Confinement with perturbation theory, after all?

Paul Hoyer
University of Helsinki

Strong interactions in the LHC ERA

Physikzentrum Bad Honnef
November 12-14, 2014

Perturbation theory is powerful

- Poincaré invariance, analyticity \& crossing symmetry, unitarity,...

The QCD coupling is likely to freeze: $\alpha_{\mathrm{s}}(0) \approx 0.5$
Hadron dynamics has simple features: Spectra, OZI, Duality,...
\Rightarrow Could an α_{s} expansion be relevant even for soft physics?

The two faces of hadrons

Quark model

Quantum numbers reflect valence quark dof's

$$
n^{2 s+1} \ell_{J}
$$

Parton picture

Sea partons are abundant

"The J / ψ is the Hydrogen atom of QCD"

QED

$V(r)=-\frac{\alpha}{r}$

QCD
Mass [MeV]
Charmonium

$$
V(r)=c r-\frac{4}{3} \frac{\alpha_{s}}{r}
$$

Okuba-Zweig-Iizuka Rule

Connected diagrams: Unsuppressed, string breaking due to linear potential

Disconnected diagrams: Suppressed due to perturbative gluons?

Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

Resonance contributions

$$
e p \rightarrow e N^{*}
$$

build DIS scaling in

$$
e p \rightarrow e X
$$

$$
m_{N^{*}}^{2}=m_{N}^{2}+Q^{2}\left(\frac{1}{x_{B}}-1\right)
$$

Scattering dynamics is built into hadron wave functions.
We must understand relativistic bound states in motion.

Can an analytic, 1 st principles approach be excluded?

Three apparently unassailable reasons:
I. Confinement does not arise at any finite order of α_{s} in PQCD
II. Chiral symmetry is preserved at all orders of $\alpha_{\mathrm{s}}\left(\right.$ for $\left.m_{q} \rightarrow 0\right)$
III. Sea quarks and gluons abound in hadrons

Nevertheless, the question is motivated by:

- the suggestive features of the data
- the potential significance of an analytic description
- the poorly understood structure of relativistic bound states

The unknown structure of Dirac states

Schrödinger eq. specifies the electron wave function of atoms:

Relativistic Dirac wave functions have $\mathrm{E}<0$ components.
 These reflect Fock states with extra pairs (cf. Klein paradox).

A more specific description seems to be lacking. E.g.: what is the positron density distribution in the Dirac Hydrogen state?

Dirac states demonstrate that multiparticle states can have spectra which reflect only valence dof's.

Analogy with Dirac states

Example: Dirac wf in $D=1+1$

Representing the Dirac matrices as 2×2 Pauli matrices, the Dirac eq. is:

$$
\left[-i \sigma_{1} \partial_{x}+\frac{1}{2} e^{2}|x|+m \sigma_{3}\right]\left[\begin{array}{l}
\varphi(x) \\
\chi(x)
\end{array}\right]=M\left[\begin{array}{l}
\varphi(x) \\
\chi(x)
\end{array}\right]
$$

Pair contributions are manifest for

$$
V(x)=\frac{1}{2} e^{2}|x| \geq 2 m
$$

For polynomial potentials the Dirac wave function is not normalizable, and the mass spectrum M is continuous.

Its normalizability for the $\mathrm{V}(r)=-\alpha / r$ potential in $\mathrm{D}=3+1$ is an exception.

Constant particle density for $|x| \rightarrow \infty$?!

$$
\Psi(x \rightarrow \infty) \sim \exp \left(\pm i x^{2} / 4\right) \Rightarrow \Psi^{\dagger} \Psi(x \rightarrow \infty) \sim \text { const. }
$$

The virtual pairs created in the linear potential contribute to the Dirac wave function.

This reminds of
quark fragmentation in hadron physics:

The Dirac dynamics is instructive, but limited:

- String breaking is not included.
- The external potential violates translation invariance
- There are no momentum eigenstates.
\Longrightarrow Consider $e^{+} e^{-}$states, bound by their mutual A^{0} interaction.

