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Zusammenfassung

Die Quantenchromodynamik (QCD) ist die Theorie, welche die Wechselwirkung zwischen
Quarks und Gluonen beschreibt. Die fundamentale Symmetrie, die der QCD zugrunde liegt,
ist die lokale SU(3)c-Farbsymmetrie. Aufgrund vom Con�nement der Quarks und Gluonen
werden im niederenergetischen Bereich die physikalischen Freiheitsgrade durch Hadronen
(Mesonen und Baryonen) repräsentiert. In den letzten Jahren wurden zahlreiche e�ek-
tive niederenergetische Modelle für die starke Wechselwirkung entwickelt, denen eine chirale
Symmetrie zugrunde liegt. Die chirale Symmetrie ist eine weitere Symmetrie der QCD-
Lagrangedichte, die im Limes verschwindender Quarkmassen (dem sogenannten chiralen
Limes) realisiert ist. Diese Symmetrie wird durch nichtverschwindende Stromquarkmassen
explizit gebrochen. Im QCD-Vakuum ist die chirale Symmetrie spontan gebrochen. Als Kon-
sequenz entstehen pseudoskalare (Quasi-)Goldstone-Bosonen, die für Up- und Down-Quarks
(d.h. für Nf = 2 Quark�avors) den Pionen entsprechen. Für Nf = 3, d.h. wenn auch das
Strange-Quark betrachtet wird, entsprechen die Goldstone-Bosonen den Pionen, Kaonen
und dem Eta-Meson. Das η′-Meson ist kein Goldstone-Boson wegen der chiralen Anomalie.
Die chirale Symmetrie kann in hadronischen Modellen in sogenannter linearer oder nichtlin-
earer Repräsentation realisiert werden. Im nichtlinearen Fall werden nur Goldstone-Bosonen
betrachtet. In neueren Modellen jedoch werden auch die Vektormesonen dazu addiert. Im
linearen Fall enthalten die Modelle auch die chiralen Partner der Goldstone-Bosonen. Wenn
man diese Modelle auf den Vektorsektor erweitert, enthalten Sie sowohl Vektor-als auch
Axialvektor-Mesonen. In diesem Zusammenhang haben aktuelle Bemühungen zur Entwick-
lung des sogenannten erweiterten linearen Sigma-Modells (eLSM) für Nf = 2 und für Nf = 3
geführt. Zusätzlich zur chiralen Symmetrie wird im eLSM die Symmetrie unter Dilata-
tion (Skaleninvarianz) und die anomale Brechung dieser Symmetrie (Spuranomalie) berück-
sichtigt. Für Nf = 2 war es im Rahmen des eLSM zum ersten Mal möglich, (pseudo-)skalare
sowie (axial-)vektorielle Mesonen in einem chiralen Modell zu beschreiben: Die Massen und
Zerfallsbreiten stimmen gut mit den Resultaten der Particle Data Group (PDG) überein.
Als Folge der nicht-abelschen Natur der lokalen SU(3)-Farbsymmetrie tragen die Eichfelder
der QCD, die Gluonen, eine Farbladung. Daher wechselwirken sie stark miteinander. Wegen
des Con�nements erwartet man, dass Gluonen auch farblose, bzw. �weiÿe�, Objekte bilden
können. Diese werden als Gluebälle bezeichnet.
Die ersten Berechnungen der Glueball-Massen basierten auf dem Bag-Modell. Später er-

laubten numerische Gitterrechnungen die Bestimmung des vollen Glueballspektrums. In
voller QCD (d.h. Gluonen plus Quarks) �ndet eine Mischung zwischen den Gluebällen und
Quark-Antiquark-Kon�gurationen mit denselben Quantenzahlen statt, was die Identi�ka-
tion der Resonanzen, die von der PDG gelistet sind, zusätzlich erschwert. Die Suche nach
Zuständen, die vorrangig Gluebälle sind, ist ein aktives aktuelles Forschungsgebiet. Dadurch
erho�t man sich ein besseres Verständnis für das nichtperturbative Verhalten der QCD. Ob-
wohl zurzeit einige Kandidaten für Gluebälle existieren, wurde noch kein Zustand eindeutig
identi�ziert, der vorrangig ein Glueball ist. Im Allgemeinen sollten die Glueball-zustände
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zwei Eigenschaften im Hinblick auf den Zerfall erfüllen. Erstens ist ein Glueball �avorblind,
da die Gluonen an alle Quark�avors mit derselben Stärke koppeln. Zweitens besitzen Glue-
bälle eine schmale Zerfallsbreite, die im Large-Nc-Limes wie 1/N2

c skaliert. Im Vergleich
dazu skaliert ein Quark-Antiquark-Zustand wie 1/Nc. Der leichteste Glueballzu-stand, den
die Gitterrechnungen vorhersagen, ist ein skalar-isoskalarer Zustand (JPC = 0++) mit einer
Masse von etwa 1.7 GeV. Die Zerfallsbreite der Resonanz f0(1500) ist �avorunabhängig
und schmal. Aus diesem Grund ist diese Resonanz ein guter Kandidat für einen Zustand,
der vorrangig ein skalarer Glueball ist. Zusätzlich ist die Resonanz f0(1700) ein Glueball-
Kandidat, da ihre Masse in der Nähe der Vorhersagen der Gitterrechnungen liegt, und da sie
in den gluonreichen Zerfällen des J/ψ-Mesons produziert wird. Beide Szenarien wurden in
vielen Arbeiten untersucht, in denen die Mischung zwischen f0(1370), f0(1500) und f0(1710)
betrachtet wird. Der zweitleichteste Glueball, der von den Gitterrechnungen vorhergesagt
wird, ist ein Tensor-Zustand mit den Quantenzahlen 2++ und einer Masse von etwa 2.2
GeV. Ein guter Kandidat dafür könnte die sehr schmale Resonanz f0(2200) sein, falls sich
ihr Drehimpuls experimentell zu J = 2 bestimmen lässt. Der drittleichteste Glueball ist
ein pseudoskalarer Zustand (JPC = 0−+) mit einer Masse von etwa 2.6 GeV. Open-charm
Mesonen bestehen aus einem Charm-Quark und einem Up-, Down- oder Strange-Antiquark.
Sie wurden im Jahre 1976, zwei Jahre später als das J/ψ-Meson (cc-Zustand), entdeckt.
Seit dieser Zeit gab es signi�kante experimentelle und theoretische Fortschritte im Bereich
der Spektroskopie und bei der Bestimmung der Zerfälle dieser Mesonen. In dieser Arbeit
zeigen wir, wie im Rahmen eines chiral-symmetrischen Modells, welches das Charm-Quark
als zusätzlichen Freiheitsgrad enthält, die ursprüngliche SU(3)-Flavor-Symmetrie der Hadro-
nen zu einer SU(4)-Symmetrie erweitert werden kann. Die chirale Symmetrie wird durch
die groÿe Strommasse des Charm-Quarks stark explizit verletzt.

