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Abstract

The importance of relativistic exchange-correlation effects for the de-
scription of 5d transition metals is examined by application of a relativis-
tic extension of the Perdew-Wang generalized gradient approximation
to Pt and Au, using a full potential linearized-augmented-plane-wave
approach. It is found that the relativistic corrections to exchange affect
both the band structure and the cohesive properties on the 1% level,
while the relativistic corrections to correlation can be safely neglected.

I. Introduction and Summary of Results

Establishing fully relativistic methods for ab-initio electronic structure calcula-
tions in atomic, molecular and solid state physics has been as a major activity
during recent years. As density functional theory (DFT) has proven to be
rather successful in nonrelativistic applications [1-3], its relativistic version
[4-8] is a promising tool for the investigation of systems with heavy elements.
The crucial quantity of the DFT formalism is the exchange-correlation (z¢)
energy functional F,.[n], which, together with the corresponding single par-
ticle xc-potential v,.(r) = dE,.[n]/dn(r), provides the DFT description of
xc-effects.

A considerable amount of work has been devoted to the development of suit-
able approximations for F,.[n], which are efficient and at the same time reliable



and sufficiently accurate. For a long time, the nonrelativistic local density ap-
proximation (LDA), based on the homogeneous electron gas (HEG), has been
the standard for E,..[n] in both nonrelativistic and relativistic calculations.
During the last years, gradient corrections to the LDA have attracted wide-
spread interest. Nonrelativistic generalized gradient approximations (GGAs)
[9,10] have improved the quality of DFT results for a variety of systems, most
notably for the structural properties of small molecules [11,12] and metallic
iron [13]. However, it has become clear by now that for solids GGA function-
als are not systematically superior to the LDA [14-20]. In particular, while
GGA functionals are remarkably successful for 3d transition metals [13,14],
they overcorrect the LDA’s errors for 5d transition metals [17,18,20]. This
even worsens the agreement with experiment for some systems, with Gold
being the prime example.

On the other hand, Gold shows large relativistic effects (the Gold mazimum
— see eg. [21]). In fact, it has been explicitly demonstrated that for Au rela-
tivistic and zc-effects are nonadditive [22]. This is most obvious for its electron
affinity: While a nonrelativistic Cl-calculation [23] gives a value of 1.02 eV and
a fully relativistic Coupled-Cluster calculation [22] yields 2.28 ¢V, the corre-
sponding nonrelativistic and relativistic Hartree-Fock values are 0.10 eV [22]
and 0.67 eV, respectively. Thus immediately the question arises to which
extent the GGA’s failure for metallic Au is due to the neglect of relativistic
ze-contributions in F,.[n].

In the atomic context the need for relativistic corrections to F,.[n] is obvi-
ous and has led to the development of the relativistic LDA (RLDA) [5,6,24].
On the basis of RLDA calculations for metallic Au and Pt, MacDonald et al.
[25,26] have concluded that in solids relativistic contributions to FE,.[n] can
produce small but significant modifications of measurable quantities, as eg.
the Fermi surface area. On the other hand, it has been shown [7] that the
RLDA suffers from several shortcomings, eg. from a drastic overestimation
of transverse exchange contributions, thus making the RLDA a less reliable
tool than its nonrelativistic counterpart. As relativistic corrections are clearly
misrepresented by the RLDA, it seems worthwhile to reinvestigate the role of
relativistic zc-effects in solids on the basis of a more accurate form for F,.[n].

For this purpose, the generalization of the GGA approach to the relativistic
domain (RGGA) [27,28] offers itself. An x-only form of the RGGA [27], based
on the Becke GGA [9], has been shown to correct the RLDA’s failure for the
description of transverse exchange, thus leading to rather accurate results for
atomic systems. Recently, also a relativistic extension of the Perdew-Wang
GGA (PWO91) [10] has been derived [28], including a relativistic form of the
correlation energy functional. The latter RGGA thus provides an ideal starting
point for the study of the importance of relativistic xc-effects in solids.