Recall QED bound states (atoms)

Perturbative description: Expansion in \hbar
Classical - α / r potential arises from the sum of ladder diagrams:

$\mathcal{O}(\hbar)$ corrections due to vertex corrections, etc:

Also for QCD hadrons an \hbar expansion would have to start from an $\mathcal{O}\left(\hbar^{0}\right)$ Born term with a classical potential.

Summing the QCD series is hard - but we can ask:
Are there other classical solutions than $-\alpha / r$?

A homogeneous solution of Gauss' law in QED

For a state with e^{-}at x_{1} and e^{+}at $x_{2} \quad \bar{\psi}\left(t, x_{1}\right) \psi\left(t, x_{2}\right)|0\rangle$

Gauss' law for A ${ }^{0}$ reads (in QED) $-\boldsymbol{\nabla}^{2} A^{0}(t, \boldsymbol{x})=e\left[\delta^{3}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)-\delta^{3}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)\right]$

It has the homogeneous solution
provided x is independent of \boldsymbol{x} : $\quad A^{0}(t, \boldsymbol{x})=\kappa \boldsymbol{x} \cdot\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)$ provided \boldsymbol{x} is independent of \boldsymbol{x} :

This is usually excluded since $\lim _{|\boldsymbol{x}| \rightarrow \infty} A^{0}(\boldsymbol{x}) \neq 0$
and the squared field strength is independent of \boldsymbol{x}

$$
\left[\boldsymbol{\nabla} A^{0}\right]^{2}=\kappa^{2}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)^{2}
$$

These properties are similar to the Coulomb field in $\mathrm{D}=1+1$.
The homogeneous solution leads to a linear potential in $\mathrm{D}=3+1$.

$$
A^{0}(t, \boldsymbol{x})=\kappa \boldsymbol{x} \cdot\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)
$$

The \boldsymbol{x}-independent squared field strength $\quad\left[\boldsymbol{\nabla} A^{0}\right]^{2}=\kappa^{2}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)^{2}$ implies an infinite contribution to the field energy $\propto \int d^{3} x$

For this divergence not to depend on \boldsymbol{x}_{1} or \boldsymbol{x}_{2} we must have $x=\gamma\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$:

$$
\kappa=\frac{\Lambda^{2}}{\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|}
$$

where Λ is an $O\left(e^{0}\right)$ universal constant.

The A^{0} field then implies a linear potential energy to the pair,

$$
V\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \equiv \frac{1}{2} e\left[A^{0}\left(t, \boldsymbol{x}_{1}\right)-A^{0}\left(t, \boldsymbol{x}_{2}\right)\right]=\frac{1}{2} e \Lambda^{2}\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|
$$

Note: Translation invariance preserved only for neutral states (as in $\mathrm{D}=1+1$)
Uniqueness: No other homogeneous A^{0} solution gives translation invariance

An analogous argument gives a linear potential for color singlet mesons:

$$
V_{\mathcal{M}}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=\frac{1}{2} \sqrt{C_{F}} g \Lambda^{2}\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|
$$

For color singlet baryons the result is:
$V_{\mathcal{B}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)=\frac{1}{2 \sqrt{2}} \sqrt{C_{F}} g \Lambda^{2} \sqrt{\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)^{2}+\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{3}\right)^{2}+\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right)^{2}}$

Note: $V_{\mathcal{B}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)=V_{\mathcal{M}}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)$

String breaking

The $O\left(e^{0}\right)$ classical field in $\bar{\psi}\left(t, x_{1}\right) \psi\left(t, x_{2}\right)|0\rangle$ causes pair creation

There is no $O\left(e^{0}\right)$ field in the vacuum $|0\rangle$, hence pair creation only at $O\left(e^{n}\right), n \geq 2$

Pair production at $O\left(e^{0}\right)$ will be treated in a $1 / N_{c}$ expansion.
At leading order in $1 / N_{c}$, there is no string breaking.
Pair production can be evaluated from these solutions: Resonance decays, hadron loop corrections...

Note: The exact $O\left(e^{0}\right)$ amplitudes must satisfy unitarity!

In the following I illustrate bound state results for $\mathrm{U}(1)$ gauge theory, at leading order in $1 / N_{c}$ and (mostly) in $\mathrm{D}=1+1$ dimensions.

