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• Higgs mass is related to Higgs coupling and vev: M2
H ⇠ �4v
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On Higgs mass bounds

Figure 2: Summary of the uncertainties connected to the bounds on MH . The upper

solid area indicates the sum of theoretical uncertainties in the MH upper bound for

mt = 175 GeV [12]. The upper edge corresponds to Higgs masses for which the

SM Higgs sector ceases to be meaningful at scale Λ (see text), and the lower edge

indicates a value of MH for which perturbation theory is certainly expected to be

reliable at scale Λ. The lower solid area represents the theoretical uncertaintites in

the MH lower bounds derived from stability requirements [9, 10, 11] using mt = 175

GeV and αs = 0.118.

Looking at Fig. 2 we conclude that a SM Higgs mass in the range of 160 to

170 GeV results in a SM renormalisation-group behavior which is perturbative and

well-behaved up to the Planck scale ΛP l ≃ 1019 GeV.

The remaining experimental uncertainty due to the top quark mass is not rep-

resented here and can be found in [9, 10, 11] and [12] for lower and upper bound,

respectively. In particular, the result mt = 175 ± 6 GeV leads to an upper bound

MH < 180 ± 4 ± 5 GeV if Λ = 1019 GeV, (4)

the first error indicating the theoretical uncertainty, the second error reflecting the

residual mt dependence [12].
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II. GAUGED HIGGS–TOP MODEL

The aim of this paper is to investigate the question of mass bounds and vacuum stability in the presence of
higher dimensional operators and a finite UV cuto↵. To that end we use modern functional renormalization group
(FRG) methods. In this context the FRG method mainly equips us with a technical tool to compute � functions,
in agreement with the Wilsonian perspective. We will set up a toy model that allows us to study the essential
features of the Standard Model in the context of vacuum stability.
As a starting point, we briefly recapitulate the main features of the Standard Model at one-loop level. In the

introductory sections we use � for the Higgs doublet and H for the actual Higgs scalar, while ' denotes a general
real scalar field which can play the role of the Higgs field H in our toy model. Once we convince ourselves that
the toy model quantitatively reproduces the Standard Model we will switch notation and again use H for the
corresponding scalar Higgs field with a measured mass of 125 GeV.

A. Standard Model running

The perturbative approach starts from the usual Higgs potential, generalized to an e↵ective potential by allowing
for a scale dependence of all parameters. For the Higgs field the potential including the dimension-6 operator
explicitly reads
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with v = 246 GeV. Removing the odd powers in H corresponds to switching from a Higgs field expanded around
v to a scalar field expanded around zero [? by HG]. As long as we are interested in the ultraviolet behavior we
can also neglect the quadratic (mass) terms. Moreover, we can limit ourselves to the leading terms in v/M for
even powers of the Higgs field, giving us
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If we start from the first line of Eq.(1), it is not at all clear whether a slightly negative �
4

will lead to a metastable
vacuum. This depends on the higher-dimensional couplings �

6,8,... which, if su�ciently large, can obviously
stabilize the Higgs potential for all k < M

Pl

.

However, the usual assumption is that of perturbative renormalizability, requiring the absence of higher di-
mensional operators in the UV. With the so-defined Standard Model the corresponding Lagrangian consists of
all dimension-4 operators. In that case the question of stability is usually linked to the sign of �

4

defined in
Eq.(1). The beta function for any coupling g is defined as �g = dg/d log k. In these conventions the one-loop
renormalization group equations for the Higgs self-coupling �

4

, the top Yukawa y, and the strong coupling gs in
the Standard Model read
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The top Yukawa coupling is linked to the top mass as y =
p
2mt/v while the Higgs mass is given by m2

H = 2�
4

v2

plus contributions from dimension-6 operators. [Typically, these coupling parameters or the related running
masses, mt and mH , are evaluated at the scale of the top pole mass to be translated into the pole masses of
the Higgs and the top, according to the on-shell scheme.] The two gauge couplings are g

2

for SU(2)L and g
1

or
g
1

for U(1)Y . The number of fermions contributing to the running of the strong coupling is nf . In the present
setup no explicit higher dimensional operators are present. However, if they are generated by Standard Model
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Figure 1: Renormalisation of the SM gauge couplings g1 =
�

5/3gY , g2, g3, of the top, bottom
and � couplings (yt, yb, y�), of the Higgs quartic coupling � and of the Higgs mass parameter m.
All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale
and three-loop RG equations. The thickness indicates the ±1� uncertainties in Mt, Mh, �3.

