Hyperscaling relation for the conformal window

Roman Zwicky (Southampton)

15.2.12, strong-BSM workshop Bad Honnef

Overview

• Intro: Motivation & introduction conformal window studies [4 slides]

- Part I: mass-deformed conformal gauge theories (observables) [8 slides]
 - hyperscaling laws of hadronic observables e.g. $f[0^{++}] \sim m^{\eta(\gamma_*)}$

• Part II: the quark condensate -- various appraoches [4 slides]

lattice material (Del Debbio's talks) walking technicolour (Shrock, Sannino, others) Del Debbio & RZ PRD'10 & PLB'11

types of gauge theories

 \Rightarrow Adjustable: gauge group SU(N_c) -- N_f (massless) fermions -- fermion irrep

Focus on asymptotically free theories (not many representations)
2) well-defined on lattice
2) chance for unification in TC

- our interest: IR fixed point non-trivial $-\gamma \neq 0$ (large?)

- Value of Δ_0 is a dynamical problem (= d_0 at trivial fixed-point, g*=0)
 - unitarity bounds $\Delta_{Scalar} \ge 1$ etc Mack'77
 - $\Delta_{OO'} \neq \Delta_O \Delta_{O'}$ generally (except SUSY and large-N_c)
- gauge theory: expect $\bar{q}q$ to be most relevant operator $\Delta_{qq} = 3 + \gamma_{qq} = 3 - \gamma_m$ ($\gamma_m = \gamma_*$ at fixed point) γ_* is a very important parameter for model building Ward-identity

Part I:

Observables for Monte Carlo (lattice) for conformal gauge theories -- parametric control --

Part I: Observables in a CFT?

pure-CFT:

Vanishing β -function & correlators (form 2 & 3pt correlators known)

e.g. $<O(x)O(0)> \sim (x^2)^{-\Delta}$

deformed-CFT:

Lattice: quarks massive / finite volume \Rightarrow consider <u>mass-deformed conformal gauge theories</u> (mCGT)^{*}

$$\mathcal{L} = \mathcal{L}_{\rm CGT} - m\bar{q}q$$

* hardly related to 2D CFT mass deformation a part of algebra and 'therefore' integrability is maintained

• if mass-deformation relevant $\Delta_{qq} = 3 - \gamma_* < 4$ theory flows away from fixed-point (likely)

physical picture: (*Miransky* '98) finite m_q; quarks decouple ♀ pure YM confines (string tension confirmed lattice) ♀ hadronic spectrum

signature: hadronic observables (masses, decay constants)

hypothesis: hadronic observables $\rightarrow 0$ as $m_q \rightarrow 0$ (conformality restored)

$$\mathcal{O} \sim m^{\eta_{\mathcal{O}}}(1+..), \qquad \eta_{\mathcal{O}}(\gamma_*) > 0$$

If fct η₀ known: a) way to measure γ* b) consistency test through many observable

Mass scaling from trace anomaly & Feynman-Hellman thm

trace/scale anomaly:

Adler et al, Collins et al N.Nielsen '77 Fujikawa '81

$$\begin{aligned} \theta_{\alpha}^{\ \alpha}|_{\text{on-shell}} &= \frac{1}{2}\beta G^2 + N_f m (1+\gamma_m) \bar{q} q \\ \beta &= 0 \quad \& \quad \langle H(p)|H(k) \rangle = 2E_p \delta^{(3)}(p-k) \Rightarrow \end{aligned}$$

$$2M_h^2 = N_f (1 + \gamma_*) m \langle H | \bar{q}q | H \rangle$$

reminiscent GMOR-relation

Feynman-Hellman thm:

$$\frac{\partial E_{\lambda}}{\partial \lambda} = \langle \psi(\lambda) | \frac{\partial \hat{H}(\lambda)}{\partial \lambda} | \psi(\lambda) \rangle \quad \text{ide}$$

ea:
$$\frac{\partial \langle \psi(\lambda) | \psi(\lambda) \rangle}{\partial \lambda} = 0$$

