
Full potential linearized-augmented-plane-wavecalculations for 5d transition metals using therelativistic generalized gradient approximationR. N. Schmid, E. Engel, and R. M. DreizlerInstitut f�ur Theoretische Physik, Universit�at Frankfurt, Robert-Mayer-Str. 8-10,D-60054 Frankfurt/Main, GermanyP. Blaha and K. SchwarzInstitut f�ur Technische Elektrochemie, Technische Universit�at Wien,Getreidemarkt 9/158, A-1060 Wien, AustriaAbstractThe importance of relativistic exchange-correlation e�ects for the de-scription of 5d transition metals is examined by application of a relativis-tic extension of the Perdew-Wang generalized gradient approximationto Pt and Au, using a full potential linearized-augmented-plane-waveapproach. It is found that the relativistic corrections to exchange a�ectboth the band structure and the cohesive properties on the 1% level,while the relativistic corrections to correlation can be safely neglected.I. Introduction and Summary of ResultsEstablishing fully relativistic methods for ab-initio electronic structure calcula-tions in atomic, molecular and solid state physics has been as a major activityduring recent years. As density functional theory (DFT) has proven to berather successful in nonrelativistic applications [1{3], its relativistic version[4{8] is a promising tool for the investigation of systems with heavy elements.The crucial quantity of the DFT formalism is the exchange-correlation (xc)energy functional Exc[n], which, together with the corresponding single par-ticle xc-potential vxc(r) = �Exc[n]=�n(r), provides the DFT description ofxc-e�ects.A considerable amount of work has been devoted to the development of suit-able approximations for Exc[n], which are e�cient and at the same time reliable1



2and su�ciently accurate. For a long time, the nonrelativistic local density ap-proximation (LDA), based on the homogeneous electron gas (HEG), has beenthe standard for Exc[n] in both nonrelativistic and relativistic calculations.During the last years, gradient corrections to the LDA have attracted wide-spread interest. Nonrelativistic generalized gradient approximations (GGAs)[9,10] have improved the quality of DFT results for a variety of systems, mostnotably for the structural properties of small molecules [11,12] and metalliciron [13]. However, it has become clear by now that for solids GGA function-als are not systematically superior to the LDA [14{20]. In particular, whileGGA functionals are remarkably successful for 3d transition metals [13,14],they overcorrect the LDA's errors for 5d transition metals [17,18,20]. Thiseven worsens the agreement with experiment for some systems, with Goldbeing the prime example.On the other hand, Gold shows large relativistic e�ects (the Gold maximum| see eg. [21]). In fact, it has been explicitly demonstrated that for Au rela-tivistic and xc-e�ects are nonadditive [22]. This is most obvious for its electrona�nity: While a nonrelativistic CI-calculation [23] gives a value of 1:02 eV anda fully relativistic Coupled-Cluster calculation [22] yields 2:28 eV , the corre-sponding nonrelativistic and relativistic Hartree-Fock values are 0:10 eV [22]and 0:67 eV , respectively. Thus immediately the question arises to whichextent the GGA's failure for metallic Au is due to the neglect of relativisticxc-contributions in Exc[n].In the atomic context the need for relativistic corrections to Exc[n] is obvi-ous and has led to the development of the relativistic LDA (RLDA) [5,6,24].On the basis of RLDA calculations for metallic Au and Pt, MacDonald et al.[25,26] have concluded that in solids relativistic contributions to Exc[n] canproduce small but signi�cant modi�cations of measurable quantities, as eg.the Fermi surface area. On the other hand, it has been shown [7] that theRLDA su�ers from several shortcomings, eg. from a drastic overestimationof transverse exchange contributions, thus making the RLDA a less reliabletool than its nonrelativistic counterpart. As relativistic corrections are clearlymisrepresented by the RLDA, it seems worthwhile to reinvestigate the role ofrelativistic xc-e�ects in solids on the basis of a more accurate form for Exc[n].For this purpose, the generalization of the GGA approach to the relativisticdomain (RGGA) [27,28] o�ers itself. An x-only form of the RGGA [27], basedon the Becke GGA [9], has been shown to correct the RLDA's failure for thedescription of transverse exchange, thus leading to rather accurate results foratomic systems. Recently, also a relativistic extension of the Perdew-WangGGA (PW91) [10] has been derived [28], including a relativistic form of thecorrelation energy functional. The latter RGGA thus provides an ideal startingpoint for the study of the importance of relativistic xc-e�ects in solids.