Planck mass, we find the following values of the SM parameters:

g1(MPl) = 0.6168 (56a)

g2(MPl) = 0.5057 (56b)
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All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge
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Figure 1: Upper left: running of SM couplings, figure taken from Ref. [8]. Upper right to lower right: running of our toy
model couplings after including the running strong coupling and electroweak coupling e↵ects. Dashed lines indicate the
regime where �

4

(k) < 0, which in the perturbative approach defines the loss of vacuum stability.

gauge couplings give a significant positive contribution to ��4 , balancing the negative top Yukawa terms for small
values of �

4

; second, they slow down the growing top Yukawa and thereby a↵ect the increase of �
4

toward large
field values. Since the variation of the weak coupling at large energy scales is modest, we account for its e↵ects
by including a finite contribution in the beta functions for �

4

and y, parametrized by a fiducial coupling gF and
numerical constants c�, cy.
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The scalar mass is given by m2

' = 2�
4

v2 and the top mass by y =
p
2mt/v. To approximate the Standard Model

we choose nf = 6 to account for the contribution of all flavors to the running of the gauge coupling. As long as we
only keep the top quark contribution to the running of the Higgs quartic coupling, we set ny = 1. The expressions
in Eq.(8) reproduce the standard one-loop � functions for our model [23].
In principle, we should also account for the electroweak U(1) and SU(2) couplings a↵ecting the running of

the higher-dimensional coupling �
6

. On the other hand, the main e↵ect of �
6

on the Higgs potential at large
energies will be its contribution to the running of �

4

[15], so a detailed modelling of the running of �
6

itself is not
necessary. Here, we will assume that the leading contribution to the running of �

6

is given by contributions of the
Higgs scalar itself and the top. Further, the main e↵ect of �

6

on the Higgs mass is through its contribution to the
running of �

4

, so corrections to the running of �
6

constitute subleading e↵ects on the value of the Higgs mass.

Buttazzo et al. (2013)

Lower mass bound in the standard model
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2mt/v. To approximate the Standard Model

we choose nf = 6 to account for the contribution of all flavors to the running of the gauge coupling. As long as we
only keep the top quark contribution to the running of the Higgs quartic coupling, we set ny = 1. The expressions
in Eq.(8) reproduce the standard one-loop � functions for our model [23].
In principle, we should also account for the electroweak U(1) and SU(2) couplings a↵ecting the running of
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FIG. 3. Height of the potential barrer near the critical value ycrit
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FIG. 4. Scale µ0 where the Higgs self-coupling � becoming
negative (possibly requiring new physics at lower energies)
depending on the top quark Yukawa yt.

In numbers, the criticality equations (4.3) give

ycritt = 0.9244 + 0.0012⇥ Mh/GeV � 125.7

0.4

+ 0.0012⇥ ↵s(MZ)� 0.1184

0.0007
, (4.4)

where ↵s is the QCD coupling at the Z-boson mass.
Though all the required components are present in the
works [21, 34–36] a comment is now in order of how
eq. (4.4) was obtained. First, instead of defining the criti-
cal Higgs boson massMh the critical value of the top pole
mass was defined, and then converted back to the value
of the top quark Yukawa, accounting for known QCD
and electroweak corrections. However, it is not immedi-
ate to read these numbers from the papers mentioned,
as far as the matching conditions relating the physical
masses and MS parameters are scattered over the pub-
lished works. The 3 loop beta functions can be found in