★ applied to our case ($\lambda \succ m$) :

$$m\frac{\partial M_H^2}{\partial m} = N_f m \langle H | \bar{q}q | H \rangle$$

combined with GMOR-like:

$$m\frac{\partial M_H}{\partial m} = \frac{1}{1+\gamma_*}M_H$$

Brief comparison with QCD

QCD-spectrum

mCGT-spectrum

- $m_{\varrho} = O(\Lambda_{QCD}) + m_q$ $m_B = m_b + O(\Lambda_{QCD})$ $m_{\pi} = O((m_q \Lambda_{QCD})^{1/2})$ • $m_{ALL} = m^{1/(1+\gamma*)}O(\Lambda_{ETC} \gamma*/(1+\gamma*))$
- Breaking global flavour symmetry : $SU_L(n_F) \times SU_R(n_F) \rightarrow SU_V(n_F)$ (chiral symmetry)

	QCD:	mCGT:	CGT:
spontaneous	yes*	no	no
explicit (mass term)	yes	yes	no
confinement yes		yes	no

^{*} F_{π} ≠0 m→0 order parameter

 \Rightarrow no chiral perturbation theory in mCGT

(pion not singled out -- Weingarten-inequality still applies)

Hyperscaling laws from RG

- local matrix element: $\mathcal{O}_{12}(g, \hat{m} \equiv \frac{m}{\mu}, \mu) \equiv \langle \varphi_2 | \mathcal{O} | \varphi_1 \rangle$
 - 1. $\mathcal{O}_{12}(g, \hat{m}, \mu) = b^{-\gamma_{\mathcal{O}}} \mathcal{O}_{12}(g', \hat{m}', \mu')$,
 - $g' = b^{0+\gamma_g}g$ $\hat{m}' = b^{1+\gamma_*}\hat{m}$, $y_m = 1 + \gamma_*$, $\gamma_g < 0$ (irrelevant)
 - 2. $\mathcal{O}_{12}(\hat{m}',\mu') = b^{-(d_{\mathcal{O}}+d_{\varphi_1}+d_{\varphi_2})}\mathcal{O}_{12}(\hat{m}',\mu)$

no anomalous din

3. Choose b s.t. $\hat{m}' = 1 \Rightarrow$ trade b for m

* From Weinberg-like RNG eqs on correlation functions (widely used in critical phenomena)

Applications:

• master formula (<u>local</u> matrix element): $\langle \varphi_1 | \mathcal{O} | \varphi_2 \rangle \sim m^{(\Delta_{\mathcal{O}} + d_{\varphi_1} + d_{\varphi_2})/(1 + \gamma_*)}$

more later

1. hadronic masses: $2M_h^2 = N_f (1 + \gamma_*) m \langle H | \bar{q}q | H \rangle \sim m^{\frac{2}{1 + \gamma^*}}$

2. vacuum condensates:
$$\langle G^2 \rangle \sim m^{\frac{4}{1+\gamma_*}}$$
, $\langle \bar{q}q \rangle \sim m^{\frac{3-\gamma_*}{1+\gamma_*}}$

		O	def	$\langle 0 \mathcal{O} J^{\mathrm{P(C)}}(p) \rangle$	$J^{P(C)}$	Δ_O	$\eta_{G[F]}$
3. <mark>c</mark>	decay constants:	S	$\bar{q}q$	G_S	0++	$3 - \gamma_*$	$(2 - \gamma_{*})/y_{m}$
		S^a	$\bar{q}\lambda^a q$	G_{S^a}	0+	$3-\gamma_*$	$(2 - \gamma_*)/y_m$
		P^{a}	$\bar{q}i\gamma_5 q$	G_{P^a}	0-	$3-\gamma_*$	$(2 - \gamma_*)/y_m$
	$ \phi\rangle = H(adronic)\rangle$	V	$\bar{q}\gamma_{\mu}q$	$\epsilon_{\mu}(p)M_VF_V$	1	3	$1/y_m$
	N.B. $(\Delta_{H} = d_{H} = -1 \text{ choice})$	V^a	$ar q \gamma_\mu \lambda^a q$	$\epsilon_{\mu}(p)M_VF_{V^a}$	1-	3	$1/y_m$
		A^a	$ar q \gamma_\mu \gamma_5 \lambda^a q$	$\epsilon_{\mu}(p)M_AF_{A^a}$	1+	3	$1/y_m$
				$ip_{\mu}F_{P^a}$	0-	3	$1/y_m$