In this contribution we present a comparative analysis of (R)LDA and
(R)GGA results for both the band structure and the cohesive properties of
metallic Au and Pt, as examples for systems for which relativistic xc-effects
are expected to be prominent. We find that the relativistic corrections resulting
from the RGGA are smaller than those produced by the RLDA. Nevertheless,
the corrections are still visible in the band structure, the changes of the va-
lence levels being of the order of 1%. On the other hand, the predictions for
lattice constants are only marginally affected when going from the nonrela-
tivistic to the relativistic form of a given type of zc-functional, in contrast to
the well-known lattice expansion due to the inclusion of gradient corrections.
Cohesive energies experience somewhat larger shifts, i.e. they are reduced by
about 1% for both Au and Pt. These relativistic modifications are not only
too small in their absolute magnitude in order to close the gap between non-
relativistic GGA results and experiment [17,18,20], but even go into the wrong
direction. The results are in agreement with a recent, weakly relativistic study
of diatomic molecules involving Au, which has led to the conclusion that rela-
tivistic corrections to F,.[n] have only a very limited impact on the structural
properties of molecules [29].

The inclusion of relativistic corrections in the GGA thus does not resolve
the problems of the GGA with the 5d transition metals, suggesting that the
nonlocal contributions to F,.[n] beyond the first density gradient are impor-
tant in these systems. In addition, the spin-orbit coupling of the valence elec-
trons, neglected in this work, could be partially responsible for this discrepancy

[25,30].

II. Theoretical background

An extensive review of relativistic DF'T has recently been given in [8]. For
this reason we restrict ourselves to presenting only the relevant details of the
xe-functionals used in this work. Among the various xzc-functionals proposed
for DFT calculations the nonrelativistic LDA,

EEPA = [ e ellEO(n) (1)
plays a central role as it is the most simple approximation and also serves as
basis for the construction of most nonlocal functionals. While the exchange
contribution of the HEG can be calculated exactly, the correlation energy of
the HEG is only known from Monte-Carlo studies [31,32], for which a number
of slightly different parametrizations have been suggested [31-34]. As nonrela-
tivistic LDA correlation functional we here use the Vosko-Wilk-Nusair (VWN)
parametrization [33].



The RLDA is obtained from the relativistic HEG [5,6,24] and can be written

as

xrc

= [ [ )0, o(3) + e )bo(8)] , (2)
where (3 is defined by

EiLDA[n] _ /d3r eRHEG(n)

(37T2n)1/3
f=—", (3)
me
and both the exchange and correlation energy densities of the relativistic HEG
have been decomposed into their respective nonrelativistic limits and relativis-

tic corrections factors ®,/. (). While ®, ¢ has been known for quite some

time [35],
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.o has only been evaluated within the RPA [24,7]. We have parametrized

the resulting correction factor as
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utilizing the known high-density limits of both the relativistic RPA (RRPA)

[36] as well as its nonrelativistic counterpart,
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With the parameters given in Table 1 the numerical data for CI)f(I;A
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results clearly allow the extraction of a 3% In(3)-dependence of the lowest order
weakly relativistic contribution, rather than a 3?-dependence which one might
have expected. To further check the accuracy of the parametrization (5) we
have applied both (5) and a direct spline interpolation of the numerical data
to atoms, finding differences for eigenvalues to be on the 0.1m Ry-level. The
form (5) is thus sufficiently accurate for the present purpose. Lacking the full
density dependence of all contributions to e#¥% beyond the RPA we have
used CI)f(I;A with the complete nonrelativistic eZ/% for the RLDA, utilizing the
VWN-parametrization for eZF¢ [33].

C

In the z-only limit the general form of the RGGA is [27]

BRSO = [ 15 () [0,.0(8) + 9(€)@aalB)] | (8)



Parameter Exchange Correlation

brp  Puy | ®ET @7
ay 22156  3.5122 | —2.44968  1.9407
as 0.66967 0.62525 | 1.91853  0.14435
as — — 0.0718854 —
by 1.3267  1.3313 | —1.59583  0.28142
by 0.79420 0.10066 | 1.29176  0.004723
bs — — 0.364044 —

Table 1: Parameter sets for the relativistic correction factors (5,9,10).

with € = [Vn/(2(37%1)"/%n)]? and g(€) being the gradient part of the corre-
sponding nonrelativistic GGA. In [27] the longitudinal (L) and transverse (T)
contributions to the x-only energy (compare [7,8]) have been separated, lead-
ing to a corresponding decomposition of @, , = CI)Q2 + @?2. For both CI)Q2 and
@?2 sufficiently flexible Padé approximants have been used,

Lo 1+alB?+ay3" o7 — alp? +alpt (9)
S A 1 A 2L p2 bl

The coefficients have been determined by a least squares fit to the exact rela-
tivistic x-only energies of a number of closed subshell atoms keeping the form
of g(&) fixed. For the PW91 GGA this procedure leads to the parameters
listed in Table 1 [28]. As has been demonstrated in [28] the resulting RGGA
produces much more accurate atomic results than both the RLDA and the
corresponding nonrelativistic GGA.