3In this contribution we present a comparative analysis of (R)LDA and(R)GGA results for both the band structure and the cohesive properties ofmetallic Au and Pt, as examples for systems for which relativistic xc-e�ectsare expected to be prominent. We �nd that the relativistic corrections resultingfrom the RGGA are smaller than those produced by the RLDA. Nevertheless,the corrections are still visible in the band structure, the changes of the va-lence levels being of the order of 1%. On the other hand, the predictions forlattice constants are only marginally a�ected when going from the nonrela-tivistic to the relativistic form of a given type of xc-functional, in contrast tothe well-known lattice expansion due to the inclusion of gradient corrections.Cohesive energies experience somewhat larger shifts, i.e. they are reduced byabout 1% for both Au and Pt. These relativistic modi�cations are not onlytoo small in their absolute magnitude in order to close the gap between non-relativistic GGA results and experiment [17,18,20], but even go into the wrongdirection. The results are in agreement with a recent, weakly relativistic studyof diatomic molecules involving Au, which has led to the conclusion that rela-tivistic corrections to Exc[n] have only a very limited impact on the structuralproperties of molecules [29].The inclusion of relativistic corrections in the GGA thus does not resolvethe problems of the GGA with the 5d transition metals, suggesting that thenonlocal contributions to Exc[n] beyond the �rst density gradient are impor-tant in these systems. In addition, the spin-orbit coupling of the valence elec-trons, neglected in this work, could be partially responsible for this discrepancy[25,30].II. Theoretical backgroundAn extensive review of relativistic DFT has recently been given in [8]. Forthis reason we restrict ourselves to presenting only the relevant details of thexc-functionals used in this work. Among the various xc-functionals proposedfor DFT calculations the nonrelativistic LDA,ELDAxc = Z d3r eHEGxc (n) ; (1)plays a central role as it is the most simple approximation and also serves asbasis for the construction of most nonlocal functionals. While the exchangecontribution of the HEG can be calculated exactly, the correlation energy ofthe HEG is only known from Monte-Carlo studies [31,32], for which a numberof slightly di�erent parametrizations have been suggested [31{34]. As nonrela-tivistic LDA correlation functional we here use the Vosko-Wilk-Nusair (VWN)parametrization [33].