[37–42] and is given in a concise form in the code from
[34] or in [35]. The one loop contributions to the match-
ing conditions between theW , Z and Higgs boson masses
and the MS coupling constants at µ ⇠ mt of the order
O(↵) and O(↵s) are known for long time [43] and can
be read of [34, 35]. The two loop contribution of the
order O(↵↵s) to the Higgs coupling constant � was cal-
culated in [34, 35] and for the practical purposes can be
taken from eq. (34) of [35]. The two loop contribution
of the order O(↵2) to � was calculated in [35], with the
numerical approximation given by eq. (35). Recently an
independent evaluation at the order O(↵2) was obtained
in [36] which di↵ers slightly from [35], but the di↵erence
has a completely negligible impact on (4.4) (note that
even the whole O(↵2) contribution to � changes ycritt by
only 0.5⇥10�3). However, one should be careful in using
the final numerical values of the MS couplings from the
section 3 of [35], as far as the value of the strong cou-
pling at µ = Mt which was used there (eq. (60)) does not
correspond to the value obtained from the Particle Data
Group value at MZ by RG evolution.

Thanks to complete two-loop computations of [35, 36]
and three-loop beta functions for the SM couplings found
in [37–42] the formula (4.4) may have a very small the-
oretical error, 2 ⇥ 10�4, with the latter number coming
from an “educated guess” estimates of even higher or-
der terms—4 loop beta functions for the SM and 3 loop
matching conditions at the electroweak scale, which re-
late the physically measured parameters such as W, Z
and Higgs boson masses, etc with the MS parameters
(see the discussion in [34] and more recently in [44]). We
stress that the experimental value of the mass of the top
quark is not used in this computation, we will come to
this point later in Section IV.

Yet another interesting quantity which can be derived
from eq. (4.3) is the “criticality” scale µ0, where both
the scalar self-coupling and its �-function are equal to
zero. Fig. 5 contains its plot as a function of the top
quark Yukawa for several Higgs masses. It is amazing

Bezrukov et al. (2012)MH(M
Pl

) ⇡ 129GeV

M exp

H ⇡ 125GeV

• Scale of new physics 

‣ ~ Higgs self-coupling crosses zero 

‣ strongly depends on top Yukawa! 

‣ precise determination of yt required



• Galaxy rotation curves

Dark matter - an unrelated puzzle?
Galaxy rotation curves

[V. Rubin, K. Ford, 1975]; [Image: wikipedia]

Gravitational lensing

[Image: NASA/ESA]

fit of ⇤-CDM-model to CMB:

[Planck, 2013]

Evidence for dark matterDark matter - an unrelated puzzle?
Galaxy rotation curves

[V. Rubin, K. Ford, 1975]; [Image: wikipedia]

Gravitational lensing

[Image: NASA/ESA]

fit of ⇤-CDM-model to CMB:

[Planck, 2013]

• Gravitational lensing

➡ Bullet cluster
• CMB,…

Rubin & Ford (1975, image:wikipedia)

image: NASA/ESA

image: Hubble Space Telescope



Higgs portal to dark matter
scalar, gauge singlet: � =

R
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�

2 �2 + �04
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⌘

Z2-symmetry � ! ��: stable WIMP
[Silveira, Zee, 1985; McDonald, 1994; Burgess, Pospelov, Veldhuis, 2001...]

Only gravitational interaction? ! Coupling to Higgs possible: �11
4 �2�2
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4 �2�2

χ!part!of!
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density!

χ!over7
produced!