The correlation energy requires a slightly different scheme, as on the one
hand ®.¢ is not known completely, and, on the other hand, some GGAs for
correlation [37] are not even based on the LDA. Therefore only one overall
correction factor for the complete GGA has been used in [28],

BRSO = [ d'r €4 n, (V)2 ..) @594(3) (10)

keeping the nonrelativistic form e““4(n, (Vn)?,...) fixed. In view of the fact
that the relativistic corrections to atomic F£. are much smaller than those to
atomic F, this less sophisticated approach should be sufficient (compare Sec-
tion IV). Using again a Padé approximant of the form (9) as ansatz for 5“4
and fitting its coefficients to the most systematic set of atomic relativistic
correlation energies available to date (second order perturbation theory re-

sults for the Ne isoelectronic series on the basis of the Dirac-Coulomb-Breit



Hamiltonian [38]) one finds the parameters of Table 1 for the PW91 correla-
tion GGA [28]. Again, compared with the RLDA or the nonrelativistic GGA
atomic correlation energies are clearly improved by this RGGA.

Eqs.(8-10) with the PW91 parameters of Table 1 define the RGGA used
in this work (the longitudinal and transverse components of the z-only GGA
have always been combined).

II1. Computational details

The calculations for solids have been performed using a full potential linearized
augmented plane wave (LAPW) code (WIEN95 [39]). For an extensive discus-
sion of the LAPW method the reader is referred to [40,41]. We only comment
on the handling of the Kohn-Sham kinetic energy of the electrons. In the
calculations a fully relativistic core is used, whereas the valence electrons are
treated in a scalar relativistic approximation (see [42] for details) inside the
muffin tins and completely nonrelativistically in the interstitial regime. As for
Pt spin-orbit coupling has been shown to be important near high-symmetry
lines in the Brillouin-zone [25] this neglect of spin-orbit coupling for the va-
lence electrons may not be justified. However, one would expect the small
relativistic xc-contributions studied in this work to be additive to the spin-
orbit effects. Thus, while eg. the bands will change when including spin-orbit
coupling, our conclusions concerning the size of the relativistic zc-corrections
should be unaffected.

For transition elements like Pt and Au the linear orbital extension to the
LAPW method [43] has been used. We have employed the procedure proposed
in [20], in which the 5p-states for Au and Pt are included in the core for total
energy calculations, but corresponding local orbitals are also included in the
basis for the valence states in order to allow the basis functions for the actual
valence electrons to orthogonalize to the extended core states.

The convergence of the calculations has been carefully checked by varying
the plane wave cutoff and the number of k-points used for the Brillouin-zone
integration. Employing (RK ), = 10 our results were converged to m Ry-
accuracy. The k-integration has been performed using 165 k-points in the
irreducible Brillouin-zone. Adding further k-points affected the total energy
by less than 0.1mRy. All zc-functionals have been treated identically, so
that the differences between the results obtained with the various functionals
should be even more accurate than the corresponding absolute values. For the
calculation of the cohesive energy of Pt the required atomic ground state energy
has been obtained by solving the fully relativistic Kohn-Sham equations for
the occupation [Xe]4f1*5d%65s, using a spherical average for the density. The
equilibrium lattice constant has been derived via the standard fitting procedure



