Planck scale, Higgs mass and scalar dark matter

Michael M. Scherer

Institute for Theoretical Physics, University of Heidelberg

based on PRD 90, 025023 (2014) with A. Eichhorn

November 13, 2014 @ 574. Wilhelm und Else Heraeus Seminar, Physikzentrum Bad Honnef

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

• Discovery of the Higgs@LHC:

• Discovery of the Higgs@LHC:

• Standard model:

- Iow-energy effective theory
- \blacktriangleright physical cutoff Λ
- \blacktriangleright "new physics" beyond Λ

Range of validity of SM?

- Gravity effects: $\Lambda \sim M_{\rm Pl} = \sqrt{\hbar c/G} \approx 10^{19} {\rm GeV}$
- ▶ Landau pole in U(1)_{hypercharge}: $\Lambda > M_{Pl}$
- ▶ Higgs sector...

On Higgs mass bounds

• Higgs mass is related to Higgs coupling and vev:

$$M_H^2 \sim \lambda_4 v^2$$

• Upper bound related to Landau pole

Main mechanism for lower Higgs mass bound

• Higgs potential:

$$m_H = \sqrt{\lambda} \cdot vev$$
$$m_t = y \cdot vev$$

Main mechanism for lower Higgs mass bound

• Higgs potential:

$$m_H = \sqrt{\lambda} \cdot vev$$
$$m_t = y \cdot vev$$

• Running Higgs self-coupling:

Main mechanism for lower Higgs mass bound

• Higgs potential:

$$m_H = \sqrt{\lambda} \cdot vev$$
$$m_t = y \cdot vev$$

Running Higgs self-coupling:

Lower mass bound in the standard model

$$\beta_{\lambda_4} = \frac{d\,\lambda_4}{d\,\log k} = \frac{1}{8\pi^2} \left[12\lambda_4^2 + 6\lambda_4 y^2 - 3y^4 - \frac{3}{2}\lambda_4 \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

Lower mass bound in the standard model

$$\beta_{\lambda_4} = \frac{d\,\lambda_4}{d\,\log k} = \frac{1}{8\pi^2} \left[12\lambda_4^2 + 6\lambda_4 y^2 - 3y^4 - \frac{3}{2}\lambda_4 \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

Evidence for dark matter

• Gravitational lensing

Bullet cluster

• Galaxy rotation curves

• CMB,...

Higgs portal to dark matter

• Single scalar field serves as **stable DM** candidate (WIMP)

$$\Gamma_{\rm DM} = \int d^4x \left(\frac{1}{2}\partial_\mu S \partial^\mu S + \frac{1}{2}m_S^2 S^2 + \frac{\lambda_{02}}{8}S^4\right)$$

- with \mathbb{Z}_2 symmetry: $S \to -S$
- ▶ Portal coupling to Higgs: $\frac{\lambda_{11}}{4}h^2S^2$
- S can reproduce observed dark matter relic density

• Action:

• Action:

$$S_{\rm UV} = \int d^4x \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \frac{1}{2} (\partial_\mu h)^2 + \frac{1}{2} (\partial_\mu S)^2 + i \bar{y} h \bar{\psi} \psi + \bar{V}(h, S) \right\}$$

scalar boson (radial Higgs) top-Higgs i.a.

• Discrete "chiral" Z₂-symmetry in Higgs-top sector: $\psi \to e^{i\frac{\pi}{2}\gamma_5}\psi, \quad \overline{\psi} \to \overline{\psi}e^{i\frac{\pi}{2}\gamma_5}$ $h \to -h, \quad S \to S$

• Action:

$$S_{\rm UV} = \int d^4x \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \frac{1}{2} (\partial_\mu h)^2 + \frac{1}{2} (\partial_\mu S)^2 + i \bar{y} h \bar{\psi} \psi + \bar{V}(h, S) \right\}$$

scalar boson (radial Higgs) top-Higgs i.a.

- Discrete "chiral" Z₂-symmetry in Higgs-top sector: $\psi \to e^{i\frac{\pi}{2}\gamma_5}\psi, \quad \overline{\psi} \to \overline{\psi}e^{i\frac{\pi}{2}\gamma_5}$ $h \to -h, \quad S \to S$
- Potential:

• Action:

$$S_{\rm UV} = \int d^4x \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \frac{1}{2} (\partial_\mu h)^2 + \frac{1}{2} (\partial_\mu S)^2 + i \bar{y} h \bar{\psi} \psi + \bar{V}(h, S) \right\}$$

scalar boson (radial Higgs) top-Higgs i.a.