Zerfall von pseudoskalaren Gluebällen in skalare und pseudoskalare Mesonen

In dieser Arbeit untersuchen wir die Zerfälle des pseudoskalaren Glueballs, dessen Masse
laut Gitterrechnungen zwischen 2 und 3 GeV liegt. Wir konstruieren eine e�ektive chirale
Lagrangedichte, die das pseudoskalare Glueballfeld G an skalare und pseudoskalare Meso-
nen mit Nf = 3 koppelt. Danach berechnen wir die Breiten für die Zerfälle G→ PPP und
G → PS, wobei P und S pseudoskalare und skalare Quark-Antiquark-Zustände kennze-
ichnet. Die pseudoskalaren Zustände umfassen das Oktett der pseudo-Goldstone-Bosonen,
während sich der skalare Zustand S auf das Quark-Antiquark-Nonet oberhalb von 1 GeV
bezieht. Der Grund dafür besteht darin, dass die chiralen Partner der pseudoskalaren
Zustände nicht mit Resonanzen unterhalb von 1 GeV identi�ziert werden sollten. Die
konstruierte chirale Lagrangedichte enthält eine unbekannte Kopplungskonstante, die nur
experimentell bestimmt werden kann. Aus diesem Grund präsentieren wir die Resultate
in Form von Verzweigungsverhältnissen für die Zerfälle des pseudoskalaren Glueballs G
in drei pseudoskalare Mesonen oder ein skalares und ein pseudoskalares Meson. Diese
Verzweigungsverhältnisse hängen von keinen weiteren Parametern ab, sobald die Glueball-
masse �xiert wird. Wir betrachten zwei Möglichkeiten: i) In Übereinstimmung mit Git-
terrechnungen wählen wir die Masse des pseudoskalaren Glueballs zu etwa 2.6 GeV. Die
Existenz und die Zerfallseigenschaften hypothetischer pseudoskalarer Resonanzen können
im zukünftigen PANDA-Experiment getestet werden. (Das PANDA-Experiment miÿt die
Proton-Antiproton-Streuung. Daher kann der pseudoskalare Glueball direkt als ein Zwi-
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schenzustand produziert werden.) ii) Wir nehmen an, dass die Resonanz X(2370) (gemessen
im Experiment BESIII) vorrangig ein pseudoskalarer Glueball-Zustand ist. Daher benutzen
wir dafür die Masse 2.37 GeV. Unsere Ergebnisse sagen voraus, dass KKπ der dominante
Zerfallskanal ist, gefolgt von einem beinahe gleich groÿem ηππ-und η′ππ-Zerfallskanal. Der
Zerfallskanal in drei Pionen verschwindet. Beim BESIII-Experiment wäre es möglich, durch
die Messung des Verzweigungsverhältnisses für η′ππ und anderer Zerfallskanäle zu bestim-
men, ob X(2370) vorrangig ein pseudoskalarer Glueball ist. Für das PANDA-Experiment
liefern unsere Resultate nützliche Hinweise für die Suche nach pseudoskalaren Gluebällen.

Phänomenologie der Charm-Mesonen

Wir vergröβern die globale Symmetrie des erweiterten linearen Sigma Modells (eLSM) zu
einer globalen SU(4)R × SU(4)L Symmetrie, indem wir das Charm-Quark einbauen. Das
eLSM enthält zusätzlich zu skalaren und pseudoskalaren Mesonen auch Axialvektor- und
Vektormesonen. Wir benutzen die Parameter aus dem niederenergetischen Sektor der Meso-
nen. Die verbleibenden drei freien Parameter (die von der Strommasse des Charm-Quarks
abhängen) werden an Massen der Charmed Mesonen angepaÿt. Die Resultate für Open-
Charm-Mesonen stimmen gut mit den experimentellen Ergebnissen überein (die Abweichung
beträgt etwa 150 MeV). Für Charmonia weichen unsere Resultate für die Massen stärker von
der experimentellen Daten ab. Unser Modell stellt dennoch ein nützliches Werkzeug dar,
um einige Eigenschaften der Charm-Zustände, wie zum Beispiel das chirale Kondensat, zu
untersuchen.

Zusammenfassend bedeutet die Tatsache, dass eine (obwohl in diesem Stadium nur grobe)
qualitative Beschreibung durch die Verwendung eines chiralen Modells und insbesondere
der ermittelten Parameter durch die Untersuchung von Nf = 3 Mesonen erzielt wurde,
dass auch im Sektor der Charm-Mesonen ein Überrest der chiralen Symmetrie vorhanden
ist. Die chirale Symmetrie ist immer noch präsent, da sich die Parameter des eLSM als
Funktion der Energieskala kaum verändern. Neben den Massentermen, die den Groÿteil der
gegenwärtigen Charm-Quarkmasse beschreiben, sind alle Wechselwirkungsterme dieselben
wie im niederenergetischen e�ektiven Modell, welches unter der Forderung nach chiraler
Symmetrie und Dilatationsinvarianz konstruiert wurde. Als Nebenprodukt unserer Arbeit
haben wir das Charm-Kondensat auf die gleiche Gröÿenordnung wie die strange und non-
strange Quarkkondensate bestimmt. Dies stimmt ebenfalls mit der auf U(4)R × U(4)L
erweiterten chiralen Dynamik überein.
Was die Zuweisung der skalaren und axial-vektoriellen Strange-Charm-Quarkonium-Zu-

