Black Holes as Quantum Bound States

Tehseen Rug

Max-Planck-Institut für Physik, Ludwig-Maximilians Universität

November 12th 2014

Contents

- I Black Holes The usual picture
- Quantum Portrait of Black Holes
- 3 Quantum Bound State Description of Black Holes
 - Theoretical Framework
 - Results

(D) (A) (A)

Classical Black Holes

General Relativity:

$$S = M_p^2 \int d^4 x \sqrt{-g} (R + g^{\mu\nu} T_{\mu\nu})$$
 (1)

- Schwarzschild Black holes: Spherically symmetric solutions with source radius $R = r_g = 2G_N M$
- event horizon: "nothing can escape from a black hole"
- in general: Black Holes characterized by mass *M*, charge *Q*, angular momentum *L*

Semiclassical Black Holes

Basic Idea: Quantize matter field in classical background

- Consequence: Hawking radiation $T \sim 1/r_{g}, \ \Gamma \sim 1/r_{g}$
- Remark:

Quantum Corrections believed to be exponentially suppressed

- Mysteries:
 - negative heat capacity
 - no hair theorems
 - information paradox

No resolution within semiclassical approach

Graviton Bound States

- interpret GR as EFT of graviton on flat spacetime
- Black holes: Bound states of N soft gravitons $(\lambda \sim r_g)^1$ (analogy: Hadrons in QCD)

$$M = \sqrt{N}M_{p}, \ r_{g} = \sqrt{N}L_{p}, \ \alpha = 1/N$$
(2)

- ullet e.g. for solar mass black hole: $N\sim 10^{71}$
- coupling weak, but large collective effect αN = 1 (compare to baryons in large N QCD)

¹ Dvali,	Gomez;	1112.3359	[hep-th]	
		Tehseen Rug		

Implications

known results recovered as N→∞
 e.g. Hawking radiation:

$$\Gamma \sim 1/r_g + \mathcal{O}(1/N) \tag{3}$$

- new 1/N corrections large enough to resolve all the black hole mysteries!
- Question: Quantitative theoretical framework?

QCD Analogy

Use methods inspired from QCD to describe black hole bound states^2

 \bullet confining potential at low energies \rightarrow large collective effects

Theoretical Framework

Results

• hadrons \rightarrow large N graviton bound states

Tehseen Rug

- $\bullet\,$ condensates of quarks and gluons $\to\,$ condensates of gravitons and curvature invariants
- hadronic currents, e.g. $\mathscr{J}(x) \sim \bar{q}q(x) \rightarrow \text{black hole currents}$ $\mathscr{J}(x) \sim h^N(x)$

²Hofmann, Rug; 1403.3224 [hep-th]

Theoretical Framework Results

Explicit Construction

Model black hole state \mathscr{B} by auxiliary current $\mathscr{J}(x)$: $\langle \mathscr{B} | \mathscr{J}(x) | \Omega \rangle \neq 0$

- $\mathscr{J}(x)|\Omega\rangle$: same quantum numbers as $|\mathscr{B}\rangle \Rightarrow \mathscr{J}(x) = h^{N}(x)$ (take scalar fields for simplicity)
- consistency with isometries: \$\mathcal{J}(x) = \mathcal{J}(r)\$
 Ward: implement symmetries at the end of computations

$$|\mathscr{B}\rangle = \Gamma_B^{-1} \int \frac{\mathrm{d}^4 p}{(2\pi)^4} B(p) \int \mathrm{d}^4 x e^{\mathrm{i} p x} \mathscr{J}(x) |\Omega\rangle \tag{4}$$

Remark:

٢

Generalization to other spacetimes (including perturbations) and topological defects possible!

Theoretical Framework Results

Observables at Parton Level

• Light-cone constituent distribution:

$$\mathscr{D}(\mathbf{r}) = \int \mathrm{d}^{3}k \, \mathrm{e}^{-\mathrm{i}k \cdot \mathbf{r}} \langle \mathscr{B} | \mathbf{n}(\mathbf{k}) | \mathscr{B} \rangle \tag{5}$$

• Energy density:

$$\mathscr{E} = \langle \mathscr{B} | T_{\mu\nu}(x) | \mathscr{B} \rangle \tag{6}$$

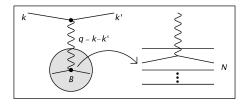
• Evaluation using (4) in $N, M \rightarrow \infty$, N/M fixed limit leads to

$$M_{\mathscr{B}}^{2} = \frac{\langle \Phi^{2(N-1)} \rangle}{\langle \Phi^{2(N-2)} \rangle} N^{2}$$
(7)

Theoretical Framework Results

Remarks

- scaling: M ~ N expected at parton level (compare to large N baryons in 1/N expansions)
- finite $N \Rightarrow 1/N$ corrections
- higher-order corrections can be implemented in a gauge-invariant way via Wilson lines:


$$\mathscr{P}\exp\left(-\oint \mathrm{d}z^{\lambda}\Gamma^{\mu}_{\mu\lambda}(z)\right) \tag{8}$$

 x^μx^νΓ^λ_{μν} gauge: all condensates automatically gauge-invariant (analogue: External field methods and Fock-Schwinger gauge in QCD sum rule calculations)

Theoretical Framework Results

Scattering

• $\langle \mathscr{B}' \Phi' | \mathscr{B} \Phi \rangle$ in tree approximation 3

- $r_g^{-2} \ll q^2 \ll M_p^2$: EFT description valid, but resolution of bound state possible
- ACD and OPE lead to

$$k^{\prime 0} \frac{\mathrm{d}\sigma}{\mathrm{d}^{3} k^{\prime}} \sim \mathscr{D}(r) \tag{9}$$

³Gruending, Mueller, Hofmann, Rug; 1407.1051 [hep-th]∂→ <≧→ <≧→ <≧→

Summary and Outlook

Summary:

- treat black holes as large N bound state of gravitons
- employ QCD inspired methods
- 1/N corrections as solution to black hole mysteries
- scaling $M \sim N$, embedding of observables in scattering experiments

Summary and Outlook

Summary:

- treat black holes as large N bound state of gravitons
- employ QCD inspired methods
- 1/N corrections as solution to black hole mysteries
- scaling $M \sim N$, embedding of observables in scattering experiments

Outlook:

- large N baryons
- black hole formation
- application to different spacetimes

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank You for Your Attention

イロン イヨン イヨン イヨン

æ