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● Strong interactions are non-perturbative
● Like QCD
● But not always: Asymptotic freedom

● Weak interactions can be non-perturbative
● QED is weakly interacting, but has non-

perturbative features like atoms, molecules, 
matter with phase structure,...

● Bound states, phase transitions,...
● Are there (relevant) non-perturbative effects 

in the weak interactions and the Higgs?
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● The Higgs sector is a gauge theory

● Ws
● Higgs
● No QED: Ws and Zs are degenerate

● Couplings g, v, λ and some numbers f abc and t
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ij

● If not stated differently: Tree-level masses as in SM
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● The Higgs sector is a gauge theory

● Ws
● Higgs
● No QED: Ws and Zs are degenerate

● Couplings g, v, λ and some numbers f abc and t
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ij

● If not stated differently: Tree-level masses as in SM
● Calculations will be performed using lattice
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● Local SU(2) gauge symmetry
● Invariant under arbitrary gauge transformations
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● Local SU(2) gauge symmetry
● Invariant under arbitrary gauge transformations

● Global SU(2) Higgs custodial (flavor) symmetry
● Acts as right-transformation on the Higgs field only
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Standard approach

● Minimize action classically
● Yields              - Higgs vev
● Assume quantum corrections to this are 

small
● Perform global gauge transformation 

such that

●   mass depends at tree-level on
● Perform perturbation theory 

h x =  
1
 x i2
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Implications of global  transformation

● Not all charge directions equal
● This is not physical, but merely a choice of gauge
● “Spontaneous gauge symmetry breaking”

● Broken by the transformation, not by the dynamics
● Dynamics only affect the length of the Higgs field
● Local symmetry intact and cannot be broken    

[Elitzur PR'75]

● There are gauge where the vev always vanishes 
[Maas'13]

● Perturbation theory not sensible [Lee et al.'72]

● Consequence: Symmetry in charge space not 
manifest (hidden)
● Symmetry expressed in STIs/WTIs



Masses from propagators

● Masses are determined by poles of 
propagators



Masses from propagators

● Masses are determined by poles of 
propagators

● 2 propagators
● W/Z

● Degenerate without QED
● Scalar

Dμν
ab
(x− y)= <W μ

a
(x)W ν

b
( y )>

DH
ij
(x− y)= <hi

(x)h j+
( y )>



Masses from propagators

● Masses are determined by poles of 
propagators

● 2 propagators
● W/Z

● Degenerate without QED
● Scalar

● (Tree-level/perturbative) poles at Higgs and W 
mass

Dμ ν
ab
(x− y)= <W μ

a
(x)W ν

b
( y)>

DH
ij
(x− y )= < hi

(x)h j+
( y)>



Masses from propagators

● Masses are determined by poles of 
propagators

● 2 propagators
● W/Z

● Degenerate without QED
● Scalar

● (Tree-level/perturbative) poles at Higgs and W 
mass
● But only in a fixed gauge
● Elementary fields are gauge-dependent
● Without gauge fixing propagators are  

Dμ ν
ab
(x− y)= <W μ

a
(x)W ν

b
( y)>

DH
ij
(x− y )= < hi

(x)h j+
( y)>

∼δ(x− y)
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Physical states

● Elementary fields depend on the gauge
● Except right-handed neutrinos

● Experiments measure peaks in cross-sections for 
particular quantum numbers
● E.g. hadrons in QCD

● Gauge-invariance requires composite operators in 
gauge theories
● Not asymptotic states in perturbation theory
● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

[Fröhlich et al. PLB 80,
 't Hooft ASIB 80,
 Bank et al. NPB 79]
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Higgsonium

● Simpelst 0+ bound state
● Same quantum numbers as the Higgs

● No weak or flavor charge
● Mass is about 120 GeV

h +
(x)h(x)

[Maas et al. '13]

Influence of heavier states

Finite-volume effects Finite-volume effects
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Comparison to Higgs

