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Main result
to be derived and  
discussed throughout

Del Debbio and RZ 1306.4274 (PLB’2014)

ḡ
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ḡ
@

@ḡ
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• advocate: LHS provides a definition of the RHS 

*

* barred quantities correspond to renormalised quantities & c stands for connected part  
   N.B.   

• direct computation of gluon condensates (RHS) plagued by  
power divergences  — no definite result known  
⟨0|G2|0⟩ = 0±0.012GeV4 c.f. also Ioffe’05 indirect determinations
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Overview

• Derivations (A) Feynman-Hellmann & Trace anomaly & RG-Eqs 
                   (B) Hamiltonian formalism (direct use of FH-thm)

• Where it cam from: corrections to scaling of the mass(-operator)

• Illustration in exactly solvable models

• Backup slides:  - comment energy momentum tensor on lattice  
                          - issue of Konishi-anomaly

• Epilogue (applications)

• How to implement coupling derivative



 two derivations 
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(A) trace anomaly, Feynman-Hellmann-thm & RGE 

• For λ=g (gauge coupling) complicated since A0 not dynamical.  
Show: if use all ingredients in the title then we can get relations!  

⇥H(E⇥, ⇤p⇥)|H(E, ⇤p)⇤ = 2E(⇤p)(2⇥)D�1�(D�1)(⇤p� ⇤p⇥) ,

⇥X⇤EH � ⇥H(E, �p)|X|H(E, �p)⇤c ,

Q � Nfmq̄q , G � g�2GA
�⇥G

A�⇥ ,

• Fix notation |H(adron)⟩:  

three step procedure ….

• useful provided H(λ) known (QFT different normalisation has to be taken into account)  

example H(m) = mNFqq̄+.. @
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Evaluate on physical state |H⟩ one gets:

trace anomaly (1)

2. Feynman-Hellmann-thm (mass)
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3. Renormalization group equation
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1. EM-tensor & trace anomaly :

T µ
µ |on�shell =

�̄

2ḡ
Ḡ+ (1 + ⇥̄m)Q̄ ,

for gauge theory (bar renormalised quantities important!)Adler et al, Collins et al
N.Nielsen ’77 Fujikawa ’81



ḡ
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Combining our results takes on the form:



(B) After all from the Hamiltonian formalism Prochazka and RZ JPA 2014  
1312.5495

• guiding question: H-formalism is non-covariant!  how Lorentz invariance emerge? 

[Ak(x0, ~x), El(x0, ~y)] = i�

k
l�

(D�1)(~x� ~y)

• step 1:  only Hg non-vanishing on physical states - drop HC,G 

• step 2: put g’s into right place by  
            performing  canonical transformation: ~A ! 1

g
~A , ~E ! g ~E

~⇡ =

~E,

~A indep. canonical variables (⇡0 = 0, A0 Lagrangian multiplier)

Gauss constraint Aa
0((

~D · ~E)

a
+ q̄ta�0q)

primary, secondary constraints

2Bk = ✏kijGij = ✏kij(@iAj � @jAi + ig[Ai, Aj ])

1
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• a) leaves can. commutator invariant  
b) no rescaling (Konishi) anomaly (non-trivial)

• the pathway to a Lorentz-invariant result is now straightforward …
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• very same relations (as before) emerge 
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• advantage:  the Hamiltonian derivation makes it clear that relation valid  
                     for product groups e.g. G = U(1)xSU(2)xSU(3) 



 illustration in exactly solvable models 

• N=2 SYM (Seiberg-Witten) monopole mass

•  massive flavoured Schwinger model cosmological constant

•  Schwinger model (QED2 massless fermions) photon mass e2/π



Photon mass Schwinger model

adaption 2D [e]=1

• Schwinger model:   QED2 mf=0 - generation of photon mass: MƔ=e/√π 
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Σ free field mass e2/π

• Lowenstein-Swieca operator solution can compute RHS — 
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• Insert into equation above and solve
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boundary condition C=0 and this completes the illustration!



