Observables in Higgsed Theories

Axel Maas

12th of November 2014 Strong Interactions in the LHC Era Bad Honnef Germany

Yang-Mills-Higgs theory

- Yang-Mills-Higgs theory
- Fröhlich-Morchio-Strocchi mechanism

- Yang-Mills-Higgs theory
- Fröhlich-Morchio-Strocchi mechanism
- Experimental signatures

- Yang-Mills-Higgs theory
- Fröhlich-Morchio-Strocchi mechanism
- Experimental signatures
- Quantum phase diagram

- Yang-Mills-Higgs theory
- Fröhlich-Morchio-Strocchi mechanism
- Experimental signatures
- Quantum phase diagram
- Impact beyond the standard model
- Summary

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has nonperturbative features like atoms, molecules, matter with phase structure,...
 - Bound states, phase transitions,...

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has nonperturbative features like atoms, molecules, matter with phase structure,...
 - Bound states, phase transitions,...
- Are there (relevant) non-perturbative effects in the weak interactions and the Higgs?

• The Higgs sector is a gauge theory

• The Higgs sector is a gauge theory $L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$

$$W^a_{\mu\nu} = \partial_{\mu} W^a_{\nu} - \partial_{\nu} W^a_{\mu}$$

• WS W^a_{μ}

The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

• Ws
$$W^a_{\mu}$$

• Coupling g and some numbers f^{abc}

The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

• Ws
$$W^a_\mu$$

- No QED: Ws and Zs are degenerate
- Coupling g and some numbers f^{abc}

• The Higgs sector is a gauge theory $L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k}$ $W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu}$ • Ws W^{a}_{μ}

h

- Higgs h_i
- No QED: Ws and Zs are degenerate
- Coupling g and some numbers f^{abc}

• The Higgs sector is a gauge theory $L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k}$ $W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$ • Ws W^{a}_{μ}

- Higgs h_i
- No QED: Ws and Zs are degenerate
- Coupling g and some numbers f^{abc} and t_a^{ij}

- No QED: Ws and Zs are degenerate
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}

- The Higgs sector is a gauge theory $L = -\frac{1}{\Lambda} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$ $W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + gf^{a}_{bc}W^{b}_{\mu}W^{c}_{\nu} \quad \heartsuit$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igW^a_{\mu}t^{ij}_a$ • WS W^a_{μ} h • Higgs h. h No QED: Ws and Zs are degenerate
- Couplings g, v, λ and some numbers f^{abc} and t_{a}^{ij}
- If not stated differently: Tree-level masses as in SM

- The Higgs sector is a gauge theory $L = -\frac{1}{\Delta} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$ $W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + gf^{a}_{bc}W^{b}_{\mu}W^{c}_{\nu} \quad \heartsuit$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igW^a_{\mu}t^{ij}_a$ • WS W^a_{μ} h • Higgs h_{\cdot} h No QED: Ws and Zs are degenerate
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}
- If not stated differently: Tree-level masses as in SM
- Calculations will be performed using lattice

Symmetries

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

Symmetries

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry
 - Invariant under arbitrary gauge transformations $\phi^a(x)$

 $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b} \qquad h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

Symmetries

 $W^a_{\mathfrak{u}} \rightarrow W^a_{\mathfrak{u}}$

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry
 - Invariant under arbitrary gauge transformations $\Phi^{a}(x)$ $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\Phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\Phi^{a}h_{j}$
- Global SU(2) Higgs custodial (flavor) symmetry
 - Acts as right-transformation on the Higgs field only

 $h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = \begin{vmatrix} \varphi^{1}(x) + i\varphi^{2}(x) \\ v + \eta(x) + i\varphi^{3}(x) \end{vmatrix} \Rightarrow \langle h \rangle = \begin{vmatrix} 0 \\ v \end{vmatrix}$$