stände DS0 und DS1 betri�t, erhalten wir das folgende: falls ihre Masse über dem jew-
eiligen Schwellenwert liegt, ist ihre Zerfallsbreite zu groÿ. Dies wiederum bedeutet, dass
sich diese Zustände, auch wenn sie existieren, der Detektion entzogen haben. In diesem
Fall kann es sich bei den Resonanzen D∗S0(2317) und DS1(2460) um dynamisch generierte
Pole handeln (alternativ hierzu auch um Tetraquarks oder molekulare Zustände). Unsere
Ergebnisse implizieren auch, dass die Interpretation der Resonanz DS1(2536) als Mitglied
des axial-vektoriellen Multiplets nicht favorisiert ist, da die experimentelle Breite zu schmal
im Vergleich zur theoretischen Breite eines Quarkonium-Zustands derselben Masse ist. Die
Untersuchung dieser Resonanzen erfordert die Berechnung von Quanten�uktuationen und
wird Thema zukünftiger Studien sein.
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Zerfälle von Open-Charm-Mesonen

Die Ergebnisse für die Konstanten aus den schwachen Zerfällen von pseudoskalaren Open-
Charm-D- undDs-Mesonen sind in guter Übereinstimmung mit den experimentellen Werten.
Wir berechnen die OZI-dominierten Zerfälle der Charmed-Mesonen. Die Resultate für
D0(2400)+, D0(2400)0, D0(2007), D(2010), D(2420)0, und D(2420)+ sind vergleichbar mit
den Ergebnissen für die Ober- und Untergrenzen der PDG, obwohl die theoretischen Fehler
ziemlich groÿ sind. In unserem Modell ist es dennoch möglich, gleichzeitig die Zerfälle
von Open-Charm-Vektormesonen und ihren chiralen Partnern, den Axialvektormesonen, zu
beschreiben.

Zerfälle von Charmonium-Mesonen

Wir erweitern unser U(4)R×U(4)L-symmetrisches lineares Sigma Modell mit Axialvektor-
und Vektormesonen um ein Dilaton-Feld, welches ein skalarer Glueball ist. Zusätzlich bauen
wir Wechselwirkungen eines pseudoskalaren Glueballs mit (pseudo-)skalaren Mesonen ein,
um die Eigenschaften der OZI-unterdrückten Charmonia zu untersuchen. Wir berechnen
die OZI-unterdrückten Zerfälle der skalaren und pseudoskalaren Charmonium-Zustände,
χc0(1P ) und ηc(1S). Wir machen Vorhersagen für einen pseudoskalaren Glueball mit einer
Masse von etwa 2.6 GeV, welcher im PANDA-Experiment bei FAIR gemessen werden kann.
Zusätzlich geben wir Vorhersagen für einen pseudoskalaren Glueball mit einer Masse von
etwa 2.37 GeV an. Dieser Glueball entspricht der im BESIII-Experiment gemessenen Reso-
nanz X(2370), die beim Zerfall vom Charmonium-Zustand ηc gemessen wird. Wir berechnen
auch den Mischungswinkel zwischen pseudoskalaren Gluebällen mit einer Masse von 2.6 GeV
und dem Hidden-Charm-Meson ηc.
Die Tatsache, dass eine qualitative Beschreibung dieser Zerfälle im Rahmen eines chiralen

Modells, dessen Parameter für Nf = 3 bestimmt wurden, möglich ist, ist ein Indiz dafür,
dass ein Teil der chiralen SU(3)R×SU(3)L-Symmetrie im Charm-Sektor weiterhin erhalten
ist. Ein weiterer Hinweis für eine teilweise erhaltene chirale SU(3)R × SU(3)L-Symmetrie
besteht darin, dass die Parameter des erweiterten linearen Sigma-Modells keine starke En-
ergieabhängigkeit besitzen. Wir berechnen schlieÿlich das Charm-Kondensat, welches von
derselben Gröÿenordnung ist wie das Non-strange- und das Strange-Quarkkondensat. Das
ist auch in Übereinstimmung mit der zu U(4)R × U(4)L-vergröÿerten chiralen Dynamik.
Darüber hinaus haben wir ein Dilatonfeld, ein skalares Glueballfeld und die Wechsel-

wirkung eines pseudoskalaren Glueballfeldes mit (pseudo-)skalaren Mesonen unter U(4)R ×
U(4)L-Symmetrie einbezogen. Anschlieÿend haben wir die Breite des Zerfalls des Charm-
onium-Mesons χc0 in zwei oder drei Strange-oder Non-Strange-Mesonen und in einen skalaren
Glueball G berechnet. Letzterer ist eine Mischung der Resonanzen f0(1370) sowie f0(1500)
und f0(1700). Der Zerfall des Charmonium-Zustands in Open-Charm-Mesonen ist hingegen
innerhalb des eLSM verboten. Ferner haben wir die Breite des Zerfalls des pseudoskalaren
Charmonium-Zustands ηC in leichte Mesonen und in einen pseudoskalaren Glueball G̃ über
den Kanal ηC → ππG̃ bestimmt. Dies wurde mittels des Wechselwirkungsterms des pseu-
doskalaren Glueballs für zwei Fälle durchgeführt. Zum einen für eine Masse von 2.6 GeV,
wie sie von Gitter-QCD-Rechnungen in der Quenched-Näherung vorhergesagt wurde und im
bevorstehenden PANDA-Experiment an der FAIR-Anlage gemessen werden kann. Zum an-
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deren für eine Glueballmasse von 2.37 GeV, die der Masse der Resonanz X(2370) entspricht
und im BESIII-Experiment ermittelt wurde. Der Mischungswinkel zwischen dem pseu-
doskalaren Glueball und ηC wurde ausgewertet. Er ist sehr klein und beträgt lediglich
−1◦. Wir haben begründet, dass das eLSM keinerlei Zerfallskanal für (axial-)vektorielle
Charmonium-Zustände aufweist, wobei ΓJ/ψ = 0 und Γχc1 = 0. Die Ergebnisse der Zer-
fallsbreiten χc0 und ηC stimmen gut mit experimentellen Daten überein. Dies zeigt, wie
erfolgreich das eLSM im Bezug auf das Studium der Hidden-Charm- und Open-Charm-
mesonischen Phänomenologie ist. Die vier bestimmten Parameter im Falle von Nf = 3, die
zur erfolgreichen Auswertung der Massen von Open- und Hidden-Charm-Mesonen und der
Zerfallsbreite des Open-Charm-Mesons dienten, sind: (i) λ1 und h1, die gleich Null gesetzt
werden im Falle von Nf = 3, da sie so klein sind und die vorherigen Resultate nicht beein-
�ussen. Dagegen hängt die Zerfallsbreite der Charmonium-Zustände χc0 und ηC von beiden
ab. Deshalb wurden diese beiden Parameter durch das Minimieren der Zerfallsbreite des χc0
festgelegt, siehe Tabelle 8.2.
(ii) Der Parameter c, der im axialen Term vorkommt, wird auch durch den Fit von