Summary - Transition

• low energy (hadronic) observables carry *memory of scaling phase*

- "all" quantities scale with one parameter -- witness relations between the zoo critical exponents α , β , γ , ν .. = hyperscaling
- clarify: heavy quark phase and mCGT are parametrically from

similar:
$$m_{B(0^-)} \sim m_b \neq m_{H(0^-)} \sim m^{\frac{1}{1+\gamma_*}}$$

distinct: $f_{B(0^-)} \sim m^{-1/2} \neq f_{H(0^-)} \sim m^{\frac{2-\gamma_*}{1+\gamma_*}}$

Part 2:

story quark condensate <qq> the most relevant operator

• important for conformal TC/ partially gauged TC models

How does CFT react to a perturbation

Unparticle area

I. couple CFT Higgs-sector:

criteria breaking (<u>NDA</u>):

$$\mathcal{L}_{\text{eff}} \sim C \mathcal{O} |H|^2 \xrightarrow{\text{VEV}} C \mathcal{O} v^2$$

$$\Lambda_B^4 \simeq C v^2 \Lambda_B^{\Delta_{\mathcal{O}}} \quad \Rightarrow \quad \Lambda_B \sim (C v^2)^{\frac{1}{4 - \Delta_{\mathcal{O}}}}$$

Fox, Rajaraman, Shirman '07

II. Heuristics: <u>deconstruct</u> the continuous spectrum of a 2-function. Stephanov'07 Infinite sum of adjusted particles can mimick continuous spectrum. $\mathcal{O}(x) \sim \sum_{n} f_n \varphi_n(x); \qquad \langle \varphi_n | \mathcal{O} | 0 \rangle \sim f_n , \qquad \begin{cases} f_n^2 = \delta^2 \left(M_n^2 \right)^{\Delta - 2} & \frac{1}{2} & \frac{1}{2}$

 \Rightarrow tadpole & mass term as potential \Rightarrow find new minimum

$$V_{\text{eff}} = -m \sum_{n} f_n \varphi_n - 1/2 \sum_{n} M_n^2 \varphi_n^2$$

Delgado, Espinoso, Quiros'07

minimise - solve - reinsert:

$$\delta_{\varphi_n} V_{\text{eff}} = 0 \quad \Rightarrow \quad mf_n + M_n^2 \varphi_n = 0 \quad \Rightarrow \quad \langle \varphi_n \rangle = -mf_n / M_n^2$$
$$\langle \mathcal{O} \rangle \sim \sum_n f_n \langle \varphi_n \rangle - m \sum_n \frac{f_n^2}{M_n^2} \stackrel{\delta \to 0}{\to} -m \int_{\Lambda_{\text{IR}}^2}^{\Lambda_{\text{UV}}^2} s^{\Delta \mathcal{O} - 3} ds$$

Sannino RZ '08

NETC

result depends on IR and UV physics ➡ need model(s)

III. Within conformal gauge theory generic 0^{++} -operator: $\mathcal{O} \to \bar{q}q$ within gauge theories N.B. 4D only "known" CFT gauge theories. why?