• η mass depends at tree-level on v

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = \begin{vmatrix} \varphi^{1}(x) + i\varphi^{2}(x) \\ v + \eta(x) + i\varphi^{3}(x) \end{vmatrix} \Rightarrow \langle h \rangle = \begin{vmatrix} 0 \\ v \end{vmatrix}$$

- η mass depends at tree-level on v
- Perform perturbation theory

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken [Elitzur PR'75]

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken [Elitzur PR'75]
 - There are gauge where the vev always vanishes [Maas'13]
 - Perturbation theory not sensible [Lee et al.'72]

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken [Elitzur PR'75]
 - There are gauge where the vev always vanishes [Maas'13]
 - Perturbation theory not sensible [Lee et al.'72]
- Consequence: Symmetry in charge space not manifest (hidden)
 - Symmetry expressed in STIs/WTIs

 Masses are determined by poles of propagators

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = \langle h^{i}(x)h^{j+1}(y) \rangle$

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = \langle h^{i}(x)h^{j+1}(y) \rangle$
- (Tree-level/perturbative) poles at Higgs and W mass

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = \langle h^{i}(x)h^{j+1}(y) \rangle$
- (Tree-level/perturbative) poles at Higgs and W mass
 - But only in a fixed gauge
 - Elementary fields are gauge-dependent
 - Without gauge fixing propagators are $\sim \delta(x-y)$

Physical states

[Fröhlich et al. PLB 80, 't Hooft ASIB 80, Bank et al. NPB 79]

- Elementary fields depend on the gauge
 - Except right-handed neutrinos

Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD

Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD
- Gauge-invariance requires composite operators in gauge theories
 - Not asymptotic states in perturbation theory
Physical states

- Elementary fields depend on the gauge
 - Except right-handed neutrinos
- Experiments measure peaks in cross-sections for particular quantum numbers
 - E.g. hadrons in QCD
- Gauge-invariance requires composite operators in gauge theories
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

• Simpelst 0⁺ bound state $h^+(x)h(x)$

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

• Simpelst 0⁺ bound state $h^+(x)h(x)$

- Same quantum numbers as the Higgs
 - No weak or flavor charge
- Mass is about 120 GeV

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
 - Mass is about 120 GeV

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
 - Mass is about 120 GeV

Comparison to Higgs

Comparison to Higgs

- Same mass
- Different influence at short times
 - Can be traced back to Higgs mechanism

[Maas et al. '13]

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence?

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx$

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+ (x)h(y) \rangle + O(\eta^3)$

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states [Fröhlich et al. PLB 80]
- $\langle (h^+ h)(x)(h^+ h)(y) \rangle \overset{h=v+\eta}{\approx} const. + \langle h^+ (x)h(y) \rangle + O(\eta^3)$
 - Same poles to leading order

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Deeply-bound relativistic state
 - Mass defect~constituent mass
 - Cannot describe with quantum mechanics
 - Very different from QCD bound states

Isovector-vector state

- Vector state 1⁻ with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D_{\mu} \frac{h}{\sqrt{h^+ h}}$
 - Only in a Higgs phase close to a simple particle
 - Higgs-flavor triplet, instead of gauge triplet

Isovector-vector state

- Vector state 1⁻ with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D_{\mu} \frac{h}{\sqrt{h^+ h}}$
 - Only in a Higgs phase close to a simple particle
 - Higgs-flavor triplet, instead of gauge triplet

Isovector-vector state

• Vector state 1⁻ with operator $tr t^a \frac{h}{\sqrt{h+h}} D_{\mu} \frac{h}{\sqrt{h+h}}$

- Only in a Higgs phase close to a simple particle
- Higgs-flavor triplet, instead of gauge triplet
- Mass about 80 GeV

Comparison to W

Comparison to W

- Essentially same mass, up to artifacts
- Different influence at short times
 - Not a hard mass, but decreases at high energies