4The RLDA is obtained from the relativistic HEG [5,6,24] and can be writtenas ERLDAxc [n] = Z d3r eRHEGxc (n)= Z d3r heHEGx (n)�x;0(�) + eHEGc (n)�c;0(�)i ; (2)where � is de�ned by � = (3�2n)1=3mc ; (3)and both the exchange and correlation energy densities of the relativistic HEGhave been decomposed into their respective nonrelativistic limits and relativis-tic corrections factors �x=c;0(�). While �x;0 has been known for quite sometime [35], �x;0(�) = 1 � 32�p1 + �2� � Arsh(�)�2 � ; (4)�c;0 has only been evaluated within the RPA [24,7]. We have parametrizedthe resulting correction factor as�RPAc;0 (�) = 1 + a1�3 ln(�) + a2�4 + a3(1 + �2)2�41 + b1�3 ln(�) + b2�4 + b3[A ln(�) +B]�7 ; (5)utilizing the known high-density limits of both the relativistic RPA (RRPA)[36] as well as its nonrelativistic counterpart,eRRPAc =n �!n!1 � 0:197464 (1 + �2)2�3 (6)eRPAc =n �!n!1 � [A ln(�) +B] : (7)With the parameters given in Table 1 the numerical data for �RPAc;0 are repro-duced with an accuracy better than 10�3. Note that for small � the numericalresults clearly allow the extraction of a �3 ln(�)-dependence of the lowest orderweakly relativistic contribution, rather than a �2-dependence which one mighthave expected. To further check the accuracy of the parametrization (5) wehave applied both (5) and a direct spline interpolation of the numerical datato atoms, �nding di�erences for eigenvalues to be on the 0:1mRy-level. Theform (5) is thus su�ciently accurate for the present purpose. Lacking the fulldensity dependence of all contributions to eRHEGc beyond the RPA we haveused �RPAc;0 with the complete nonrelativistic eHEGc for the RLDA, utilizing theVWN-parametrization for eHEGc [33].In the x-only limit the general form of the RGGA is [27]ERGGAx = Z d3r eHEGx (n) [�x;0(�) + g(�)�x;2(�)] ; (8)



5Parameter Exchange Correlation�Lx;2 �Tx;2 �RPAc;0 �GGAca1 2.2156 3.5122 �2:44968 1.9407a2 0.66967 0.62525 1:91853 0.14435a3 | | 0:0718854 |b1 1.3267 1.3313 �1:59583 0.28142b2 0.79420 0.10066 1:29176 0.004723b3 | | 0:364044 |Table 1: Parameter sets for the relativistic correction factors (5,9,10).with � = [rn=(2(3�2n)1=3n)]2 and g(�) being the gradient part of the corre-sponding nonrelativistic GGA. In [27] the longitudinal (L) and transverse (T)contributions to the x-only energy (compare [7,8]) have been separated, lead-ing to a corresponding decomposition of �x;2 = �Lx;2+�Tx;2. For both �Lx;2 and�Tx;2 su�ciently 
exible Pad�e approximants have been used,�Lx;2 = 1 + aL1�2 + aL2�41 + bL1�2 + bL2�4 ; �Tx;2 = aT1 �2 + aT2 �41 + bT1 �2 + bT2 �4 : (9)The coe�cients have been determined by a least squares �t to the exact rela-tivistic x-only energies of a number of closed subshell atoms keeping the formof g(�) �xed. For the PW91 GGA this procedure leads to the parameterslisted in Table 1 [28]. As has been demonstrated in [28] the resulting RGGAproduces much more accurate atomic results than both the RLDA and thecorresponding nonrelativistic GGA.The correlation energy requires a slightly di�erent scheme, as on the onehand �c;0 is not known completely, and, on the other hand, some GGAs forcorrelation [37] are not even based on the LDA. Therefore only one overallcorrection factor for the complete GGA has been used in [28],ERGGAc [n] = Z d3r eGGAc (n; (rn)2; :::) �GGAc (�) ; (10)keeping the nonrelativistic form eGGAc (n; (rn)2; :::) �xed. In view of the factthat the relativistic corrections to atomic Ec are much smaller than those toatomic Ex this less sophisticated approach should be su�cient (compare Sec-tion IV). Using again a Pad�e approximant of the form (9) as ansatz for �GGAcand �tting its coe�cients to the most systematic set of atomic relativisticcorrelation energies available to date (second order perturbation theory re-sults for the Ne isoelectronic series on the basis of the Dirac-Coulomb-Breit



