatorname{sech}^{2}\left(\frac{1}{2} \beta \mu\right) \cosh (\eta) S_{+}^{(1)}\left(q^{2} / m^{2}\right)(\beta m)+\mathcal{O}\left(\beta^{3} m^{3}\right) \\
& S_{+}^{(1)}\left(q^{2} / m^{2}\right)=\frac{3 \pi}{q^{2} / m^{2}}\left(1+i \sqrt{\frac{1}{4} \frac{q^{2}}{m^{2}}-1}\right) \quad \text { No remnant of } T=0 \text { result! }
\end{aligned}
$$

Results

Cold ($\beta \mathrm{m} \gg 1$):

$$
S_{+}=-\frac{\#}{6 \pi} \frac{\cosh (\beta \mu) \operatorname{sech}^{4}(\eta)}{1-\left(\frac{q / m}{2 \operatorname{coshn} \eta}\right)^{2}} \frac{3 \sqrt{2 \pi}}{(\beta m)^{3 / 2}} e^{-\beta m} \cdot\left(1+\mathcal{O}\left(\frac{1}{\beta m}\right)\right)
$$

Hot ($\beta \mathrm{m} \ll 1$): Result factorizes

$$
\begin{aligned}
& S_{+}=-S_{0}+\operatorname{sech}^{2}\left(\frac{1}{2} \beta \mu\right) \cosh (\eta) S_{+}^{(1)}\left(q^{2} / m^{2}\right)(\beta m)+\mathcal{O}\left(\beta^{3} m^{3}\right) \\
& S_{+}^{(1)}\left(q^{2} / m^{2}\right)=\frac{3 \pi}{q^{2} / m^{2}}\left(1+i \sqrt{\frac{1}{4} \frac{q^{2}}{m^{2}}-1}\right) \quad \text { No remnant of } T=0 \text { result! }
\end{aligned}
$$

$$
S\left(k^{2} / m^{2} \rightarrow 0\right)=\frac{\#}{16} \operatorname{sech}^{2}\left(\frac{1}{2} \beta \mu\right) \cosh (\eta)(\beta m)+\mathcal{O}\left(\beta^{3} m^{3}\right)
$$

$\beta m=1, x=\sqrt{ } 2$

$\beta \mu=0,2.33,4.33, \quad x=\sqrt{ } 2$

DIAS

DIAS

Summary \& Outlook

O S parameter measures the size of TC sector
O Conjecture:
Perturbative calculation provides lower bound on S (throughout the phase diagram)

O Lattice calculations can corroborate/falsify, but finite size effects can be significant (especially in conformal theories)

O Future work: Compactify all dimensions?

Past lattice studies: Example

SU(3) sextet representation with 2 flavors

T. DeGrand, arXiv:1006.3777 [hep-lat]

From top to bottom:
$a m=0.10 \quad\left(m_{\rho}=0.48\right)$
$a m=0.75$
$a m=0.05$
$a m=0.035$
$a m=0.02 \quad\left(m_{\rho}=0.33\right)$

Lattice size = 12^{4}
$\beta m=a m L_{0}$
Ranges between
1.2 and 0.24
(if conformal !)

Neutral Current Matrix Elements

$$
=0 \mathrm{at}
$$

$$
\begin{array}{ll}
\mathcal{M}_{A A}=e^{2} Q_{1} G_{A A} Q_{2} & \text { tree-level } \\
\mathcal{M}_{Z A}=\frac{e^{2}}{s C}\left[\left(l_{3}-s^{2} Q\right)_{1} G_{Z A} Q_{2}+Q_{1} G_{Z A}\left(l_{3}-s^{2} Q\right)_{2}\right] \\
\mathcal{M}_{Z Z}=\frac{e^{2}}{s^{2} c^{2}}\left(I_{3}-s^{2} Q\right)_{1} G_{Z Z}\left(I_{3}-s^{2} Q\right)_{2}
\end{array}
$$

Charged Current Matrix Element

$$
\mathcal{M}_{w W}=\frac{e^{2}}{2 s^{2}} I_{+} C_{W W} I_{-}
$$