- Discrete "chiral" Z₂-symmetry in Higgs-top sector: $\psi \to e^{i\frac{\pi}{2}\gamma_5}\psi, \quad \overline{\psi} \to \overline{\psi}e^{i\frac{\pi}{2}\gamma_5}$ $h \to -h, \quad S \to S$
- Potential:

- spontaneous Z₂-symmetry breaking \rightarrow generation of vev, top mass & Higgs mass

RG evolution of top-Higgs-dark-matter model

- Use functional RG method as a tool to obtain β functions:
 - Flowing action Γ_k with RG scale k interpolates between

microscopic action
$$(k \to \Lambda)$$
: $\Gamma_k[\Phi] \to S[\Phi]$
full effective action $(k \to 0)$: $\Gamma_k[\Phi] \to \Gamma[\Phi]$

FRG flow equation:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}. \quad \text{Wetterich (1993)}$$

Truncation:

$$\Gamma_k = \int d^4x \Big(i\bar{\psi}\partial\psi + (\partial_\mu h)^2 + (\partial_\mu S)^2 + iyh\bar{\psi}\psi + V_k(h,S) \Big)$$

β functions for model couplings...

...(e.g. reproduce 1-loop β functions from PT, include threshold effects, higher order operators,...)

• Contours of fixed cutoff scale:

S constitutes complete
DM relic density

350 300 250 250 H 200 toy model! 13 10 150 100 50 0.2 0.4 0.8 1.0 0.6 λ_{11} [IR]

SM: Gonderinger et al. (2009)
Eichhorn, MMS (2014)

Standard model as a low-energy effective theory

• Induced potential at UV scale: all operators compatible with symmetries

$$V_{\Lambda} = \lambda_4 \phi^4 + \frac{\lambda_6}{\Lambda^2} \phi^6 + \dots \quad \text{with} \quad \lambda_n \sim \mathcal{O}(1)$$

• Towards IR: irrelevant operators follow canonical scaling

Standard model as a low-energy effective theory

• Induced potential at UV scale: all operators compatible with symmetries

$$V_{\Lambda} = \lambda_4 \phi^4 + \frac{\lambda_6}{\Lambda^2} \phi^6 + \dots \quad \text{with} \quad \lambda_n \sim \mathcal{O}(1)$$

• Towards IR: irrelevant operators follow canonical scaling

•

- Fix vev = 246 GeV and m_{top} = 173 GeV
- Choose $\lambda_{20}=-0.1$ and $\lambda_{30}=3.0$
 - Higgs masses with dark matter and new couplings:

- Fix vev = 246 GeV and m_{top} = 173 GeV
- Choose $\lambda_{20}=-0.1$ and $\lambda_{30}=3.0$
 - ➡ Higgs masses with dark matter and new couplings:

Sichhorn, MMS (2014)

- Fix vev = 246 GeV and m_{top} = 173 GeV
- Choose $\lambda_{20}=-0.1$ and $\lambda_{30}=3.0$
 - Higgs masses with dark matter and new couplings:

Sichhorn, MMS (2014)

- Fix vev = 246 GeV and m_{top} = 173 GeV
- Choose $\lambda_{20}=-0.1$ and $\lambda_{30}=3.0$
 - Higgs masses with dark matter and new couplings:

Summary & Outlook

• measured Higgs mass very close to lower bound $M_h(\Lambda = M_{Pl})$

► absolute stability bound @ M_h=129 GeV Sezrukov et al. (2012)

• simple dark matter model: scalar gauge singlet with Higgs portal

can constitute complete DM relic density

- ► DM fluctuations increase ∧ at fixed Higgs mass
- ► DM fluctuations allow for smaller Higgs masses at fixed Λ (~ a few GeV @ Λ = M_{PI})
- generalized UV potentials as expected from EFT increase Λ for fixed Higgs mass
 - generalized UV potentials: Higgs masses below lower bound at fixed Λ (~ a few GeV)
- Combined effects from DM and higher order couplings: SM+DM could be valid up to MPI
- Ongoing research including gauge fields with A. Eichhorn, H. Gies, J. Jäckel, T. Plehn, R. Sondenheimer