Level Functionals

z: LDA  z:RLDA =z: GGA z:RGGA z:RGGA
c. LDA  c¢RLDA ¢ GGA ¢ GGA ¢RGGA
Is1/2 | 5923.193 5885.536 5928.439 5901.832  5902.042
2s1/2 | 1044.186 1038.687 1045.009 1040.946 1040.999
2p1/2 | 1001.487  996.678 1001.983  997.494  997.553
2p3/2 | 866.695  863.557  867.011  863.952  863.999
3s1/2 246.250 245.104 246.479 245.656 245.670
3pl/2 227.035 226.109 227.162 226.304 226.318
3p3/2 | 197.296  196.702  197.378  196.799  196.810
3d3/2 | 165.328  165.043  165.356  165.051 165.061
3d5/2 | 158.932  158.686  158.956  158.690  158.699
4s1/2 53.238 52.980 53.348 53.172 53.175
4pl/2 45.049 44.860 45.113 44.940 44.943
4p3/2 37.899 37.786 37.969 37.860 37.863
4d3/2 24.486 24.457 24.511 24.478 24.479
4d5/2 23.155 23.133 23.181 23.155 23.157
4£5/2 5.933 5.959 5.924 5.947 5.947
47 /2 5.652 5.679 5.644 5.667 5.667
Hsl/2 7.767 7.724 7.763 7.737 7.737
5pl/2 5.099 5.074 5.093 5.070 5.070
5p3/2 3.869 3.857 3.875 3.864 3.864

Table 2: Core levels (—¢,;) of solid Au relative to the Fermi level for various
ze-functionals (in Ry).

to the Murnaghan equation of state [44]. The speed of light has been set to
a = 137.0359895 and point nuclei have been employed.

IV. Results

We start with a discussion of the role of relativistic zc-contributions for the
band structure of Au and Pt on the basis of the RGGA, thus repeating the
analysis of MacDonald et al. [25,26] with a more appropriate form for £,.[n].
As relativistic effects are most important near the atomic nucleus, first the
core levels are analyzed (on the basis of the Kohn-Sham eigenvalues, as usual).
Table 2 shows the core levels of Au (relative to the Fermi level) for several xc-
functionals, i.e. the nonrelativistic LDA, the RLDA, the nonrelativistic GGA,
the RGGA for both exchange and correlation as well as a combination of the



Level Functionals Ref. [29]
z: LDA  z:RLDA =z: GGA x:RGGA z:RGGA || z: LDA
c. LDA  c¢RLDA ¢ GGA ¢ GGA ¢RGGA || e LDA

Is1/2 | 5923.389 5885.733 5928.619 5902.013 5902.223 || 5893.484

2s1/2 | 1044.379 1038.880 1045.185 1041.122 1041.175 || 1040.889

2p1/2 | 1001.679  996.870 1002.160  997.670  997.729 905.731

2p3/2 | 866.887  863.750  867.187  864.128  864.176

3s1/2 | 246.449  245.303  246.662  245.839  245.853 245.782

3pl/2 | 227.234  226.308  227.345  226.486  226.500 206.230

3p3/2 | 197.495  196.901  197.560  196.981 196.993

3d3/2 | 165.526  165.241  165.538  165.232 165.243 161.632

3d5/2 | 159.130  158.884  159.138  158.871 158.881

4s1/2 53.441 53.182 53.533 53.357 53.360 53.314

4pl/2 45.251 45.062 45.299 45.126 45.129 40.233

4p3/2 38.101 37.989 38.155 38.046 38.049

4d3/2 24.688 24.659 24.697 24.663 24.665 23.901

4d5/2 23.357 23.335 23.367 23.340 23.342

4£5/2 6.135 6.162 6.110 6.133 6.133 5.953

47 /2 5.855 5.881 5.830 5.853 5.853

Hsl/2 7.976 7.933 7.954 7.927 7.928 7.952

5pl/2 5.310 5.285 5.286 5.264 5.264 4.442

5p3/2 4.084 4.072 4.073 4.061 4.061

5d5/2 0.594 0.596 0.580 0.581 0.581 0.511

5d7/2 0.481 0.483 0.468 0.470 0.470

6s1/2 0.448 0.445 0.430 0.428 0.428 0.442

Table 3: Single-particle levels (—¢,;;) of atomic Au for various xc-functionals
(in Ry). Also given are the j-averaged weakly relativistic LCGTO results of
[29].