A state with two fermions of energy E and momentum $P^{1}=P$:

$$
|E, P\rangle=\int d x_{1} d x_{2} \underbrace{\bar{\psi}\left(t, x_{1}\right) \exp \left[\frac{1}{2} i P\left(x_{1}+x_{2}\right)\right] \Phi\left(x_{1}-x_{2}\right)}_{\text {field operators }} \psi\left(t, x_{2}\right)|0\rangle
$$

With $\hat{P}^{\mu}|0\rangle=0$ these are eigenstates of the translation generators:
$\hat{P}^{1}|E, P\rangle=P|E, P\rangle \quad$ Bound state has momentum P (by construction)
$\hat{P}^{0}|E, P\rangle=E|E, P\rangle \quad$ Bound state equation for $\Phi(x)$ from QED action:
$i \partial_{x}\left\{\sigma_{1}, \Phi(x)\right\}+\left[-\frac{1}{2} P \sigma_{1}+m \sigma_{3}, \Phi(x)\right]=[E-V(x)] \Phi(x)$
where $V(x)=\frac{1}{2} e^{2}|x| \quad$ and $\quad \gamma^{0}=\sigma_{3}, \quad \gamma^{1}=i \sigma_{2}, \quad \gamma^{0} \gamma^{1}=\sigma_{1}$
Here the CM momentum P is a parameter, thus E and Φ depend on P.

Boost covariance

It is essential and non-trivial that the state is covariant under boosts:
$|E+d \xi P, P+d \xi E\rangle=\left(1-i d \xi \hat{M}^{01}\right)|E, P\rangle \quad \begin{gathered}M^{01} \text { is the } \mathrm{QED}_{2} \\ \text { boost generator }\end{gathered}$
This holds only for a linear potential and ensures that $E(P)=\sqrt{P^{2}+M^{2}}$

The P-dependence of the wave function Φ can be explicitly given:

$$
\Phi^{P}(\sigma)=e^{\gamma_{0} \gamma_{1} \zeta / 2} \Phi^{(P=0)}(\sigma) e^{-\gamma_{0} \gamma_{1} \zeta / 2}
$$

where $\quad d x=-\frac{d \sigma}{E-V(x)} \quad$ and $\quad \tanh \zeta=-\frac{P}{E-V}$

The boost invariant length

The "kinetic 2-momentum" is $\quad \Pi^{\mu}(x) \equiv(P-e A)^{\mu}=(E-V(x), P)$

For a linear potential the bound state equation can "miraculously" be expressed in terms of $\sigma=\Pi^{2}$ only (without frame dependent E, P), with

$$
\Pi^{2} \equiv \sigma \equiv(E-V)^{2}-P^{2}=M^{2}-2 E V+V^{2}
$$

The continuity condition imposed at $x=0$, where $\sigma=E^{2}-P^{2}$, ensures that the mass eigenvalues $M^{2}=E^{2}-P^{2}$ have the correct frame dependence.

Solutions of the bound state equation (cont)

To solve the bound state equation
$i \partial_{x}\left\{\sigma_{1}, \Phi(x)\right\}+\left[-\frac{1}{2} P \sigma_{1}+m \sigma_{3}, \Phi(x)\right]=[E-V(x)] \Phi(x)$
we may expand the 2 x 2 wave function as $\Phi=\Phi_{0}+\sigma_{1} \Phi_{1}+\sigma_{2} \Phi_{2}+\sigma_{3} \Phi_{3}$.
We get two coupled equations, with no explicit E or P dependence:

$$
-2 i \partial_{\sigma} \Phi_{1}(\sigma)=\Phi_{0}(\sigma) \quad-2 i \partial_{\sigma} \Phi_{0}(\sigma)=\left[1-\frac{4 m^{2}}{\sigma}\right] \Phi_{1}(\sigma)
$$

The general solution is

$$
\Phi_{1}(\sigma)=\sigma e^{-i \sigma / 2}\left[a_{1} F_{1}\left(1-i m^{2}, 2, i \sigma\right)+b U\left(1-i m^{2}, 2, i \sigma\right)\right]
$$

If $b \neq 0$ the wf Φ is singular at $\sigma=0$. Requiring $b=0$ the spectrum is discrete. Note: This constraint only applies for $m \neq 0$.