Gl.(8.16) bestimmt.
(iii) c

G̃Φ
, das durch die Beziehung c

G̃Φ(Nf=3)
festgelegt wird.

Ausblick

In der modernen Hadronenphysik ist die Wiederherstellung der chiralen Symmetrie bei
endlicher Temperatur und Dichte eine der fundamentalsten Fragestellungen. Das eLSM
hat es im Gegensatz zu alternativen Ansätzen gescha�t, den zwei-Flavor Fall bei einen
chemischen Potential ungleich Null zu ergründen. All dies führt uns dazu, die Restauration
der chiralen Symmetrie bei nichtverschwindender Temperatur und Dichte für Nf = 3 und
Nf = 4 mithilfe des eLSM zu untersuchen. Dies bringt viele Herausforderungen mit vielen
unbekannten Parametern in sich. In zukunft werden wir die Vakuumphänomenologie des
leichten Tetraquark-Nonets und dessen Erweiterung auf Nf = 4 untersuchen.
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1. Introduction

1.1. Historical Remarks

�The most incomprehensible thing about the universe is that it's comprehensible at all...�

Albert Einstein

Billions of years ago, all of space was contained in a single point which, exposed to an enor-
mous and incomprehensible explosion (the Big Bang), scattered the matter that constitutes
the Universe. At that time, it was hot and dense, but within the �rst three minutes after the
Big Bang the Universe became su�ciently cool to consist of subatomic particles, including
protons, neutrons, and electrons. More than ten billion years passed before the stars and
galaxies formed. After some time, planets surrounded some stars... life formed...�nally, after
billions of years of changes, the human being was created with a complex brain which has a
deep and insatiable curiosity about the world. Humans found that understanding the world
is not easy and noticed that understanding the nature of matter is an important and comple-
mentary approach to understanding the nature of reality and answering the deep and pressing
questions in their minds. To answer these questions, they used the observational method
which creates a lot of ideas. The Greek philosopher Empedocles surmised that everything
was made from a suitable mix of four basic elements: air, �re, water, and earth. These four
elements were perceived as the fundamental elements in nature. Consequently, concentration
moved towards understanding the nature of the elements' permanence. The ancient philoso-
phers Leucippus and well-known Democritus of Greece are the earliest philosophers who
conceived the idea that matter is composed entirely of various imperishable, indestructible,
indivisible elements, always in motion, having empty space between them; called atoms. The
name is derived from the Greek α̈τoµoς which means �indivisible�. In 1661, Robert Boyle
established the atomic idea (molecules). However, this knowledge about the existence of
atoms brings with it a lot of important questions: How do these atoms make molecules?...
How do the molecules make gases, liquids and solids?... It must be forces that act on these
atoms to keep them together in molecules, but what are these forces? They arrived at that
time at the idea that the inter-atomic forces are gravity, static electricity, and magnetism.
After that, there were a lot of e�orts from philosophers and scientists directed towards the
fundamental building blocks of matter. At the close of the 19th century, it was known that
more than 100 elements exist and that all matter is composed of atoms which have an inter-
nal structure and are not indivisible, which is opposite of what Democritus foresaw of the
indivisible property of the atom.

At the beginning of the 20th century, Rutherford presented the subatomic structure as a
result of his experiments: an atom is composed of a dense nucleus surrounded by a cloud of



2
1. Introduction

electrons. Consequently, physicists found that the nucleus decomposed into smaller particles,
which they called protons and neutrons, and in turn that protons and neutrons themselves
contain even smaller particles called quarks. Moreover, there are other small ingredients
making up the atom, which are called leptons. These include the electron in the orbits of
the nucleus, situated at (relatively) large distance from the nucleus, but not inside it. We
conclude that quarks and leptons constitute all fundamental matter in the Universe [1]. This
information is the starting point for understanding the formation of the Universe.

1.2. Standard Model

�Daring ideas are like chessmen moved forward; they may be detected, but they start a win-

ning game� Goethe

Quarks and leptons are the basic types of fundamental matter particles. Each group
consists of six types of �avour. The combinations of these form the hundreds of particles
discovered in the 1950s and 1960s. Two �avours each can be classi�ed as a generation under
the weak interaction, in which the �rst generation consists of the lightest �avours which make
the most stable particles in the Universe, whereas the second and third generations contain
the heavier �avours which make the less stable particles which decay quickly to the next-most
stable state belonging to the previous generation. The quark generations are: the (u ≡ up,
and the d ≡ down) quark �avours (the �rst generation), followed by the (c ≡ charm, and the
s ≡ strange) quark �avours as a second generation, and the third consists of the (t ≡ top,
and the b ≡ bottom) quark �avours. Concerning the electric charges of quarks, quarks carry
colour charge which corresponds to the electric charge of electrons. They also carry a frac-
tional electric charge (the u, c, and t quark �avours carry (2/3)e, whereas the d, s, and b
quark �avours carry (−1/3)e). Each quark has its corresponding antiparticle with opposite
charge. Similarly, there are three generations for the six lepton �avours: the e ≡ electron,
and the νe ≡ electronneutrino, the µ ≡ muon, and the νµ ≡ muonneutrino, and the
τ ≡ tau, and the ντ ≡ tau neutrino. The three lepton �avours (the electron, the muon and
the tau) have a sizable mass with charge −e, whereas the other three -the neutrinos- are
neutral and have a small mass. (See Table 1.1 for a compilation of quarks and leptons).