RGGA for exchange and the GGA for correlation. All these calculations have
been performed for the experimental lattice constant. A comparison with the
corresponding single-particle energies of the free Au atom, listed in Table 3,
demonstrates immediately that the atomic eigenvalue shifts by relativistic zc-
corrections are essentially transferred to the solid without any modification:
This is not only true for the innermost levels, but also for the relative stabiliza-
tion of the 4 f-eigenvalues with respect to the 5Hp-levels. Consequently also the
overestimation of relativistic effects by the RLDA can be observed: Eg. for the
551 /5-level the RLDA shift of 43m Ry with respect to the nonrelativistic LDA



is almost twice as large as the 26m Ry difference between the RGGA and the
GGA eigenvalues. Comparing the results obtained with the full RGGA with
those from the combination of the z-only RGGA with the correlation GGA
demonstrates that at least on the present level of sophistication relativistic
corrections to the correlation energy functional can be neglected. Even for the
innermost levels the corresponding shifts are rather small.

On the other hand, the shift induced by inclusion of relativistic corrections
in the z-only GGA is larger than that resulting from the addition of gradient
corrections to the LDA: Even for the 5ps/y-level the eigenvalue difference of
11m Ry between RGGA and GGA is larger than the 6 m Ry difference between
GGA and LDA (for solid Au). The eigenvalues for Pt, which are not explicitly
given here, show a similar picture. In view of the fact that in the z-only
limit the atomic RGGA eigenvalues are much closer to the exact Kohn-Sham
single particle energies [27] than the GGA eigenvalues these substantial core
level shifts indicate that an accurate microscopic description of solids requires
relativistic contributions to F,[n].

A similar analysis of the relative importance of gradient and relativistic
contributions has been presented by Mayer et al. [29] on the basis of weakly
relativistic LCGTO results. The various relative atomic eigenvalue shifts given
in [29] are consistent with those extracted from Table 3. The absolute size of
the eigenvalues of Ref. [29], on the other hand, allows to estimate the impor-
tance of higher order 1/c-corrections to the kinetic energy. In Table 3 we thus
also list the j-averaged LCGTO eigenvalues for the nonrelativistic LDA, which
is the only functional used in both [29] and this study. For all core levels the
differences between the weakly relativistic LCGTO data and the fully rela-
tivistic eigenvalues are of the same order of magnitude as the contributions of
the relativistic zc-corrections. On the other hand, for the valence levels the
higher order 1/c-corrections to the kinetic energy lead to roughly 3-5 times
larger shifts than the relativistic zc-corrections.

The valence levels for Au obtained with the various ze-functionals for a
number of selected k-points in the Brillouin-zone are given in Table 4 (all re-
sults for the experimental lattice constant). In contrast to the substantial mod-
ifications of the core levels, only small effects of the relativistic xc-corrections
on the valence levels are found. For instance, at the I'-point the d-bands are
lowered with respect to the s-band by about 2.5m Ry when going from the
GGA to the RGGA. On the other hand, the nonrelativistic gradient correc-
tions, which set the scale for judging the importance of this shift, lower the
d-bands with respect to the s-band by about 8m Ry (see Tables 4a,4c). While
the eigenvalue shifts are different at other k-points, the relative impact of rela-
tivistic and gradient corrections is roughly the same. Although the importance
of the latter becomes larger if the lattice constant is relaxed, i.e. if the bands
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k €nk — €F
a) x: LDA, e: LDA
W | —454 —-393 —-393 —-253 —123 344
L | =558 =360 —360 —148 —148 -84
I' | =750 =357 =357 =357 —240 —240
X | =538 =514 —150 —123 —123 63
K| —492 —444 —293 =218 —158 277
b) #: RLDA, e: RLDA
W | —456 —395 —395 —255 —125 349
L | =559 =362 —-362 —150 —150 —83
' | =748 =360 —360 —360 —242 —242
X | =h40 =517 —153 —125 —125 64
K | —494 —446 —295 =220 —160 281
c) x: GGA, ¢ GGA
W | —456 —-395 —395 —256 —127 349
L | =557 =363 —-363 —152 —152 —80
| =745 =360 —-360 —360 —244 —244
X | =539 —516 —156 —127 —127 68
K | =493 —446 —294 —-222 —162 282
d) z: RGGA, e: GGA
W | =457 —-396 —396 —258 —129 352
L | =559 —-364 —-364 —154 —154 —79
' | =744 =362 —-362 —362 —246 —246
X | =h41 =518 =157 —129 —129 68
K | =495 —447 =296 —224 —164 285
e) z: RGGA, ¢ RGGA
W | =457 —-396 —396 —258 —129 352
L | =559 —-364 —-364 —154 —154 —79
' | =744 =362 —-362 —362 —246 —246
X | =h41 =518 =157 —129 —129 68
K | =495 —447 =296 —224 —164 285

Table 4: Valence levels of Au at selected k-points relative to the Fermi level
for various xc-functionals (in m Ry).

corresponding to the lattice constants which give the minimum total energy
for the functional of interest are compared, this nevertheless indicates that
relativistic xe-corrections are not completely negligible even for valence levels.

