1 Der Endgegner

Es gilt das unbestimmte Integral $\int dx \sqrt{\tan(x)}$ zu lösen. Wir beginnen mit einer Substitution. Diese bietet sich hier unter anderem an um die Wurzel loszuwerden.

\[u^2 = \tan(x) \rightarrow x = \arctan(u^2) \quad (1.1) \]

Durch die Substitution ändert sich auch unser Differential gemäß

\[\frac{dx}{du} = \frac{2u}{1 + u^4} \rightarrow dx = \frac{2u}{1 + u^4} du. \quad (1.2) \]

Das zu lösende Integral ist dann

\[\int dx \sqrt{\tan(x)} = 2 \int du \frac{u^2}{1 + u^4} = 2 \int du \frac{u^2}{(1 + u^2)^2 - 2u^2}, \quad (1.3) \]

\[\begin{align*}
2 & \int du \frac{u^2}{(u^2 - \sqrt{2}u + 1)(u^2 + \sqrt{2}u + 1)} = \frac{au + b}{u^2 - \sqrt{2}u + 1} + \frac{a'u + b'}{u^2 + \sqrt{2}u + 1} \quad (1.4)
\end{align*} \]

Wir suchen nun also a und b (bzw. a' und b') so, dass obige Gleichung erfüllt ist (ausgedrückt durch das $=$). Dazu erweitern wir beide Brüche jeweils mit dem Nenner des anderen.

\[\begin{align*}
\to \quad & \frac{(au + b)(u^2 + \sqrt{2}u + 1) + (a'u + b')(u^2 - \sqrt{2}u + 1)}{(u^2 - \sqrt{2}u + 1)(u^2 + \sqrt{2}u + 1)} \quad (1.5)
\end{align*} \]

Die resultierenden Termen sortieren wir nach ihrer Ordnung in u.

\[\begin{align*}
u^2[(au - b) + (au' + b')] - \sqrt{2}u[(au + b) - (a'u + b')] + [(au + b) + (a'u + b')] & = \frac{u^2}{(u^2 - \sqrt{2}u + 1)(u^2 + \sqrt{2}u + 1)} \quad (1.6)
\end{align*} \]

Aus dieser Forderung ergibt sich ein Gleichungssystem, da nur Terme übrig bleiben sollen, die quadratisch in u sind.

\[\begin{align*}
(au - b) + (a'u + b') & = 0 \quad (1.7)
(au + b) - (a'u + b') & = \frac{u}{\sqrt{2}}
(au + b) + (a'u + b') & = 0
\end{align*} \]
Aus der ersten Gleichung folgt $a = -a'$ und $b = b' = 0$, aus der zweiten dann direkt $a = \frac{1}{2\sqrt{2}}$, bzw. $a' = -\frac{1}{2\sqrt{2}}$. Somit lautet unser ”zerlegtes“ Integral

\[\frac{2}{2\sqrt{2}} \int du \left(\frac{u}{u^2 - \sqrt{2}u + 1} - \frac{u}{u^2 + \sqrt{2} + 1} \right) \] (1.8)

\[= \frac{1}{\sqrt{2}} \int du \left(\frac{u}{(u - \frac{1}{\sqrt{2}})^2 + \frac{1}{2}} - \frac{u}{(u + \frac{1}{\sqrt{2}})^2 + \frac{1}{2}} \right) \]

\[= \sqrt{2} \int du \left(\frac{u}{(\sqrt{2}u - 1)^2 + 1} - \frac{u}{(\sqrt{2}u + 1)^2 + 1} \right). \]

Hier separieren wir die Integrale und substituieren in jedem zwar ähnlich, aber nicht gleich $(\sqrt{2}u - 1 = \phi, \sqrt{2}u + 1 = \theta; du = \frac{1}{\sqrt{2}} d\phi$ bzw $d\theta$).

\[\sqrt{2} \int du \left(\frac{u}{(\sqrt{2}u - 1)^2 + 1} - \frac{u}{(\sqrt{2}u + 1)^2 + 1} \right) = \frac{1}{\sqrt{2}} \int d\phi \frac{1}{\phi^2} + \frac{1}{1 + \phi^2} - \frac{1}{\sqrt{2}} \int d\theta \frac{\theta - 1}{\theta^2 + 1} \]

\[= \frac{1}{\sqrt{2}} \left(\int d\phi \frac{1}{1 + \phi^2} + \int d\phi \frac{\phi}{1 + \phi^2} + \int d\theta \frac{1}{1 + \theta^2} + \int d\theta \frac{\theta}{1 + \theta^2} \right) \] (1.9)

Fast geschafft! Integrale der Form $\int dx \frac{1}{1 + x^2}$ haben wir in einer vorherigen Aufgabe schon gelöst.

\[\int dx \frac{1}{1 + x^2} = \arctan(x) \] (1.10)

Als letzten Schritt substituieren wir noch $\alpha = 1 + \phi^2$ und $\beta = 1 + \theta^2$.

\[\frac{d\alpha}{d\phi} = 2\phi \rightarrow \frac{d\alpha}{2} = \phi d\phi \] (1.11)

Gleiches gilt für $\frac{d\beta}{2} = \theta d\theta$. Damit kommen wir an bei

\[\int dx \sqrt{\tan(x)} = \frac{1}{\sqrt{2}} \left(\arctan(\phi) + \arctan(\theta) + \frac{1}{2} \int \frac{d\alpha}{\alpha} + \frac{1}{2} \int \frac{d\beta}{\beta} \right) \] (1.12)

\[= \frac{1}{\sqrt{2}} \left(\arctan(\phi) + \arctan(\theta) + \frac{1}{2} \ln(\alpha) + \frac{1}{2} \ln(\beta) \right) \]

Wenn wir jetzt noch richtig re-substituieren, gelangen wir schlussendlich zu

\[\int dx \sqrt{\tan(x)} = \frac{1}{\sqrt{2}} \left(\ln \left(\frac{1 + (\sqrt{2}\tan(x) - 1)^2}{1 + (\sqrt{2}\tan(x) + 1)^2} \right) + \arctan(\sqrt{2}\tan(x) - 1) + \arctan(\sqrt{2}\tan(x) + 1) \right). \]