Particle Generation I Generation II Generation III charge
up (u) charm (c) top (t) +(2/3)e

(0.0015-0.0033) (1.5) (172)
Quarks (q)

down (d) strange (s) bottom (b) -(1/3)e
(0.0035-0.006) (0.1) (4.5)
electron (e) muon (µ) tau (τ) -1
(0.0005) (0.1) (1.7)

Leptons (l)
electron neutrino (νe) muon neutrino (νµ) tau neutrino (ντ ) 0

(<0.000000015) (<0.00017) (<0.024)
Table 1.1: Summary of quarks and leptons. The numbers in parentheses are

the masses in GeV.
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The central rule in creating the Universe depends on the four fundamental forces. Physi-
cists use these forces to describe quantitatively all the phenomena from the small scale of
quarks and leptons to the large scale of the whole Universe. Then, what are the four funda-
mental forces that govern the Universe? Let us list them as follows:
(i) The gravitational force: Attracts any two pieces of matter. It has an in�nite range and
is the weakest force. It is responsible for keeping stars, galaxies, and planetary systems in
order, but it has no signi�cance in the particle physics realm.
(ii) The electromagnetic force: causes electric and magnetic e�ects. It also has in�nite range,
but is much stronger than gravity. This force acts only between electrically charged matter.
Therefore, it governs the motion of electrons around the nucleus. Note that the relations
between the spatial- and time-dependences of the electric and magnetic �elds [2] were ex-
plained by James Maxwell in 1865 through his equations; the Maxwell Equations.
(iii) The nuclear force: As the name suggests, it acts only between nucleons. It is a result
of the strong force which has a very short range, acting only over of a range of 10−13 cm.
It is the strongest force and has the responsibility of binding quarks together, keeping them
inside protons and neutrons, and also binds the protons and neutrons together. Therefore,
it is responsible for the stability of the nucleons.
(iv) The weak force: Dominates only at the level of subatomic particles. It is e�ective also
over a very short range (see Table 1.2), and it is stronger than gravity and weaker than
others.
The electromagnetic, strong, and weak forces arise from the exchange of force-carrier par-

ticles which are bosons called-gauge bosons. Each of these four fundamental forces has a
di�erent type of carrier: the electromagnetic force is carried by the massless photon (γ)
which is chargeless and is known as the particle of light. The strong force has a corre-
sponding boson, the gluon (g), which is massless and is not charged electrically, just as the
photon, but which carries a di�erent sort of charge, called colour which holds the quarks
con�ned within nucleons. The gluon is thus related to nucleon stability. The bosons W and
Z (W±, Z0) are the corresponding force-carrying particles of the weak force, these carriers
are massive, having a mass about 100 times that of the proton mass. The properties of the
interaction forces in the Standard Model are summarized in Table 1.2. Moreover, gravity
may be carried by the �graviton�, but it has not yet been found. Note that leptons carry elec-
tromagnetic charge and weak isospin as quantum numbers, but quarks may experience all
four fundamental interactions, and carry the strong charge which is also called colour charge.

Interaction Mediator Spin Mass (GeV) Range (m) acts on
Electromagnetic γ 1 0 ∞ Quarks, Leptons,

W±

Weak W± 1 80.398± 0.025 ≤ 10−18 Quarks, Leptons
Z0 1 91.1876± 0.0021

Strong g 1 0 < 10−15 Quarks, Gluons
Table 1.2: The properties of the interactions in the Standard Model.

Concerning quarks, leptons, and all their fundamental interactions, theory and experi-
ment together produced a gauge theory called the Standard Model of elementary particles.
Recently the Higgs boson which is an essential component of the standard Model was dis-
covered by the ATLAS [3] and CMS [4] experiments at the Large Hadronic Collider (LHC)
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in 2012.
The Standard Model is based on a Lagrangian density with �elds as degrees of freedom. The
strong and weak interactions are described by Quantum Chromodynamics (QCD) and the
Glashow-Weinberg-Salam Theory of the Weak Interaction (GWS) [5], respectively. Quarks
and gluons carry colour charge and have never been seen to exist as single-particle states.
They couple to themselves which leads to con�nement and asymptotic freedom. These can
be further distinguished into baryons and mesons. Leptons do not interact by the strong
force. The production of hadrons as observed in the �nal state of high-energy collisions,
which arise due to how quarks and gluons arrange themselves, is described by the theory
called quantum chromodynamics (QCD), described in the following.

1.3. Quantum Chromodynamics (QCD)

�In modern physics, there is no such thing as `nothing'. Even in a perfect vacuum, pairs

of virtual particle are constantly being created and destroyed. The existence of these par-

ticles is no mathematical �ction. Though they cannot be directly observed, the e�ects they

create are quite real. The assumption that they exist leads to predictions that have been con-

�rmed by experiment to a high degree of accuracy� Richard Morris

The dynamics of baryons and mesons (hadrons) are described by the theory of the funda-
mental interactions of quarks and gluons, i.e., quantum chromodynamics (QCD) [6].
The fundamental symmetry underlying QCD is an exact local SU(3)c colour symmetry.