N=2 SYM (Seiberg-Witten)

• BPS states obey: M(e,m)= 2 |ne a + nm aD|2  where a,aD part of SW-solution

• BPS-Hamiltonian magnetic monopoles (ne=0, B̄ static ⇒ Ē=0 & no fermions as BPS)
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• Unlike Schwinger model, can’t compute RHS directly    
used LHS to get RHS=⟨BPS|G2|BPS⟩ 
RHS governed by magnetic coupling gD e.g. RHS →0 for gD →0

• BPS-eqn: ~D�|BPSi = 1p
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⇒ shown main Eqn obeyed BPS-subspace 

N.B. additional factor 2 

because of supersymmetry



Implementation of  
derivative coupling



Implementation of

• lattice: every QCD parameter g,mu, md …is associated with hadronic observable

• “… is not so immediate in a theory with running coupling” (depends on your background)
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• step 2:  

g✏A(↵M⇢) = c✏ (= g✏A(↵✏M ✏
⇢) ,where ↵✏ =

↵
1+✏ )

M ✏
⇢ = 770(1 + ✏)MeV measure coupling in scheme A:

• step 1:  
gA(↵M⇢) = c , c,↵ 2 R

M⇢ = 770MeV measure coupling in scheme A:



Where it all came from



scaling correction to hadronic mass in near conformal  phase

• consider conformal theory with mass deformation expand around fixed pt coupling g* 
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� = �1�g +O(�g2) , �g ⌘ g � g⇤ ,

�m = �⇤
m + �(1)

m �g +O(�g2) ,

�ij = �⇤
ij + �(1)

ij �g +O(�g2) , (�ij ⌘ (�O)ij) . �g

• each local operator O investigate Callan-Symanzik-Weinberg-’tHooft type RGE  
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a) and b) agree only if  
susceptibility relation hold

• correction to scaling to hadronic mass through  
a) RGE above applied to O = MH 
b) or apply scaling to all four quantities in trace anomaly
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Epilogue

• LHS defines RHS - suggest total change of viewpoint  
(Recall: direct computation of G-condensate fails because power divergences  
mixing with lower dimensional operators e.g. identity (quartic UV-divergence))  

• Scheme dep. of RHS inherited from scheme dependence of coupling g
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• Practice computation of ‹❮H|G2|H›❯ (should be) straightforward 
a) lattice  
b) approaches like AdS/QCD or Dyson-Schwinger Eqn which produce MH 

opens up opportunities to define β and 𝛾m through interplay with trace anomaly:

For example if m̄=0 then  

2M2
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2ḡ
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(�̄YM)�1 = � @
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• Computation of ‹❮0|G2|0›❯ is more difficult per se  
- on lattice demands mastering EMT  
  problems due to breaking of translation symmetry (additional renormalisation)  
  recent progress using Wilson flow  

compute QCD contribution to cosmological constant  
N.B. practice mastering EMT already enough -  
yet relations useful in eliminating constant which is independent of g 

THANKS FOR YOUR ATTENTION 

one could do conversion calculation to MS-bar and compare with value extracted  
from OPE (e.g. charmonium sum rules or SVZ sum rules)

check PCD(ilaton)C hypothesis for gauge theory dilation candidate (Higgs imposter)  
(analogue PCAC soft pion reduction)  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backup slides



renormalisation of energy momentum tensor (EMT) 

• continuum EMT does not renormalise (ZTαβ =1)  since conserved quantity  
(still need to renormalise parameters of theory of course)

• lattice break Lorentz symmetry to hyper cubic symmetry  
hence  the EMT is not conserved anymore ZTαβ =1 does not apply 
or in other words we can write down further invariant with which the EMT mixes  

Problem: how to tune counterterms 
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translation Ward identity to probe EMT
Caracciolo, Curci, Menotti, Pelissetto’90

Problem: each probe contact term no gain
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• using Wilson flow can avoid contact terms (probes are in bulk….) 



issue of konishi anomaly

• perform transformation 

• p-integral measure transforms as (same as Fujikawa chiral anomaly computation) 

• rescale field coupled to a gauge field by a constant then term appears G2 

like chiral transformation gives rise to G*G-term (supersymmetry same footing) 


