Determination of $\Lambda_{\overline{\rm MS}}$ from the static quark-antiquark potential in momentum space

Antje Peters peters@th.physik.uni-frankfurt.de

Goethe-Universität Frankfurt am Main

Strong Interactions in the LHC Era November 14, 2014

Overview

- 1 Motivation
- 2 Perturbation theory
- 3 Setup
- 4 The static quark-antiquark potential
- **5** Determination of $\Lambda_{\overline{MS}}$

Motivation

- The parameter $\boldsymbol{\Lambda}$ defines the scale for dimensionful perturbative results.
- analogous to r_0 for lattice results
- Calculating dimensionful quantities requires a scale.
- In the \overline{MS} renormalization scheme: $\Lambda_{\overline{MS}}$
- Determine a result by a lattice computation and a perturbative calculation \rightsquigarrow solve for $\Lambda_{\overline{MS}}$
- suitable observable : quark-antiquark potential
 - simple computation on the lattice (no quark propagators)
 - precise analysis in perturbation theory

Why momentum space?

- Lattice theory is formulated in position space, but perturbation theory is formulated in momentum space.
- Existing work: Fourier transform perturbation theory before comparison to lattice results κ. Jansen et al. [ETM Collaboration], JHEP 1201 (2012) 025 [arXiv:1110.6859 [hep-ph]].
- Problem in position space:

$$V_{pert}(r) = \int d^3 p \mathrm{e}^{i p r} \, ilde{V}_{pert}(p)$$

is wrong for $p < \Lambda$ (≈ 300 MeV)

- Unavoidable systematic errors!
- result: $\Lambda_{\overline{\text{MS}}} = 315(30) \mathrm{MeV}$
- This work: get V(p) directly and consider it only for large momenta $p \gg \Lambda$

Perturbation Theory

The static quark-antiquark potential:

$$\begin{split} \tilde{V}(\boldsymbol{p}) &= -\frac{16\pi}{3\boldsymbol{p}^2} \alpha_s(\mu) \Big\{ 1 + \frac{\alpha_s(\mu)}{4\pi} P_1(L) + \left(\frac{\alpha_s(\mu)}{4\pi}\right)^2 P_2(L) \\ &+ \left(\frac{\alpha_s(\mu)}{4\pi}\right)^3 \left[P_3(L) + \boldsymbol{a}_{3\ln} \ln \alpha_s(\mu) \right] + \dots \Big\} \end{split}$$

with

$$L(\mu, p) = \ln \frac{\mu^2}{p^2} \equiv L$$
 $P_i(L)$: polynomials in L scale parameter μ

requirements:

$$\mu \gg \Lambda_{\overline{\text{MS}}} \longrightarrow \alpha_s(\mu) \ll 1$$
 and $\mu \sim p$

 $\Lambda_{\overline{MS}}$ is related to α_s :

$$\ln \frac{\mu}{\Lambda} = \int \frac{\mathrm{d}\alpha_s}{\alpha_s} \frac{1}{\beta(\alpha_s)} \bigg|_{\alpha_s = \alpha_s(\mu = p)} + C, \qquad C = \frac{\beta_1}{2\beta_0^2} \ln(\frac{\beta_0}{4\pi})$$

with

$\beta(\alpha_s)$: QCD β function

(I) straightforward integration

(II) series expansion of $\frac{1}{\beta(\alpha_s)}$ in α_s and subsequent integration

 \rightsquigarrow match perturbative potential $\tilde{V}(p)$ and lattice potential results by adjusting $\Lambda_{\overline{\rm MS}}$ appropriately

Lattice Computations

- use $n_f = 2$ gauge link configurations generated by the ETMC
- tree-level Symanzik improved gauge action
- Wilson twisted mass action
- a = 0.042 fm $\beta = 4.35$ $(L/a)^3 \times T/a = 32^3 \times 64$

Potential in position space

1) Perform standard lattice computation of the static potential $V(\vec{r})$, i.e. extract $V(\vec{r})$ from the exponential decay of Wilson loop averages $\langle W(\vec{r},t) \rangle$ with respect to t:

• compute
$$V^{(\text{effective})}(\vec{r},t) = \frac{1}{a} \ln \left(\frac{\langle W(\vec{r},t) \rangle}{\langle W(\vec{r},t+a) \rangle} \right)$$

• perform χ^2 -minimizing fit to $V^{(\mathrm{effective})}(ec{r},t)$ in a suitable *t*-range

2) Model potential at large separations:

$$V_M(r) = A_0 + \sigma r + \sum_{m=1}^M \frac{A_m}{r^m}$$

 \implies keep in mind: choice of fit model is a new error source!

Transformation to momentum space

Discrete Fourier transform

$$\tilde{V}(\vec{k}) = \# \sum_{n_x, n_y, n_z=0}^{N-1} V(n) e^{\frac{2\pi i \vec{k} \cdot \vec{n}}{N}}$$

- very sensitive to discontinuities in position space potential due to data modelling
- avoid lattice effects: use "cylinder cut"

Variation of input parameters

- data model in position space $(V_M(r))$
- procedure (I) or (II) to determine $\Lambda_{\overline{\mathrm{MS}}}(lpha_{\mathfrak{s}}(\mu))$
- fit range in momentum space

Results I

Results II

Results for different fit ranges in momentum space:

expression (II) fixed fit interval

expression (I) p_{\min} runs

Errors

error source	this work	position	comment	
		space		
correlated	$13\mathrm{MeV}$	$20-26{\rm MeV}$	NNLO and NNNLO	
syst. errors	$3\mathrm{MeV}$	$13-14{\rm MeV}$	NNNLO only	
statistical			statistical error of lattice	
errors	$pprox 2-4{ m MeV}$	$pprox 2{ m MeV}$	potential $V(r)$ propagated	
			through to $\Lambda_{\overline{\mathrm{MS}}}$ via jackknife	
lattice	$\ll 8{ m MeV}$	$\ll 6{ m MeV}$	a rather conservative	
discr. errors			upper bound	
lattice				
spacing	pprox 13 MeV		$\lambda \approx \Lambda_{\overline{ m MS}} imes (\Delta a/a) pprox \Lambda_{\overline{ m MS}} imes 0.04$	
errors				

Final results for $\Lambda_{\overline{MS}}$

One finds (momentum space):

$\Lambda_{\overline{MS}}=331(13){\rm MeV}$	respectively	$\Lambda_{\overline{ m MS}} r_0 = 0.692(21)$	
$\Lambda_{\overline{MS}} = 331(21) \mathrm{MeV}$	respectively	$\Lambda_{\overline{ m MS}}r_0=0.692(31)$	

without lattice discretization errors with all errors

Conclusions

- Error on $\Lambda_{\overline{MS}}$ could be reduced!
- result very sensitive on choice of data model in position space

Future tasks

- \longrightarrow Continuous Fourier transform instead of discrete version \surd
- $\longrightarrow\,$ precise lattice results at large distances needed
- \longrightarrow study the comparison of momentum space and position space results in more detail

Thanks for your attention.