Similar to the core levels, the relativistic corrections to eigenvalues calcu-



Functionals ao —FE.n —FEo(solid)  —FEy(atom)

v e |pok] V][R (i)
LDA LDA 7.68 4.12  38075.445 38075.132
RLDA RLDA 7.68 4.09  37997.970 37997.669
GGA GGA 7.87 2.91  38100.029 38099.815
RGGA GGA 7.88 2.89  38048.438 38048.225
RGGA RGGA 7.88 2.89  38049.253 38049.040

expt 7.67 3.78

Table 5: Lattice constants and cohesive energies of Au obtained from LAPW

11

calculations with various zc-functionals in comparison to experiment [45,20].

Functionals ao —FE.n —FEo(solid)  —FEy(atom)

x c [bohr]  [eV] [Ry] [Ry]
LDA LDA 7.36 6.76  36873.465 36872.968
RLDA RLDA 7.37 6.73  36799.369 36798.875
GGA GGA 7.51 5.34  36897.502 36897.109
RGGA GGA 7.52 5.30 36848.219 36847.829
RGGA RGGA 7.52 5.30  36849.005 36848.616

expt 7.40 5.85

Table 6: Lattice constants and cohesive energies of Pt obtained from LAPW
calculations with various zc-functionals in comparison to experiment [45,20].

lated with the RLDA are too large by a factor of 1.5 to 2. Moreover, the
inclusion of relativistic corrections in the correlation energy functional has al-
most no impact on the valence states as can be seen from a comparison of
Tables 4d,4e. This then a posteriori justifies the rather crude treatment of
these contributions in both the RLDA and RGGA.

The situation is somewhat different for Pt, for which the relativistic xc-
corrections only affect the s-band in the interior of the Brillouin-zone: Its
bottom is shifted upwards by 3mRy. The absolute and relative positions of
the d-bands remain more or less unchanged.

The limited importance of relativistic xe-potentials for the cohesive prop-
erties of Au and Pt is demonstrated in Tables 5,6: Lattice constants remain
nearly unchanged when one replaces the LDA by the RLDA or the GGA by
the RGGA. Also, only a small reduction is observed for the corresponding
cohesive energy F.., (evaluated at the lattice constant corresponding to the
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energy minimum for the functional of interest). While the total ground state
energies change by almost 50 Ry, the energy difference between the solid state
and the free atom experiences only a 1 m Ry shift, which represents roughly 1%
of the total cohesive energy. This percentage correction is on the same level
as the shifts observed for the valence bands and for the dissociation energy of
the Au-dimer [29].

Like its nonrelativistic counterpart, the RGGA predicts lattice constants
which are too large by 0.21 bohr for Au and 0.12 bohr for Pt. The correspond-
ing RGGA cohesive energies are roughly 25% too small for Au and 10% below
the experimental value for Pt. Thus the reduction of E.,;, which is always
found when going from the LDA to the GGA, by far overcorrects the LDA’s
error, in particular in the case of Au for which the LDA result is fortuitiously
close to the experimental energy. In fact, the inclusion of relativistic correc-
tions in the GGA even worsens the agreement with experiment, although only
marginally. The nonadditivity of relativistic and xzc-effects [22] is thus not
responsible for the GGA’s failure for some 5d transition elements.

In summary, there can be little doubt that for the cohesive properties of
solids the relativistic contributions to F,.[n] are much less important than
the monlocal’ contributions to E,.[n] not contained in the LDA. It should be
pointed out, however, that the RGGA is as efficiently applied as the GGA,
so that there seems to be no reason to rely on error cancellation in the cal-
culation of F.,,. Moreover, at least for some systems (as Au) the relativistic
xe-corrections are visible in the band structure, indicating that a complete
description of these systems requires a relativistic form for F,.[n]. Finally, if
relativistic zc-corrections are to be included at all this should be done on the

GGA- rather than the LDA-level.