The quarks are coloured objects: q ∈ 3c. As a consequence of the non-Abelian nature of
the SU(3)c symmetry, the gauge �elds of QCD - the gluons - are also coloured objects:
g ∈ 8c. Therefore, quarks and gluons interact strongly with each other. The dynamics of
this interaction are described by the QCD Lagrangian, see Sec. 2.2, which implies asymp-

totic freedom and con�nement. Perturbation theory works in the high-energy regime [7, 8],
due to the asymptotically-free nature of QCD, such as for deep inelastic lepton-hadron scat-
tering (DIS). However, at low energy (energies comparable to the low-lying hadron masses
∼ 1GeV), perturbation theory fails due to con�nement and the dynamical breaking of chiral
symmetry.
The development of an e�ective low-energy approach to the strong interaction plays an

important role in the description of the masses and the interactions of low-lying hadron
resonances [9, 10], which is done by imposing chiral symmetry. One of the basic symmetries
of the QCD Lagrangian in the limit of vanishing mass (the so-called chiral limit) [11, 12] is
the chiral symmetry which is explicitly broken by the nonzero current quark masses, but it
is also spontaneously broken by a nonzero quark condensate in the QCD vacuum [13, 14].
As a consequence, pseudoscalar (quasi-)Goldstone bosons emerge. In a world with only u
and d quarks (i.e., for Nf = 2 quark �avours), these are the pions, while for Nf = 3, i.e.,
when also the strange quark s is considered, these are the pions, kaons, and the η meson.
(The η′ meson is not a Goldstone boson because of the chiral anomaly [15, 16, 17, 18]). In
the present work we study the vacuum phenomenology of mesons in the framework of the
extended Linear Sigma Model (eLSM) which is an e�ective chiral model that emulates the
global symmetries of the QCD Lagrangian (see the details in Sec. 2.3). The fundamental
features of QCD are described in the following section.
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1.4. Features of QCD

1.4.1. Asymptotic freedom

This feature was observed by Gross, Wilczek, and Politzer in 1973 [19, 20]. (They won the
Nobel Prize in Physics in 2004). Quarks behave quasi-free at small distance or at high en-
ergies (high compared to the rest mass of the proton). That means the coupling/interaction
strength αs = g2/4π between quarks becomes weaker or smaller with increasing energy,
increasing momentum, and decreasing interparticle distance. This prediction was con�rmed
experimentally by deep-inelastic scattering of leptons by nucleons [1]. A quark-gluon plasma
was predicted for high temperature and/or baryonic chemical potential based on asymptotic
freedom. Perturbation theory con�rmed the existence of a quark-gluon plasma phase [21].
Furthermore, at high temperature and high density, colour charged particles are liberated
from hadrons, they become decon�ned.
The opposite e�ect occurs at low energies, which means the interaction/coupling strength

between quarks becomes stronger with increasing distance. This leads to the emergence of
con�nement, which means that colour-charged particles are con�ned in colour-neutral states
(hadrons).
QCD seems like an expanded version of quantum electrodynamics (QED). Both have

charges: QED has electric charge and QCD has the colour charges (red, green, and blue).
Therefore, just as one considers the force between two electric charges to understand and
study electromagnetic physics, one can analogously consider the strong force between two
colour charges to understand the strong interaction. This leads us to explain asymptotic
freedom in a simple way by referring �rstly to electromagnetic physics as follows [22]:

Coulomb's law describes the force between two charges q1 and q2 in vacuum as

F =
1

4π

q1 q2

r2
. (1.1)

However, in a medium with dielectric constant ε > 1, the force between them becomes

F =
1

4πε

q1 q2

r2
, (1.2)

which has the same form as in vacuum with the e�ective charge q̃i = q1,2/
√
ε.

In quantum �eld theory, the vacuum is the lowest energy state of a system. In QED, it is
not empty but �lled with electrons of negative energies. When the photon travels through
the vacuum, an electron can be induced to jump from a negative to a positive energy state,
which creates a virtual pair of an electron and a positron (the hole in the negative-energy
continuum). That is known as a vacuum �uctuation. For this reason, the interaction force
between two electrons in the vacuum becomes

F =
e2
eff

4π r2
=
αem(r)

r2
, (1.3)

where αem is an e�ective �ne structure constant and depends on the distance r or the
momentum transfer q ∼ 1

r . The interaction strength of a low-energy photon at r → ∞ or
(≡ q → 0) is αem(q = 0) = 1/137.035 [23].
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In QED, the coupling as a function of the momentum scale µ can be determined by the
following di�erential equation

µ
∂α(µ)

∂µ
= β(α(µ)) . (1.4)

From perturbation theory, the β-function can be obtained at one-loop order as

β = 2α2
em/3π > 0 .

Then the solution can be obtained as

αem(µ) =
αem(µ0)

1− αem(µ0)
3π lnµ

2

µ20

. (1.5)

Now it is clear that when the distance between the two electrons becomes smaller, their
interaction strength gets stronger. Therefore, QED is a strong-coupling theory at very short
distance scales.

Now let us turn to QCD which has a classical scale symmetry (see the details in the next
chapter). At the quantum level, this symmetry is spontaneously broken due to the energy
scale which is introduced by the renormalization of quantum �uctuations. Therefore, the
strong coupling g depends on the energy scale µ [24, 25, 26]:

g renormalization−−−−−−−−−−−→ g(µ)

The beta function β(g(µ)) of the renormalization group describes the variation of the
strong coupling with energy scale µ, called running coupling. It has the same di�erential
equation (1.4) as in QED

β(g(µ)) = µ
∂g(µ)

∂µ
. (1.6)

At one-loop level in perturbation theory the beta function of QCD has the following form
[19, 20]

β(g(µ)) =
−11Nc + 2Nf

48π2
g3 , (1.7)

where Nf is the number of active quark �avours and Nc the number of colours. In nature,
there are six quark �avours and three colours. As seen in Eq.(1.6), if the β−function is
negative (β(g(µ)) < 0), then the QCD coupling decreases with increasing energy scale µ.
The coupling constant of QCD is obtained from the solution of the di�erential equation (1.6)
as

g2(µ) =
24π2

(11Nc − 2Nf ) ln(µ/ΛQCD)
, (1.8)

which describes clearly that, when the energy scale is increasing (µ → ∞) or the distance
is decreasing (d → 0), the QCD coupling constant is decreasing (g → 0). This feature is
called asymptotic freedom.
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1.4.2. Quark Con�nement