[Fröhlich et al. PLB 80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent

[Fröhlich et al. PLB 80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

 $\langle (h + D_{\mu}h)(x)(h + D_{\mu}h)(y) \rangle$

[Fröhlich et al. PLB 80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

$$\langle (h^{+} D_{\mu}h)(x)(h^{+} D_{\mu}h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^{3})$$

$$\partial v = 0$$

[Fröhlich et al. PLB 80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$ $h = v + \eta$ $\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^3)$ $\partial v = 0$

- Same poles at leading order
 - At least for a light Higgs

[Fröhlich et al. PLB 80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$ $h = v + \eta$ $\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^3)$ $\partial v = 0$

- Same poles at leading order
 - At least for a light Higgs
 - Remains true beyond leading order

- Many states
 - No simple relation to elementary states besides Higgs and W

- Many states
 - No simple relation to elementary states besides Higgs and W

- Many states
 - No simple relation to elementary states besides Higgs and W

- Many states
 - No simple relation to elementary states besides Higgs and W

- Many states
 - No simple relation to elementary states besides Higgs and W
- Can mimic new physics
 - Note: Depends on parameters
- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]

- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]
 - Could mimic additional Higgs or Z'

- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]
 - Could mimic additional Higgs or Z'
 - Will be suppressed as higher orders in the expansion around the vacuum field
 - Small couplings, perhaps 1% or less of gauge couplings
 - Consistent with experimental bounds

- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]
 - Could mimic additional Higgs or Z'
 - Will be suppressed as higher orders in the expansion around the vacuum field
 - Small couplings, perhaps 1% or less of gauge couplings
 - Consistent with experimental bounds
 - Possibly only sigma-like bumps
 - Distinction from scattering states

- Composite states can have excitations
 - Not necessarily [Wurtz et al. '13]
 - Could mimic additional Higgs or Z'
 - Will be suppressed as higher orders in the expansion around the vacuum field
 - Small couplings, perhaps 1% or less of gauge couplings
 - Consistent with experimental bounds
 - Possibly only sigma-like bumps
 - Distinction from scattering states
 - Requires confirmation or exclusion

Comparability to the standard model

2 correct masses only fix two parameters, but
 3 parameters needed

Comparability to the standard model

- 2 correct masses only fix two parameters, but
 3 parameters needed
- Comparison to standard model complicated
 - States stable, no W/Z splitting

Comparability to the standard model

- 2 correct masses only fix two parameters, but
 3 parameters needed
- Comparison to standard model complicated
 - States stable, no W/Z splitting
 - Couplings run differently proceed with caution

Similar or identical to standard model Higgs sector

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order <~1% in the standard model weakly coupled and thus strongly suppressed

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order <~1% in the standard model weakly coupled and thus strongly suppressed
 - Near W/Z or Higgs pole by construction identical to the perturbative result

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order <~1% in the standard model weakly coupled and thus strongly suppressed
 - Near W/Z or Higgs pole by construction identical to the perturbative result
 - Excited states or different quantum numbers possible best signal channel

- Similar or identical to standard model Higgs sector
- Full non-perturbative matrix elements can be expanded in Higgs quantum fluctuations
 - Order <~1% in the standard model weakly coupled and thus strongly suppressed
 - Near W/Z or Higgs pole by construction identical to the perturbative result
 - Excited states or different quantum numbers possible best signal channel
- Example experimental signal: Excited Higgs
 - 190 GeV mass, 19 GeV width

[Maas et al. Unpublished]

• (Singlet) quartic gauge coupling and resonance formation in the same channel

[Maas et al. Unpublished]

 (Singlet) quartic gauge coupling and resonance formation in the same channel

[Maas et al. Unpublished]

 (Singlet) quartic gauge coupling and resonance formation in the same channel

[Maas et al. Unpublished]

 (Singlet) quartic gauge coupling and resonance formation in the same channel

Resonance peak in final state invariant mass?