● Same mass
● Different influence at short times

● Can be traced back to Higgs mechanism

[Maas et al. '13]
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
● Scheme exists to shift Higgs mass always to 120 GeV

● Coincidence? No.
● Duality between elementary states and bound states 

[Fröhlich et al. PLB 80]

● Same poles to leading order
● Fröhlich-Morchio-Strocchi (FMS) mechanism
● Deeply-bound relativistic state

● Mass defect~constituent mass
● Cannot describe with quantum mechanics
● Very different from QCD bound states

⟨(h + h)(x)(h + h)( y)⟩
h=v+η
≈ const .+⟨h +

(x)h( y)⟩+O(η3
)

[Fröhlich et al. PLB 80
 Maas'12, Maas & Mufti'13]
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Isovector-vector state

● Vector state 1- with operator
● Only in a Higgs phase close to a simple particle
● Higgs-flavor triplet, instead of gauge triplet
● Mass about 80 GeV

tr t a h +

√h + h
Dμ

h

√h + h

[Maas et al. '13]



Comparison to W [Maas et al. '13]



Comparison to W

● Essentially same mass, up to artifacts
● Different influence at short times

● Not a hard mass, but decreases at high 
energies

[Maas et al. '13]
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Mass relation - W

● Vector state: 80 GeV
● W at tree-level: 80 GeV

● W not scale or scheme dependent
● Same mechanism

● Same poles at leading order
● At least for a light Higgs
● Remains true beyond leading order

⟨(h + Dμh)(x)(h + Dμh)( y)⟩
h=v+η
≈

∂ v=0
const .+⟨W μ(x)W μ( y)⟩+O (η3)

[Fröhlich et al. PLB 80
 Maas'12]
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Ground state spectrum

● Many states
● No simple relation to elementary states besides Higgs 

and W
● Can mimic new physics

● Note: Depends on parameters

[Maas et al. Unpublished, PoS'12]
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(Speculative) Consequences

● Composite states can have excitations
● Not necessarily [Wurtz et al. '13]

● Could mimic additional Higgs or Z'
● Will be suppressed as higher orders in the 
expansion around the vacuum field

● Small couplings, perhaps 1% or less of gauge 
couplings

● Consistent with experimental bounds
● Possibly only sigma-like bumps

● Distinction from scattering states
● Requires confirmation or exclusion
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Comparability to the standard model
● 2 correct masses only fix two parameters, but 

3 parameters needed
● Comparison to standard model complicated

● States stable, no W/Z splitting
● Couplings run differently – proceed with caution

[Maas, Mufti'13]
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Weakly coupled experimental signals?

● Similar or identical to standard model Higgs 
sector

● Full non-perturbative matrix elements can be 
expanded in Higgs quantum fluctuations
● Order <~1% in the standard model – weakly 

coupled and thus strongly suppressed
● Near W/Z or Higgs pole by construction identical 

to the perturbative result
● Excited states or different quantum numbers 

possible best signal channel
● Example experimental signal: Excited Higgs

● 190 GeV mass, 19 GeV width
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Impact on quartic gauge coupling

● (Singlet) quartic gauge coupling and 
resonance formation in the same channel

● Resonance peak in final state invariant mass?
● Estimate using effective theory+Sherpa: Too 

small to be seen (less than 1% at peak)

W/Z

W/Z

Resonance

W/Z

W/Z

W/Z

W/Z

W/Z

W/Z

+

[Maas et al. Unpublished]
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Non-perturbative:
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● E.g. excited Higgs: Decay channel: 2W
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● If present standard-model physics this would be a 

gateway to new physics
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Experimental accessibility

Parton 1

Parton 2

Z

Z

W+

W-

Perturbative:
Higgs, Z, γ

Non-perturbative:
0++*,...

Additional 1% effect

● E.g. excited Higgs: Decay channel: 2W
● Decides whether present in the standard model
● If present standard-model physics this would be a 

gateway to new physics

[Maas et al. Unpublished]

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

20 fb-1 1000 fb-1 500 fb-1
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Ground states

● For W and Higgs exist gauge-invariant 
composite/bound states of the same mass
● Play the role of the experimental signatures
● “True” physical states
● Reason for the applicability of perturbation theory 

for electroweak physics
● Is this always true?