6Hamiltonian [38]) one �nds the parameters of Table 1 for the PW91 correla-tion GGA [28]. Again, compared with the RLDA or the nonrelativistic GGAatomic correlation energies are clearly improved by this RGGA.Eqs.(8-10) with the PW91 parameters of Table 1 de�ne the RGGA usedin this work (the longitudinal and transverse components of the x-only GGAhave always been combined).III. Computational detailsThe calculations for solids have been performed using a full potential linearizedaugmented plane wave (LAPW) code (WIEN95 [39]). For an extensive discus-sion of the LAPW method the reader is referred to [40,41]. We only commenton the handling of the Kohn-Sham kinetic energy of the electrons. In thecalculations a fully relativistic core is used, whereas the valence electrons aretreated in a scalar relativistic approximation (see [42] for details) inside themu�n tins and completely nonrelativistically in the interstitial regime. As forPt spin-orbit coupling has been shown to be important near high-symmetrylines in the Brillouin-zone [25] this neglect of spin-orbit coupling for the va-lence electrons may not be justi�ed. However, one would expect the smallrelativistic xc-contributions studied in this work to be additive to the spin-orbit e�ects. Thus, while eg. the bands will change when including spin-orbitcoupling, our conclusions concerning the size of the relativistic xc-correctionsshould be una�ected.For transition elements like Pt and Au the linear orbital extension to theLAPW method [43] has been used. We have employed the procedure proposedin [20], in which the 5p-states for Au and Pt are included in the core for totalenergy calculations, but corresponding local orbitals are also included in thebasis for the valence states in order to allow the basis functions for the actualvalence electrons to orthogonalize to the extended core states.The convergence of the calculations has been carefully checked by varyingthe plane wave cuto� and the number of k-points used for the Brillouin-zoneintegration. Employing (RK)min = 10 our results were converged to mRy-accuracy. The k-integration has been performed using 165 k-points in theirreducible Brillouin-zone. Adding further k-points a�ected the total energyby less than 0:1mRy. All xc-functionals have been treated identically, sothat the di�erences between the results obtained with the various functionalsshould be even more accurate than the corresponding absolute values. For thecalculation of the cohesive energy of Pt the required atomic ground state energyhas been obtained by solving the fully relativistic Kohn-Sham equations forthe occupation [Xe]4f145d96s, using a spherical average for the density. Theequilibrium lattice constant has been derived via the standard �tting procedure



7Level Functionalsx: LDA x:RLDA x: GGA x:RGGA x:RGGAc: LDA c:RLDA c: GGA c: GGA c:RGGA1s1/2 5923.193 5885.536 5928.439 5901.832 5902.0422s1/2 1044.186 1038.687 1045.009 1040.946 1040.9992p1/2 1001.487 996.678 1001.983 997.494 997.5532p3/2 866.695 863.557 867.011 863.952 863.9993s1/2 246.250 245.104 246.479 245.656 245.6703p1/2 227.035 226.109 227.162 226.304 226.3183p3/2 197.296 196.702 197.378 196.799 196.8103d3/2 165.328 165.043 165.356 165.051 165.0613d5/2 158.932 158.686 158.956 158.690 158.6994s1/2 53.238 52.980 53.348 53.172 53.1754p1/2 45.049 44.860 45.113 44.940 44.9434p3/2 37.899 37.786 37.969 37.860 37.8634d3/2 24.486 24.457 24.511 24.478 24.4794d5/2 23.155 23.133 23.181 23.155 23.1574f5/2 5.933 5.959 5.924 5.947 5.9474f7/2 5.652 5.679 5.644 5.667 5.6675s1/2 7.767 7.724 7.763 7.737 7.7375p1/2 5.099 5.074 5.093 5.070 5.0705p3/2 3.869 3.857 3.875 3.864 3.864Table 2: Core levels (��nlj) of solid Au relative to the Fermi level for variousxc-functionals (in Ry).to the Murnaghan equation of state [44]. The speed of light has been set to� = 137:0359895 and point nuclei have been employed.IV. ResultsWe start with a discussion of the role of relativistic xc-contributions for theband structure of Au and Pt on the basis of the RGGA, thus repeating theanalysis of MacDonald et al. [25,26] with a more appropriate form for Exc[n].As relativistic e�ects are most important near the atomic nucleus, �rst thecore levels are analyzed (on the basis of the Kohn-Sham eigenvalues, as usual).Table 2 shows the core levels of Au (relative to the Fermi level) for several xc-functionals, i.e. the nonrelativistic LDA, the RLDA, the nonrelativistic GGA,the RGGA for both exchange and correlation as well as a combination of the



8Level Functionals Ref. [29]x: LDA x:RLDA x: GGA x:RGGA x:RGGA x: LDAc: LDA c:RLDA c: GGA c: GGA c:RGGA c: LDA1s1/2 5923.389 5885.733 5928.619 5902.013 5902.223 5893.4842s1/2 1044.379 1038.880 1045.185 1041.122 1041.175 1040.8892p1/2 1001.679 996.870 1002.160 997.670 997.729 905.7312p3/2 866.887 863.750 867.187 864.128 864.1763s1/2 246.449 245.303 246.662 245.839 245.853 245.7823p1/2 227.234 226.308 227.345 226.486 226.500 206.2303p3/2 197.495 196.901 197.560 196.981 196.9933d3/2 165.526 165.241 165.538 165.232 165.243 161.6323d5/2 159.130 158.884 159.138 158.871 158.8814s1/2 53.441 53.182 53.533 53.357 53.360 53.3144p1/2 45.251 45.062 45.299 45.126 45.129 40.2334p3/2 38.101 37.989 38.155 38.046 38.0494d3/2 24.688 24.659 24.697 24.663 24.665 23.9014d5/2 23.357 23.335 23.367 23.340 23.3424f5/2 6.135 6.162 6.110 6.133 6.133 5.9534f7/2 5.855 5.881 5.830 5.853 5.8535s1/2 7.976 7.933 7.954 7.927 7.928 7.9525p1/2 5.310 5.285 5.286 5.264 5.264 4.4425p3/2 4.084 4.072 4.073 4.061 4.0615d5/2 0.594 0.596 0.580 0.581 0.581 0.5115d7/2 0.481 0.483 0.468 0.470 0.4706s1/2 0.448 0.445 0.430 0.428 0.428 0.442Table 3: Single-particle levels (��nlj) of atomic Au for various xc-functionals(in Ry). Also given are the j-averaged weakly relativistic LCGTO results of[29].RGGA for exchange and the GGA for correlation. All these calculations havebeen performed for the experimental lattice constant. A comparison with thecorresponding single-particle energies of the free Au atom, listed in Table 3,demonstrates immediately that the atomic eigenvalue shifts by relativistic xc-corrections are essentially transferred to the solid without any modi�cation:This is not only true for the innermost levels, but also for the relative stabiliza-tion of the 4f -eigenvalues with respect to the 5p-levels. Consequently also theoverestimation of relativistic e�ects by the RLDA can be observed: Eg. for the5s1=2-level the RLDA shift of 43mRy with respect to the nonrelativistic LDA



9is almost twice as large as the 26mRy di�erence between the RGGA and theGGA eigenvalues. Comparing the results obtained with the full RGGA withthose from the combination of the x-only RGGA with the correlation GGAdemonstrates that at least on the present level of sophistication relativisticcorrections to the correlation energy functional can be neglected. Even for theinnermost levels the corresponding shifts are rather small.On the other hand, the shift induced by inclusion of relativistic correctionsin the x-only GGA is larger than that resulting from the addition of gradientcorrections to the LDA: Even for the 5p3=2-level the eigenvalue di�erence of11mRy between RGGA and GGA is larger than the 6mRy di�erence betweenGGA and LDA (for solid Au). The eigenvalues for Pt, which are not explicitlygiven here, show a similar picture. In view of the fact that in the x-onlylimit the atomic RGGA eigenvalues are much closer to the exact Kohn-Shamsingle particle energies [27] than the GGA eigenvalues these substantial corelevel shifts indicate that an accurate