Some numerical results

- Nearly non-relativistic case: $m=4.0 e$
- Schrödinger (Airy fn.) wf. $\varrho(x)$.

In the limit of small fermion mass m :

$$
M_{n}^{2}=\pi n+\mathcal{O}\left(m^{2}\right) ; \quad n=0,1,2, \ldots
$$

$$
\text { Parity }=(-1)^{n+1} \quad \text { No parity doublets for } m \neq 0
$$

Infinite Momentum Frame (IMF)

The wf is frame invariant in terms of $\sigma=(E-V)^{2}-P^{2}$. Since $V(x)=1 / 2|x|$:

$$
x=2\left(E \pm \sqrt{P^{2}+\sigma}\right)
$$

For $P \rightarrow \infty$ at fixed $\sigma: \quad x \simeq 2(E \pm P) \pm \frac{\sigma}{P} \simeq\left\{\begin{array}{c}4 P+\sigma / P \\ \left(M^{2}-\sigma\right) / P\end{array}\right.$
Lower solution: $x \propto 1 / P \quad$ Lorentz-contracted "valence" region.
Upper solution: $x \approx 4 P \rightarrow \infty$ Pair production moves to infinite x.
Perturbatively: "Z-diagrams" get infinite energy ($k \rightarrow \infty$) in the $P \rightarrow \infty$ limit.
$C . f: \quad H|0\rangle=0$ in LF quantization.

Explicitly: $\quad \Phi_{P \rightarrow \infty}(\sigma)=2 a m P \gamma^{+} e^{-i \sigma / 2}{ }_{1} F_{1}\left(1-i m^{2}, 2, i \sigma\right)$

Frame (P) dependence of the solutions $\left(m_{1} \neq m_{2}\right)$

Comparison of ground and excited state wave functions for $P=0$ (CM frame) and for $P=5 e$.

(b)

Note: In the IMF limit, only the normalizable, valence part of the wf remains.

The sea component is prominent at low m / e :

The red curve is an analytic approximation, valid in the $x_{B j} \rightarrow 0$ limit.
Note: Enhancement at low x is not due to $\Phi_{A}^{I M F}$

Quark - Hadron duality

The wave functions of highly excited (large mass M) bound states are similar to free ff pairs (for $V(x) \ll M$). This determines their normalization:

The solutions are consistent with
Bloom-Gilman duality:

B-G Duality

Final remarks

- Hadron physics is fortunate: Theory (QCD) is known Much data on spectra, couplings, scattering
- Unprecedented features:
- Simplicities in data:

Relativistic bound states, Confinement
Hadron spectrum, Duality

- Above approach: Assume that regularities are not "accidental" Consider how/if they can be compatible with QCD
- Conclusions: "Non-perturbative" contribution may be limited to $\mathcal{O}\left(\alpha_{s}{ }^{0}\right)$ Implies a different expansion point for perturbation theory.

The approach is strongly constrained by the requirement of a perturbative expansion.

Back-up slides

Dirac wave function $\psi(x)$ describes a multiparticle state

Consider a relativistic electron bound by a static (instantaneous) external A^{0} potential.

The $\mathrm{E}<0$ components of the Dirac wave function represent pair production.

The is prescription at the $p^{0}<0$ pole of the electron propagator is irrelevant for the bound state spectrum: We may use retarded boundary conditions.

$$
S_{R}\left(p^{0}, \boldsymbol{p}\right)=i \frac{\not p+m_{e}}{\left(p^{0}-E_{p}+i \varepsilon\right)\left(p^{0}+E_{p}+i \varepsilon\right)}
$$

Also $p^{0}<0$ components move forward in time

- The infinite number of pairs is described by a single electron wave function.
- $\psi^{\dagger} \psi(\boldsymbol{x})$ is an inclusive particle density.