● Full standard model: Probably
● Other parameters?
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Phase diagram

● (Lattice-regularized) 
phase diagram 
continuous
● Separation only in 

fixed gauges
Landau gauge

Coulomb gauge

[Fradkin & Shenker PRD'79
 Caudy & Greensite PRD'07]
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Phase diagram

● (Lattice-regularized) 
phase diagram 
continuous
● Separation only in 

fixed gauges
● Same asymptotic 

states in 
confinement and Higgs 
pseudo-phases

● Same asymptotic states irrespective of 
coupling strengths

[Fradkin & Shenker PRD'79
 Caudy & Greensite PRD'07]
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Typical spectra

● Generically different low-lying spectra
● 0+ lighter in QCD-like region
● 1- lighter in Higgs-like region

● Use as operational definition of phase

“Higgs” “QCD”

[Maas, Mufti PoS'12, unpublished,
 Evertz et al.'86, Langguth et al.'85,'86]
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Phase diagram

“Higgs”“QCD”

● Complicated phase diagram
● QCD-like behavior even for negative bare mass
● Similar bare couplings for both physics types

[Maas, Mufti, unpublished]
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Development in the Higgs channel

● Base-line
● Lowest state as expected above 

threshold: 2 almost non-interacting 
”Ws” 

PRELIMINARY[Maas et al. Unpublished, 244]



Development in the Higgs channel

● Next state within errors essentially trivial 
throughout

● No discernible resonances
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Development in the Higgs channel

● Next state within errors essentially trivial 
throughout

● No discernible resonances
● Also true for the next level
● Different from perturbation theory

PRELIMINARY[Maas et al. Unpublished, 244]
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Implications for Higgsed theories

● Higgsed theories appear a lot in BSM
● GUTs, 2HDM, (some) SUSY models,...

● Structure observed here is not generic
● Mass relation of elementary states and 

observable states only possible for light but 
not too light Higgs

● Global symmetries determines observable 
state spectrum
● SM Higgs sector is special because custodial 
and gauge group are the same

● Each case may be different
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● Simple example: Additional Higgs 
doublet a

● Standard scenario: Both Higgs condense
● SM condensate is a mixture
● All additional Higgs particles are states, but 

heavier than the SM Higgs
● Perturbatively, the state space has just 

four more (heavier) Higgs
● Non-perturbative?

[Maas'14]
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Implications for 2HDM

● FMS states:
● Higgs 1:

● Higgs 2:

● W 1:

● W 2:

●  Twice as many W
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Implications for 2HDM

● FMS states:
● Higgs 1:

● Higgs 2:

● W 1:

● W 2:

●  Twice as many W
● Beyond expansion: Lattice is running

⟨(h + h)(x)(h + h)( y )⟩ ≈ const .+⟨h + (x)h( y)⟩+O(ηh
3)

⟨(a + a)(x )(a + a)( y)⟩ ≈ const .+⟨a + (x)a( y)⟩+O(ηa
3)

⟨(h + Dμh)(x )(h + Dμh)( y)⟩ ≈ const .+⟨W μ(x)Wμ( y)⟩+O(ηh
3)

⟨(a + Dμa)(x)(a + Dμa)( y )⟩ ≈ const .+⟨Wμ(x)W μ( y )⟩+O(ηa
3)

[Maas'14]
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Summary

● Higgs sector with light Higgs successfully described 
by perturbation theory around classical physics

● Bound-state/elementary state duality
● Highly relativistic bound states

● Permits physical interpretation of resonances in 
cross sections

● Could create new background for BSM searches
● Generalizations to other BSM theories with Higgs 

effect possible
● Required to understand observable spectrum
● Can it differ from the perturbative/tree-level one?

● Non-perturbatively interesting even for a light Higgs
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