microscopic description of solids requiresrelativistic contributions to Ex[n].A similar analysis of the relative importance of gradient and relativisticcontributions has been presented by Mayer et al. [29] on the basis of weaklyrelativistic LCGTO results. The various relative atomic eigenvalue shifts givenin [29] are consistent with those extracted from Table 3. The absolute size ofthe eigenvalues of Ref. [29], on the other hand, allows to estimate the impor-tance of higher order 1=c-corrections to the kinetic energy. In Table 3 we thusalso list the j-averaged LCGTO eigenvalues for the nonrelativistic LDA, whichis the only functional used in both [29] and this study. For all core levels thedi�erences between the weakly relativistic LCGTO data and the fully rela-tivistic eigenvalues are of the same order of magnitude as the contributions ofthe relativistic xc-corrections. On the other hand, for the valence levels thehigher order 1=c-corrections to the kinetic energy lead to roughly 3-5 timeslarger shifts than the relativistic xc-corrections.The valence levels for Au obtained with the various xc-functionals for anumber of selected k-points in the Brillouin-zone are given in Table 4 (all re-sults for the experimental lattice constant). In contrast to the substantial mod-i�cations of the core levels, only small e�ects of the relativistic xc-correctionson the valence levels are found. For instance, at the �-point the d-bands arelowered with respect to the s-band by about 2:5mRy when going from theGGA to the RGGA. On the other hand, the nonrelativistic gradient correc-tions, which set the scale for judging the importance of this shift, lower thed-bands with respect to the s-band by about 8mRy (see Tables 4a,4c). Whilethe eigenvalue shifts are di�erent at other k-points, the relative impact of rela-tivistic and gradient corrections is roughly the same. Although the importanceof the latter becomes larger if the lattice constant is relaxed, i.e. if the bands



10k �n;k � �Fa) x: LDA, c: LDAW �454 �393 �393 �253 �123 344L �558 �360 �360 �148 �148 �84� �750 �357 �357 �357 �240 �240X �538 �514 �150 �123 �123 63K �492 �444 �293 �218 �158 277b) x: RLDA, c: RLDAW �456 �395 �395 �255 �125 349L �559 �362 �362 �150 �150 �83� �748 �360 �360 �360 �242 �242X �540 �517 �153 �125 �125 64K �494 �446 �295 �220 �160 281c) x: GGA, c: GGAW �456 �395 �395 �256 �127 349L �557 �363 �363 �152 �152 �80� �745 �360 �360 �360 �244 �244X �539 �516 �155 �127 �127 68K �493 �446 �294 �222 �162 282d) x: RGGA, c: GGAW �457 �396 �396 �258 �129 352L �559 �364 �364 �154 �154 �79� �744 �362 �362 �362 �246 �246X �541 �518 �157 �129 �129 68K �495 �447 �296 �224 �164 285e) x: RGGA, c: RGGAW �457 �396 �396 �258 �129 352L �559 �364 �364 �154 �154 �79� �744 �362 �362 �362 �246 �246X �541 �518 �157 �129 �129 68K �495 �447 �296 �224 �164 285Table 4: Valence levels of Au at selected k-points relative to the Fermi levelfor various xc-functionals (in mRy).corresponding to the lattice constants which give the minimum total energyfor the functional of interest are compared, this nevertheless indicates thatrelativistic xc-corrections are not completely negligible even for valence levels.Similar to the core levels, the relativistic corrections to eigenvalues calcu-