String breaking: $A \rightarrow B+C$

The linear potential induces "string breaking" at large separations of the quarks. The Poincaré invariant amplitude is given by the wave functions:

$$
\begin{aligned}
& \langle B, C \mid A\rangle=-\frac{(2 \pi)^{3}}{\sqrt{N_{C}}} \delta^{3}\left(\boldsymbol{P}_{A}-\boldsymbol{P}_{B}-\boldsymbol{P}_{C}\right) \\
& \times \int d \boldsymbol{\delta}_{1} d \boldsymbol{\delta}_{2} e^{i \boldsymbol{\delta}_{1} \cdot \boldsymbol{P}_{C} / 2-i \boldsymbol{\delta}_{2} \cdot \boldsymbol{P}_{B} / 2} \operatorname{Tr}\left[\gamma^{0} \Phi_{B}^{\dagger}\left(\boldsymbol{\delta}_{1}\right) \Phi_{A}\left(\boldsymbol{\delta}_{1}+\boldsymbol{\delta}_{2}\right) \Phi_{C}^{\dagger}\left(\boldsymbol{\delta}_{2}\right)\right]
\end{aligned}
$$

When squared, this gives a hadron loop unitarity correction.

EM Form Factor

$F_{A B}^{\mu}(z)=\left\langle B\left(P_{B}\right) ; t=+\infty\right| j^{\mu}(z)\left|A\left(P_{A}\right) ; t=-\infty\right\rangle \quad$ A, B: in \& out states
EM current:

$$
j^{\mu}(z)=\bar{\psi}(z) \gamma^{\mu} \psi(z)=e^{i \hat{P} \cdot z} j^{\mu}(0) e^{-i \hat{P} \cdot z}
$$

Using anticommutators of fields:

$$
F_{A B}^{\mu}(z)=e^{i\left(P_{B}-P_{A}\right) \cdot z}
$$

$$
\times \int_{-\infty}^{\infty} d x e^{i\left(P_{B}^{1}-P_{A}^{1}\right) x / 2}\left\{\operatorname{Tr}\left[\Phi_{B}^{\dagger}(x) \gamma^{\mu} \gamma^{0} \Phi_{A}(x)\right]-\eta_{A} \eta_{B} \operatorname{Tr}\left[\Phi_{B}(x) \gamma^{0} \gamma^{\mu} \Phi_{A}^{\dagger}(x)\right]\right\}
$$

Gauge invariance is valid: $\partial_{\mu} F_{A B}^{\mu}(z)=0 \quad$ (also in $D=3+1$)
The invariant form factor is frame independent (was checked numerically):

$$
\begin{aligned}
F_{A B}\left(Q^{2}\right) & =-4 i \frac{1-\eta_{A} \eta_{B}}{q^{1}} \int_{0}^{\infty} d x \sin \left(\frac{q^{1} x}{2}\right) \\
\times & {\left[\Phi_{0 B}^{*}(x) \Phi_{0 A}(x)+\Phi_{1 B}^{*}(x) \Phi_{1 A}(x)\left(1+\frac{4 m^{2}}{\sigma_{A} \sigma_{B}} \tilde{\Pi}_{A} \cdot \Pi_{B}\right)\right] }
\end{aligned}
$$

Parton Distribution: $\gamma^{\star} A \rightarrow B$

$$
\begin{aligned}
x_{B j} & =\frac{Q^{2}}{2 p_{A} \cdot q} \text { fixed } \\
M_{B}^{2} & =Q^{2}\left(\frac{1}{x_{B j}}-1\right) \rightarrow \infty
\end{aligned}
$$

From analogy to $\mathrm{D}=3+1$:

$$
f\left(x_{B j}\right)=\frac{1}{8 \pi m^{2}} \frac{1}{x_{B j}}\left|Q^{2} F_{A B}\left(Q^{2}\right)\right|^{2}
$$

For large M_{B} use asymptotic form of Φ_{B}.
Result scales in $v=x Q / 2$ (Breit frame)

$$
\sigma_{A} \simeq M_{A}^{2}-\frac{|v|}{x_{B j}} \equiv \tau_{A}
$$

$Q^{2} F_{A B}\left(\eta_{B}=-\right) \simeq-4 i \sqrt{2 \pi}\left(1+\eta_{A}\right)$

$$
\times \int_{0}^{\infty} d v \sin v\left[\cos \left(\frac{v}{2 x_{B j}}\right) i \Phi_{0 A}\left(\tau_{A}\right)-\sin \left(\frac{v}{2 x_{B j}}\right) \Phi_{1 A}\left(\tau_{A}\right)\left(1+\frac{2 m^{2}}{x_{B j} \tau_{A}}\right)\right]
$$