[Maas et al. Unpublished]

 (Singlet) quartic gauge coupling and resonance formation in the same channel

- Resonance peak in final state invariant mass?
 - Estimate using effective theory+Sherpa: Too small to be seen (less than 1% at peak)

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

[Maas et al. Unpublished]

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

[Maas et al. Unpublished]

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

- E.g. excited Higgs: Decay channel: 2W
- Decides whether present in the standard model
- If present standard-model physics this would be a gateway to new physics

[Maas et al. Unpublished]

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

- E.g. excited Higgs: Decay channel: 2W
- Decides whether present in the standard model
- If present standard-model physics this would be a gateway to new physics

Ground states

- For W and Higgs exist gauge-invariant composite/bound states of the same mass
 - Play the role of the experimental signatures
 - "True" physical states
 - Reason for the applicability of perturbation theory for electroweak physics

Ground states

- For W and Higgs exist gauge-invariant composite/bound states of the same mass
 - Play the role of the experimental signatures
 - "True" physical states
 - Reason for the applicability of perturbation theory for electroweak physics
- Is this always true?
 - Full standard model: Probably
 - Other parameters?

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

• (Lattice-regularized)

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

• (Lattice-regularized) phase diagram

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

(Lattice-regularized) phase diagram continuous
 (Interpretent of the set o
Phase diagram

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

- (Lattice-regularized) f(Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges

g(Classical gauge coupling)

Phase diagram

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07]

- (Lattice-regularized) f(Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges

g(Classical gauge coupling)

Phase diagram

[Fradkin & Shenker PRD'79 Caudy & Greensite PRD'071

- (Lattice-regularized) ((Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges
- Same asymptotic states in confinement and Higgs pseudo-phases

g(Classical gauge coupling)

[Maas, Mufti PoS'12, unpublished, Evertz et al.'86, Langguth et al.'85,'86]

Spectrum ^{1.6} 600 1.4 ε 500 1.2 400 0.8 300 0.6 200 0.4 100 0.2 **1**₃ 01 0⁺₁ 2† 0_{3}^{+} 1, 0

Generically different low-lying spectra

Generically different low-lying spectra

- Generically different low-lying spectra
 - 0⁺ lighter in QCD-like region
 - 1⁻ lighter in Higgs-like region

- Generically different low-lying spectra
 - 0⁺ lighter in QCD-like region
 - 1⁻ lighter in Higgs-like region
- Use as operational definition of phase

- QCD-like behavior even for negative bare mass
- Similar bare couplings for both physics types

[Maas et al. Unpublished, 24⁴]

Spectrum development in the 0⁺ singlet channel

PRELIMINARY

Three distinct regions

[Maas et al. Unpublished, 24⁴]

Spectrum development in the 0⁺ singlet channel

PRELIMINARY

Base-line

 Lowest state as expected above threshold: 2 almost non-interacting "Ws"

[Maas et al. Unpublished, 24⁴]

Spectrum development in the 0⁺ singlet channel

PRELIMINARY

2 m/m_{trivial} 1.8 Lowest state energy/1. trivial state energy 1.6 1.4 Second state energy/2. trivial state energy 1.2 0.8 0.6 0.4 0.2 00 0.5 1.5 2.5 2 m₁/m_{0⁺} Spreaded

- Next state within errors essentially trivial throughout
- No discernible resonances

[Maas et al. Unpublished, 24⁴]

Spectrum development in the 0⁺ singlet channel

PRELIMINARY

m/m_{trivial} Lowest state energy/1. trivial state energy 1.8 1.6 Second state energy/2. trivial state energy 1.4 Third state energy/3. trivial state energy 1.2 0.8 0.6 0.4 0.2 00 0.5 1.5 2.5 2 m₁/m_{0⁺} Spreaded

- Next state within errors essentially trivial throughout
- No discernible resonances
- Also true for the next level
- Different from perturbation theory

Implications for Higgsed theories

- Higgsed theories appear a lot in BSM
 - GUTs, 2HDM, (some) SUSY models,...