11Functionals a0 �Ecoh �E0(solid) �E0(atom)x c [bohr] [eV ] [Ry] [Ry]LDA LDA 7.68 4.12 38075.445 38075.132RLDA RLDA 7.68 4.09 37997.970 37997.669GGA GGA 7.87 2.91 38100.029 38099.815RGGA GGA 7.88 2.89 38048.438 38048.225RGGA RGGA 7.88 2.89 38049.253 38049.040expt 7.67 3.78Table 5: Lattice constants and cohesive energies of Au obtained from LAPWcalculations with various xc-functionals in comparison to experiment [45,20].Functionals a0 �Ecoh �E0(solid) �E0(atom)x c [bohr] [eV ] [Ry] [Ry]LDA LDA 7.36 6.76 36873.465 36872.968RLDA RLDA 7.37 6.73 36799.369 36798.875GGA GGA 7.51 5.34 36897.502 36897.109RGGA GGA 7.52 5.30 36848.219 36847.829RGGA RGGA 7.52 5.30 36849.005 36848.616expt 7.40 5.85Table 6: Lattice constants and cohesive energies of Pt obtained from LAPWcalculations with various xc-functionals in comparison to experiment [45,20].lated with the RLDA are too large by a factor of 1.5 to 2. Moreover, theinclusion of relativistic corrections in the correlation energy functional has al-most no impact on the valence states as can be seen from a comparison ofTables 4d,4e. This then a posteriori justi�es the rather crude treatment ofthese contributions in both the RLDA and RGGA.The situation is somewhat di�erent for Pt, for which the relativistic xc-corrections only a�ect the s-band in the interior of the Brillouin-zone: Itsbottom is shifted upwards by 3mRy. The absolute and relative positions ofthe d-bands remain more or less unchanged.The limited importance of relativistic xc-potentials for the cohesive prop-erties of Au and Pt is demonstrated in Tables 5,6: Lattice constants remainnearly unchanged when one replaces the LDA by the RLDA or the GGA bythe RGGA. Also, only a small reduction is observed for the correspondingcohesive energy Ecoh (evaluated at the lattice constant corresponding to the



12energy minimum for the functional of interest). While the total ground stateenergies change by almost 50 Ry, the energy di�erence between the solid stateand the free atom experiences only a 1mRy shift, which represents roughly 1%of the total cohesive energy. This percentage correction is on the same levelas the shifts observed for the valence bands and for the dissociation energy ofthe Au-dimer [29].Like its nonrelativistic counterpart, the RGGA predicts lattice constantswhich are too large by 0:21 bohr for Au and 0:12 bohr for Pt. The correspond-ing RGGA cohesive energies are roughly 25% too small for Au and 10% belowthe experimental value for Pt. Thus the reduction of Ecoh, which is alwaysfound when going from the LDA to the GGA, by far overcorrects the LDA'serror, in particular in the case of Au for which the LDA result is fortuitiouslyclose to the experimental energy. In fact, the inclusion of relativistic correc-tions in the GGA even worsens the agreement with experiment, although onlymarginally. The nonadditivity of relativistic and xc-e�ects [22] is thus notresponsible for the GGA's failure for some 5d transition elements.In summary, there can be little doubt that for the cohesive properties ofsolids the relativistic contributions to Exc[n] are much less important thanthe 'nonlocal' contributions to Exc[n] not contained in the LDA. It should bepointed out, however, that the RGGA is as e�ciently applied as the GGA,so that there seems to be no reason to rely on error cancellation in the cal-culation of Ecoh. Moreover, at least for some systems (as Au) the relativisticxc-corrections are visible in the band structure, indicating that a completedescription of these systems requires a relativistic form for Exc[n]. Finally, ifrelativistic xc-corrections are to be included at all this should be done on theGGA- rather than the LDA-level.Acknowledgements: Financial support by the Deutsche Forschungsgemein-schaft within the program Theorie relativistischer E�ekte in der Chemie undPhysik schwerer Elemente (Project Dr 113/20-2) is gratefully acknowledged.P.B. was supported by the Austrian Science Foundation Project No P10847.References[1] R. O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).[2] R. M. Dreizler and E. K. U. Gross, Density functional theory (Springer,Berlin, 1990).[3] Density Functional Theory, ed. by E. K. U. Gross and R. M. Dreizler,NATO ASI Series B, Vol. 337 (Plenum, New York, 1995).
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