- $\Lambda_{\text{UV}} \rightarrow \Lambda_{\text{ETC}}$ where $\Delta_{qq} \rightarrow 3 \Rightarrow (\Lambda_{\text{ETC}})^2$ -effect
- Λ_{IR}: (m_{constituent})^{Δqq} ~ <qq> generalising Politzer OPE
 Solve self-consistency condensate eqn

- '10: Λ_{IR} : = m_H m^{1/(1+\gamma*)} O($\Lambda_{\text{ETC}} \gamma^{*/(1+\gamma*)}$) agrees depending on value γ^{*}

IV. Generalized Banks-Casher relation

• Banks & Casher '80 à la Leutwyler & Smilga 92':

Green's function: $\langle q(x)\bar{q}(y)\rangle = \sum_{n} \frac{u_n(x)u_n^{\dagger}(y)}{m-i\lambda_n}$, where $D u_n = \lambda_n u_n$

$$\begin{split} \langle \bar{q}q \rangle_{V} &= \int \frac{dx}{V} \left\langle \bar{q}(x)q(x) \right\rangle^{\lambda_{n} \to -\lambda_{n}} - \frac{2m}{V} \sum_{\lambda_{n} > 0} \frac{1}{m^{2} + \lambda_{n}^{2}} \stackrel{V \to \infty}{\to} -2m \int_{0}^{\infty} \frac{d\lambda\rho(\lambda)}{m^{2} + \lambda^{2}} \\ &= -2m \underbrace{\int_{0}^{\mu_{F}} d\lambda \frac{\rho(\lambda)}{m^{2} + \lambda^{2}}}_{\text{IR-part}} - 2m^{5} \underbrace{\int_{\mu_{F}}^{\infty} \frac{d\lambda}{\lambda^{4}} \frac{\rho(\lambda)}{m^{2} + \lambda^{2}}}_{\text{twice subtracted}} + \underbrace{\gamma_{1}}_{\Lambda_{\text{UV}}^{2}} m + \underbrace{\gamma_{2}}_{\ln\Lambda_{\text{UV}}} m^{3} \end{split}$$

- IR-part: change of variable: $\rho(\lambda) \stackrel{\lambda \to 0}{\sim} \lambda^{\eta_{\bar{q}q}} \Leftrightarrow \langle \bar{q}q \rangle \stackrel{m \to 0}{\sim} m^{\eta_{\bar{q}q}}$
 - QCD: $\eta_{\bar{q}q} = 0 \Rightarrow \rho(0) = -\pi \langle \bar{q}q \rangle$
 - *mCGT*: another way to measure γ *

- Banks, Casher'80 DeGrand'09 DelDebbio RZ'10 May
- UV-part: known from perturbation theory (scheme dependent)

Summary

I. NDA $\Lambda_{IR} \sim m^{1/(1+\gamma_*)}$ ok

II. Deconstruction: $\langle \mathcal{O} \rangle \sim \int_{\Lambda_{\text{LR}}^2}^{\Lambda_{\text{UV}}^2} s^{\Delta_{\mathcal{O}}-3} ds$ model dependence

III. Model mCGT & deconstruction - $\Lambda_{\rm UV}$ properly identified thanks asymptotic freedom

- Λ_{IR} m_{constituent} generalized QCD (Polizter OPE) ok dep value γ^*

IV. Model mCGT & generalized Banks-Casher

- clean seperation of IR & UV everything consistent e.g. can use $m_H \sim m^{1/(1+\gamma_*)}$ in deconstruction as well

Epilogue

- Identified "universal" hyperscaling laws in mass deformation valid for any conformal theory in the vicinity of the fixed point (small mass)
- One thought:
 - I) CGT likely phase diagram as compared to walking theory
 - 2) CGT instable m-deformation. Any quark that receives mass can be expected to decouple and finally drive the theory into a confining phase and the remaining quarks can undergo chiral symmetry breaking and thus dynamical electroweak symmetry breaking.

Contrasts: "Dynamical stability of local gauge symmetry..."

Forster, Nielsen & Ninomiya'80

Danke für die Aufmerskamkeit!

Backup slides ...