The fact that the strong coupling grows in the increasing distance leads to the con�nement
of quarks, which means that no isolated elementary excitations of QCD, quarks, exist in na-
ture. Experimentally, no one has observed an isolated quark. Quarks usually clump together
to form hadrons, such as baryons and mesons. In QCD, the con�nement hypothesis has not
been directly derived until now. Note that, at any �nite order in perturbation theory, there
is no con�nement. Therefore, it is a nonperturbative phenomenon. Con�nement has a lot
of meanings. Four di�erent meanings are considered [27]:

(i) `Quarks cannot leave a certain region in space' [27], which is called `Spatial Con�ne-

ment'. The MIT-bag model explores the consequences of spatial con�nement, whereas the
Chromodielectric Soliton Model [28] attempts to understand the mechanisms producing this
con�nement.
(ii) `String con�nement' : it is especially for mesons which are produced from scattering

processes. From the features of the meson spectrum, the attractive force between quark
and anti-quark increases linearly with the distance of the quarks. Moreover, quark and
antiquark are linked together by something which expands with increasing energy. For all
of that, free quarks never appear. Note that the string breaks and new particles are created
when the corresponding energy exceeds a certain critical value and the separation becomes
large enough.
(iii)`There are no poles in the quark propagator'. This de�nition is limited to the, a priori

unknown, quark propagator. Asymptotic quark states cannot appear when the full quark
propagator has no poles. This means no free quarks exist.
(iv)`Colour Con�nement' means any composite particle must be a colour singlet under

the strong interaction at zero temperature and density, and at distance scales larger than
1/ΛQCD. M. Gell-Mann is the �rst one who introduced this type of con�nement to solve his
original quark-model problem.

Finally, we have to conclude from all of this that there are no isolated quarks and gluons
in nature.

1.4.3. Chiral Symmetry

Chiral symmetry and its dynamical breaking are very important features of QCD at low en-
ergy. From the dynamical breaking of chiral symmetry, an e�ective quark mass is generated.

What is the meaning of chirality?

Kelvin's de�nition of chirality: �I call any geometrical �gure, or group of points `chi-
ral', and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself� (Lord Kelvin, 1904, The Baltimore Lectures)

In general, chirality is the property of having for the same object a left-form and a right-
form which are mirror images of each other.
The property of chirality (or �handedness�) is well-known of many physical, chemical, and
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biological systems. In theoretical physics, it is demonstrated that a quantum �eld theory
cannot be chirally symmetric if its Lagrangian density has explicit mass terms. However,
comparing to the rest mass of the proton (about 1000 MeV), the current quark masses of the
relevant quarks are small (about 10 MeV) in the low-energy domain of QCD which leads to
an approximate realization of chiral symmetry. In the end, there is a chiral partner (with the
same mass, but opposite parity and G-parity) for every eigenstate of the interaction. This is
not seen in experimental data, from which are concludes that the chiral symmetry is broken.
Note that the con�nement and dynamical chiral symmetry breaking cannot be obtained
in a simple perturbative analysis of QCD because they are low-energy phenomena, and
in this regime, perturbation theory breaks down (for more details of low-energy theorems
see [11, 12, 29]). For this reason, e�ective chiral models are widely used to study the
phenomenology of hadrons.
More details of the chiral symmetry and its spontaneous and explicit breaking are described
in the next chapter.

1.5. Evidence for colour

There is experimental and theoretical evidence for the existence of colour in nature.

Experimentally:

(i) e+e− annihilation experiments

In 1967, the results of high-energy electron and positron annihilation experiments at the
Stanford Linear Accelerator (SLAC) supported the colour charge of quarks.
The con�rmation of the existence of the colour quantum number can be obtained from a

comparison of the cross section of the following two processes:

e+e− −→ µ+µ− and e+e− −→ hadrons . (1.9)

Note that hadron production occurs only when quarks are in the �nal state as a result of
con�nement. Therefore, the production of hadrons occurs through

e+e− −→ γ (or Z) −→ qq −→ hadrons.

e–

e+

q

q

γ, Z

Figure 1.1.: Tree-level Feynman diagram for the e+e− annihilation into hadrons.

In this comparison of the cross sections, the weak production factor involving the Z for the
previous process is neglected as well as for the e+e− −→ µ+µ− process as seen in Eq.(1.9),
because of the dominance of the cross section due to γ exchange amplitude at the energies
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below the Z peak. The ratio of the cross sections for the processes described in Eq.(1.9)
depends on the quark colour Nc [30],

R ≡ σ(e+e− −→ hadrons)

σ(e+e− −→ µ+µ−)
' Nc

Nf∑
f=1

Q2
f =


5
9Nc = 5

3 , for (Nf = 2 : u, d)
2
3Nc = 2, for (Nf = 3 : u, d, s)

10
9 Nc = 10

3 , for (Nf = 4 : u, d, s, c)
11
9 Nc = 11

3 , for (Nf = 5 : u, d, s, c, t)

,

(1.10)
where Qf denotes the electric charge of quark �avours f . The value of the ratio, which
corresponds to the experimental data of Fig. 1.2 [31] is obtained for Nc = 3. Therefore,
there are three quark colours in the physical world.

10

-1

1

10

10
2

10
3

1 10 10
2

R
ω

ρ

φ

ρ′

J/ψ ψ(2S)

Υ

Z

√
s [GeV]

Figure 1.2.: World data on the ratio Re+e− . The solid curve is the 3-loop perturbative QCD
prediction. The broken lines show the naive quark model approximation with
NC = 3.