Paul Hoyer Baatnonanalytic/numerical evaluation shows a sea quark distribution at low $x_{B j}$

The Positronium wave function

The Positronium state can be expanded in a complete set of Fock states:

$$
\begin{aligned}
\text { Pos } & =\overparen{\psi} e^{+}\left(\boldsymbol{k}_{1}\right)+\left(\boldsymbol{k}_{2}\right)+e^{+} \\
|\boldsymbol{P}\rangle & =\int \frac{d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2}}{(2 \pi)^{6} 4 E_{1} E_{2}} \psi_{e^{+} e^{-}}^{\boldsymbol{P}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \delta^{3}\left(\boldsymbol{P}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right)\left|e^{+}\left(\boldsymbol{k}_{1}\right) e^{-}\left(\boldsymbol{k}_{2}\right)\right\rangle \\
& +\int\left[d \boldsymbol{k}_{i}\right] \psi_{e^{+} e^{-} \gamma}^{\boldsymbol{P}}\left(\boldsymbol{k}_{i}\right) \delta^{3}()\left|e^{+}\left(\boldsymbol{k}_{1}\right) e^{-}\left(\boldsymbol{k}_{2}\right) \gamma\left(\boldsymbol{k}_{3}\right)\right\rangle+\ldots
\end{aligned}
$$

For $\boldsymbol{P}=0$ and at lowest order in α, the $\left|e^{+} e^{-}\right\rangle$Fock state dominates.
How does $\psi_{e^{+} e^{-}}^{\boldsymbol{P}}$ depend on \boldsymbol{P} ? Do other Fock states contribute when $\boldsymbol{P} \neq 0$?

Transverse photons contribute for $P \neq 0$

Transversely polarized photons contribute to $E(\boldsymbol{P} \neq 0$ at leading order in $\alpha)$

The $\left|e^{+} e^{-}\right\rangle$Fock state wf contracts as in classical relativity.
The $\left|e^{+} e^{-} \boldsymbol{\gamma}\right\rangle$ Fock state has a more complicated dependence on \boldsymbol{P}.
$C f$. the single photon exchange amplitude:

At higher orders of α more photons (and $e^{+} e^{-}$pairs) need to be included.

The Dirac Electron in Simple Fields*

By Milton S. Plesset
Sloane Physics Laboratory, Yale University
(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a simple manner into a symmetric canonical form. This canonical form makes readily possible the investigation of the characteristics of the solutions of these relativity equations for simple potential fields. If the potential is a polynomial of any degree in x, a continuous energy spectrum characterizes the solutions. If the potential is a polynomial of any degree in $1 / x$, the solutions possess a continuous energy spectrum when the energy is numerically greater than the rest-energy of the electron: values of the energy numerically less than the rest-energy are barred. When the potential is a polynomial of any degree in r, all values of the energy are allowed. For potentials which are polynomials in $1 / r$ of degree higher than the first, the energy spectrum is again continuous. The quantization arising for the Coulomb potential is an exceptional case.

See also: E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart. J. Math. Oxford (2), 12 (1961), 227.

Dokshitzer: Confinement in QCD is governed by classical fields (2013)
Zwanziger: No confinement without Coulomb confinement (2003)
Gribov: Coulomb interaction rearranges the vacuum for $\alpha>\alpha^{\text {crit (1997): }}$

$$
\begin{array}{cc}
\alpha^{c r i t}(\mathrm{QED})=\pi\left(1-\sqrt{\frac{2}{3}}\right) \simeq 0.58 & >\frac{1}{137} \\
\alpha_{s}^{c r i t}(\mathrm{QCD})=\frac{\pi}{C_{F}}\left(1-\sqrt{\frac{2}{3}}\right) \simeq 0.43 & \gtrsim \alpha_{s}\left(m_{\tau}^{2}\right) \simeq 0.33
\end{array}
$$

The Coulomb field is instantaneous, thus consistent with valence Fock states.
Gauss' law allows to express A^{0} in terms of the propagating fields.