Acknowledgements: Financial support by the Deutsche Forschungsgemein-
schaft within the program Theorie relativistischer Effekte in der Chemie und
Physik schwerer Elemente (Project Dr 113/20-2) is gratefully acknowledged.
P.B. was supported by the Austrian Science Foundation Project No P10847.

References

[1] R. O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).

[2] R. M. Dreizler and E. K. U. Gross, Density functional theory (Springer,
Berlin, 1990).

[3] Density Functional Theory, ed. by E. K. U. Gross and R. M. Dreizler,
NATO ASI Series B, Vol. 337 (Plenum, New York, 1995).



[10]

[11]
[12]

[13]
[14]

[15]
[16]

[17]
[18]
[19]
[20]
[21]
[22]

23]

[24]

13

A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).
A. K. Rajagopal, J. Phys. C 11, .943 (1978).
A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 (1979).

E. Engel, S. Keller, A. Facco Bonetti, H. Muller, and R. M. Dreizler, Phys.
Rev. A 52, 2750 (1995).

E. Engel and R. M. Dreizler, Top. Curr. Chem. 181, 1 (1996).
A. D. Becke, Phys. Rev. B 33, 3098 (1988).

J. P. Perdew, in FElectronic Structure of Solids 1991 ed. by P. Ziesche and
H. Eschrig (Akademie Verlag, Berlin, 1991), p.11.

A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612
(1993).

P. Bagno, O. Jepsen, and O. Gunnarsson, Phys. Rev. B 40, 1997 (1989).

T. C. Leung, C. T. Chan, and B. N. Harmon, Phys. Rev. B 44, 2923
(1991).

D. J. Singh and J. Ashkenazi, Phys. Rev. B 46, 11570 (1992).

A. Garcia, C. Elsasser, J. Zhu, S. G. Louie, and M. L. Cohen, Phys. Rev.
B 46, 9829 (1992).

M. Kérling and J. Haglund, Phys. Rev. B 45, 13293 (1992).

V. Ozolins and M. Korling, Phys. Rev. B 48, 18304 (1993).

P. Dufek, P. Blaha and K. Schwarz, Phys. Rev. B 50, 7279 (1994).

A. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 51, 4105 (1995).
P. Pyykko, Chem. Rev. 97, 597 (1997).

E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).

A. Pizlo, G. Jansen, B. A. Hef}, and W. von Niessen, J. Chem. Phys. 98,
3945 (1993).

M. V. Ramana and A. K. Rajagopal, Phys. Rev. A 24, 1689 (1981).



[25]

[26]

[27]
28]

[40]

[41]

[42]

[43]

14

A. H. MacDonald, J. M. Daams, S. H. Vosko, and D. D. Koelling, Phys.
Rev. B 23, 6377 (1981).

A. H. MacDonald, J. M. Daams, S. H. Vosko, and D. D. Koelling, Phys.
Rev. B 25, 713 (1982).

E. Engel, S. Keller, and R. M. Dreizler, Phys. Rev. A 53, 1367 (1996).

E. Engel, S. Keller, and R. M. Dreizler, in FElectronic Density Functional
Theory: Recent Progress and New Directions, ed. by J. F. Dobson, G.
Vignale and M. P. Das (Plenum, New York, 1997).

M. Mayer, O. D. Haberlein, and N. Rosch, Phys. Rev. A 54, 4775 (1996).
H. Bross, private communication (1997).

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994).

S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[. A. Akhiezer and S. V. Peletminskii, Sov. Phys. JETP 11, 1316 (1960).
H. Miiller, unpublished (1995).

C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

Y. Ishikawa and K. Koc, Phys. Rev. A 50, 4733 (1994).

P. Blaha, K. Schwarz, P. Dufek and R. Augustyn, WIEN95, Technical
University of Vienna 1995 (improved and updated Unix version of the
original copyrighted WIEN-code, by P. Blaha, K. Schwarz, P. Sorantin,
and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990)).

O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method
(Kluwer Academic, Boston, 1994).

D. D. Koelling and B. N. Harmon, J. Phys. C: Sol. St. Phys. 10, 3107
(1977).

D. Singh, Phys. Rev. B 43, 6388 (1994).



15

[44] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

[45] L. Brewer, Report LBL-3720 Rev. Lawrence Berkeley Laboratory (Univ.
of California, Berkeley, 1977).