Some relevant/useful references

✓ Miransky hep-ph/9812350 spectrum (with mass) as signal of conformal window works with pole mass -- weak coupling regime Λ_{YM} ≅ m Exp[-1/b_{YM} α^{*}]
 ✓ glueballs lighter than mesons

🙀 Luty Okui JHEP'96 conformal technicolor propose spectrum as signal of cw

Dietrich/Sannino PRD'07 conformal window SU(N) higher representation using Dyson-Schwinger techniques known from WTC

🙀 Sannino/RZ PRD'08 <qq> done heuristically IR and UV effects understood 0905

🙀 DelDebbio et al ArXiv 0907 Mass lowest state from RGE equation

DeGrand scaling <qq> stated ArXiv 0910

 \therefore DelDebbio RZ ArXiv 0905 scaling of vacuum condensates, all lowest lying states

DelDebbio RZ ArXiv 0909 scaling extended to entire spectrum and all local matrix elements

Mass & decay constant trajectory

 \overleftrightarrow At large-N_c neglect width \swarrow

 $g_{H_n} \equiv \langle 0 | \mathcal{O} | H_n \rangle$ (decay constant)

$$\Delta(q^2) \sim \int_x e^{ixq} \langle 0|\mathcal{O}(x)\mathcal{O}(0)|0\rangle = \sum_n \frac{|g_{H_n}|^2}{q^2 + M_{H_n}^2}$$

 \checkmark In limit m \rightarrow 0 (scale invariant correlator)

$$\Delta(q^2) = \int_0^\infty \frac{ds \, s^{1-\gamma_*}}{q^2+s} + \text{s.t} \propto (q^2)^{1-\gamma_*}$$

 \bigstar Solution are given by:

$$M_{H_n}^2 \sim \alpha_n m^{\frac{2}{1+\gamma_*}}, \quad g_{H_n}^2 \sim \alpha'_n (\alpha_n)^{1-\gamma_*} m^{\frac{2(2-\gamma_*)}{1+\gamma_*}}$$

where α_n arbitrary function (corresponds freedom change of variables in β)

 \Rightarrow QCD expect $\alpha_n \sim n$ (linear radial Regge-trajectory) (few more words)

For those who know: resembles deconstruction Stephanov'07 difference physical interpretation of spacing due to scaling spectrum

Addendum (bounds scaling dimension)

 ☆ assume add L = mqq (N.B. not a scalar under global flavour symmetry!)
 ☆ using bootstrap ('associative' OPE on 4pt function) possible to obtain <u>upper</u>-bound on scaling dimension ∆ of lowest operator in OPE

$$\langle \phi \phi \phi \phi \rangle = \sum_{2} \begin{array}{c} 1 \\ 0 \\ 2 \end{array} \begin{pmatrix} 4 \\ - 1 \\ - 2 \\ - 2 \\ - 3 \\ - 2 \\ - 3 \\ - 2 \\ - 3$$

non-singlet

Rattazzi, Rychkov Tonni & Vichi'08

singlet $\Delta \le 4$ allows for Δ_{qq} to be:

Rattazzi, Rychkov & Vichi '10

G	$U(1) \equiv SO(2)$	SO(3)	SO(4)	SU(2)	SU(3)
d_*	$1.063 \ (k=2)$	$1.032 \ (k=2)$	$1.017 \ (k=2)$	1.016	$ \begin{array}{l} 1.003 \\ (k=2) \end{array} $
	$1.12 \ (k=4)$	$1.08 \ (k=4)$	$1.06 \ (k=4)$	(k=2)	

QCDmCGTobservablenot so directly observableGell-Mann Oakes Renner:very important for Technicolour $f_{\pi}^2 m_{\pi}^2 = -2m \langle \bar{q}q \rangle$ $\mathcal{L}^{\text{eff}} = \alpha_{ab} \frac{\bar{Q}T^a Q \bar{\psi} T^b \psi}{\bar{\psi}^a} + \beta_{ab} \frac{\bar{Q}T^a Q \bar{Q}T^b Q}{\bar{\psi}^a} + \gamma_{ab} \frac{\bar{\psi}T^a \psi \bar{\psi} T^b \psi}{\bar{\psi}^a}$