[Cline, Scott, Kainulainen, Weniger, 2013] [Cline, Scott, Kainulainen, Weniger, 2013]

• Single scalar field serves as stable DM candidate (WIMP)

‣ with  

‣ Portal coupling to Higgs: �11

4
h2S2

• S can reproduce observed dark matter relic density 

‣ Condition on scattering cross section 

‣ Relation between        and 

‣ For                        :    

mS �11

mS > mh/2

Higgs portal to dark matter

�DM =

Z
d

4
x

⇣1
2
@µS@

µ
S +

1

2
m

2
SS

2 +
�02

8
S

4
⌘

Z2 � symmetry: S ! �S

log10

��11

2

�
= �3.63 + 1.04 log10

� mS

GeV

�
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RG evolution of top-Higgs-dark-matter model

Wetterich (1993)

‣ FRG flow equation:
@t�k[�] =

1

2
STr{[�(2)

k [�] +Rk]
�1(@tRk)} .

• Use functional RG method as a tool to obtain β functions: 

‣ Flowing action Γk with RG scale k interpolates between

‣ Truncation:

β functions for model couplings… 

 …(e.g. reproduce 1-loop β functions from PT, include threshold effects, higher order operators,…)

microscopic action (k ! ⇤) : �k[�] ! S[�]

full e↵ective action (k ! 0) : �k[�] ! �[�]

�k =

Z
d

4
x

⇣
i ̄

/

@ + (@µh)
2 + (@µS)

2 + iyh ̄ + Vk(h, S)
⌘
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�11 > 0: lower Higgs mass

• Contours of fixed cutoff scale:
‣ S constitutes complete 

DM relic density

toy model!

SM: Gonderinger et al. (2009) 

Eichhorn, MMS (2014)

top Higgs

Landau pole in Higgs 
coupling is lowered

Landau pole in Higgs portal 
coupling

Lower Higgs mass



• Induced potential at UV scale: all operators compatible with symmetries 
 

• Towards IR: irrelevant operators follow canonical scaling

V⇤ = �4�
4 +

�6

⇤2
�6 + ... with �n ⇠ O(1)

Standard model as a low-energy effective theory
E↵ective field theory and higher-order couplings
induced potential at ⇤: all operators compatible with symmetries!
V⇤ = �4

4 �4 + �̄6
8 �6 + �̄8

16�
8 + ... with �i = �̄⇤i�4 ⇠ O(1)

in the IR: canonical scaling:
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becomes tiny very fast
) negligible for Mh(⇤)?
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suggested in [Fodor, Holland, Kuti, Nogradi, Schroeder, 2008]

RG [Branchina, Messina, 2013; Gies, Gneiting, Sondenheimer, 2013]

assumption: �i (⇤) = 0 for i > 4:
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‣ Nevertheless: impact on mass bounds
Fodor et al. (2008) 
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�

without Φ6-coupling

VUV

�
with Φ6-coupling

VUV

• Mechanism to go below lower mass bound: 

1. Choose Higgs-self-coupling < 0 at UV scale 

2. Choose Φ6-coupling > 0 → potential is stable 

➡ Obtain smaller Higgs-self-coupling in the IR 

➡ Higgs mass lower than lower bound!

Main idea
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• Choose                     and�20 = �0.1 �30 = 3.0

➡ Higgs masses with dark matter and new couplings:

• Fix vev = 246 GeV and mtop = 173 GeV
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Summary & Outlook

• measured Higgs mass very close to lower bound Mh(Λ = MPl) 

‣ absolute stability bound @ Mh=129 GeV 

• simple dark matter model: scalar gauge singlet with Higgs portal 

‣ can constitute complete DM relic density 

‣ DM fluctuations increase Λ at fixed Higgs mass 

‣ DM fluctuations allow for smaller Higgs masses at fixed Λ (~ a few GeV @ Λ = MPl) 

• generalized UV potentials as expected from EFT increase Λ for fixed Higgs mass 

‣ generalized UV potentials: Higgs masses below lower bound at fixed Λ (~ a few GeV) 

• Combined effects from DM and higher order couplings: SM+DM could be valid up to MPl 

• Ongoing research including gauge fields with A. Eichhorn, H. Gies, J. Jäckel, T. Plehn, R. Sondenheimer

Bezrukov et al. (2012)