Implications for Higgsed theories

- Higgsed theories appear a lot in BSM
 - GUTs, 2HDM, (some) SUSY models,...
- Structure observed here is not generic
 - Mass relation of elementary states and observable states only possible for light but not too light Higgs
 - Global symmetries determines observable state spectrum
 - SM Higgs sector is special because custodial and gauge group are the same

Implications for Higgsed theories

- Higgsed theories appear a lot in BSM
 - GUTs, 2HDM, (some) SUSY models,...
- Structure observed here is not generic
 - Mass relation of elementary states and observable states only possible for light but not too light Higgs
 - Global symmetries determines observable state spectrum
 - SM Higgs sector is special because custodial and gauge group are the same
- Each case may be different

• Simple example: Additional Higgs doublet *a*

- Simple example: Additional Higgs doublet *a*
- Standard scenario: Both Higgs condense
 - SM condensate is a mixture
 - All additional Higgs particles are states, but heavier than the SM Higgs

- Simple example: Additional Higgs doublet *a*
- Standard scenario: Both Higgs condense
 - SM condensate is a mixture
 - All additional Higgs particles are states, but heavier than the SM Higgs
- Perturbatively, the state space has just four more (heavier) Higgs

- Simple example: Additional Higgs doublet *a*
- Standard scenario: Both Higgs condense
 - SM condensate is a mixture
 - All additional Higgs particles are states, but heavier than the SM Higgs
- Perturbatively, the state space has just four more (heavier) Higgs
- Non-perturbative?

[Maas'14]

Implications for 2HDM

• FMS states

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

• Higgs 2:

 $\langle (a^{+}a)(x)(a^{+}a)(y) \rangle \approx const.+\langle a^{+}(x)a(y) \rangle + O(\eta_{a}^{3})$

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

• Higgs 2:

 $\langle (a^{+}a)(x)(a^{+}a)(y) \rangle \approx const.+\langle a^{+}(x)a(y) \rangle + O(\eta_{a}^{3})$

• W 1:

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

- Higgs 2:
- $\langle (a^{+}a)(x)(a^{+}a)(y) \rangle \approx const.+\langle a^{+}(x)a(y) \rangle + O(\eta_{a}^{3})$
- W 1:

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

• W 2:

 $\langle (a + D_{\mu}a)(x)(a + D_{\mu}a)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_a^3)$

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

- Higgs 2:
- $\langle (a^{+}a)(x)(a^{+}a)(y) \rangle \approx const.+\langle a^{+}(x)a(y) \rangle + O(\eta_{a}^{3})$
- W 1:

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

• W 2:

 $\langle (a + D_{\mu}a)(x)(a + D_{\mu}a)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_a^3)$

• Twice as many W

- FMS states:
 - Higgs 1:

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta_h^3)$

- Higgs 2:
- $\langle (a^{+}a)(x)(a^{+}a)(y) \rangle \approx const.+\langle a^{+}(x)a(y) \rangle + O(\eta_{a}^{3})$
- W 1:

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

• W 2:

 $\langle (a + D_{\mu}a)(x)(a + D_{\mu}a)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_a^3)$

- Twice as many W
 - Beyond expansion: Lattice is running

 Higgs sector with light Higgs successfully described by perturbation theory around classical physics

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Bound-state/elementary state duality
 - Highly relativistic bound states
- Permits physical interpretation of resonances in cross sections

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Bound-state/elementary state duality
 - Highly relativistic bound states
- Permits physical interpretation of resonances in cross sections
- Could create new background for BSM searches
- Generalizations to other BSM theories with Higgs effect possible
 - Required to understand observable spectrum
 - Can it differ from the perturbative/tree-level one?

- Higgs sector with light Higgs successfully described by perturbation theory around classical physics
- Bound-state/elementary state duality
 - Highly relativistic bound states
- Permits physical interpretation of resonances in cross sections
- Could create new background for BSM searches
- Generalizations to other BSM theories with Higgs effect possible
 - Required to understand observable spectrum
 - Can it differ from the perturbative/tree-level one?
- Non-perturbatively interesting even for a light Higgs