(ii) Decay of π0 into 2γ

In 1967, Veltman tried to calculate the π0 decay rate and obtained that it is forbid-
den [32]. Following this study, Adler, Bell, and Jackiw (1968-1970) [33, 34], using the `�x'
�eld theory, which allowed π0 to decay, found that its decay rate is o� by the factor of
9. During (1973-1974) many physicists, notably Gell-Mann and Fritzsch, used QCD with
three colours and arrived at the correct result of π0 decay. Let us explain this in more detail:

The neutral pion π0 is a meson composed of quarks, π0 = 1√
2
(uu− dd). The decay width

of the pion into two photons (π0 → 2γ) is determined by a triangular quark loop in the
Standard Model [30] as

Γπ0→2γ =
α2m2

π

64π3 f2
π

(
Nc

3

)2

≡
(
Nc

3

)2

7.73 eV , (1.11)

which depends on the number of colours and the decay constant of the pion fπ = 92.4 MeV.
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Experimental data give [23]

Γexp
π0→2γ

= (7.83± 0.37)eV . (1.12)

These experimental data is in very good agreement with the Standard Model calculation
(1.11) only when the number of colours Nc = 3. This is further evidence for the existence
of quark colour in nature.

Theoretically : solving the spin-statistics problem

In 1965, the ∆−baryon was discovered [35, 36], which is composed of three quarks. Con-
sidering the baryon's charge q = 2e, spin S = 3/2, and angular momentum l = 0, there
emerged a spin-statistics problem. When describing this particle in terms of u and d quarks,
the spin-�avour wave function ∆++ had to be expressed as

|∆++〉 = |u↑u↑u↑〉 , (1.13)

which describes an overall symmetric state. This violated Fermi-Dirac statistics and the
Pauli principle [37] as well. This paradox can be avoided by assuming the existence of colour
as a degree of freedom for quarks: a quark can carry three di�erent colours which are red
(r), blue (b), green (g). Consequently, in the ∆++ the three u quarks combine their colours
in an antisymmetric way as follows:

|∆++〉colour =
1√
6
|r1g2b3 − g1r2b3 + b1r2g3 − b1g2r3 + g1b2r3 − r1b2g3〉 , (1.14)

which is in accordance with the Pauli principle.

1.6. Baryons and Mesons

Baryons and mesons are hadronic particles composed of quarks and gluons bound together
strongly and con�ned in colour singlet states (colourless states). They bear evidence for the
existence of elementary (quark) constituents of matter because they come in many di�erent
forms in nature.

Baryons: These are fermionic hadronic states with half-integer spin and composed of
three valence quark (qqq) or three antiquarks (q̄q̄q̄). A proton and a neutron are the lightest
baryons, which consist of uud and ddu, respectively. Therefore, baryons are a central part
of nature and form the complex structure of the cores of atoms. The baryon number of a
quark is 1/3. Consequently, the baryon number for baryons is 1, while for antibaryons it is
−1.
The wave function of a baryon B = qqq is antisymmetric under colour exchange and can
thus be described as

|B〉colour =
1√
6
|q1rq2gq3b − q1gq2rq3b + q1bq2rq3g − q1bq2gq3r + q1gq2bq3r − q1rq2bq3g〉 , (1.15)
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which can also be written as

|B〉colour =
1√
6
εαβγ |q1αq2βq3γ 〉 , (1.16)

where εαβγ is the totally antisymmetric tensor and α, β, γ refers to the three di�erent colours
(r, g, b). Furthermore, there is a hypothetical �exotic� baryon with an extra quark-antiquark
pair additional to the original three quarks, which is called a pentaquark (qqqqq̄). The qqqg
states, bound states of three quark and a gluon, are hybrid states and called hermaphrodite
baryons. There is also a hypothetical dibaryon state which consist of six quarks and has
baryon number +2.

Mesons: These are bosonic hadronic states with integer spin. Many meson types are
known in nature. Most states consist of qq (a quark bound with its antiquark). The pion
is the lightest meson which has a mass of about 140 MeV/c2 and is the �rst meson to have
been discovered [38, 39, 40]. The colour wave function for the qq state is antisymmetrised
as

|M〉colour =
1√
3
|rr + gg + bb〉 , (1.17)

or,

|M〉colour =
1√
3
δαβ|qαqβ〉 , (1.18)

where δαβ denotes the antisymmetric tensor and α, β ∈ {r, g, b}. A meson may decay into
electrons, neutrons, and photons as seen in the previous section with the decay of the pion π
into two photons γγ. According to the hypothesis of �exotic� mesons, there are tetraquarks,
consisting of a quark pair and an antiquark pair [qq][q q], and also glueballs, bound states of
gluons (gg). The recently discovered XY Z states are candidates for tetraquarks. Moreover
there are hybrid states of mesons consisting of qqg, bound states of quark-antiquark and
gluon, called hermaphrodite mesons. In reality, there are many particles still not known in
nature and every day presents a possibility of discovery for experimental physicists. In the
recent past (2012), the Higgs boson was discovered.
The main goal of the present work is the study of the vacuum properties of the pseudoscalar

glueball and charmed mesons via the chirally symmetric eLSM.

1.6.1. Charmed mesons

The charm quark (c) is a special one in the quark family, as it is heavier than the �rst
three light quarks and does not belong to the regular �avour SU(3), but stands in a weak
doublet with the light strange quark. Therefore, it can act as a bridge between the light
and heavy �avours. There are two types of charmed mesons: (i) The heavy-light Qq and
Qq mesons called open charmed mesons, where Q is a heavy quark (referring to the charm
quark c) and q is a light quark (referring to u, d, and s quarks). (ii) The heavy-heavy QQ
mesons, composite states of charm and anticharm quark, are called hidden charmed mesons
(charmonia). The current charm quark mass (mc ∼ 1.3 GeV) is larger than the characteristic
energy scale for the strong interaction (ΛQCD ∼ 300 MeV), by which enter, the perturbative
regime, mQ >> ΛQCD.
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Since the discovery of the charmonium/hidden charmed state J/ψ in November 1974 at
the Stanford Linear Accelerator Center (SLAC) [41] and Brookhaven National Laboratory
(BNL) [42], and two years later (in 1976) the discovery of open charmed states at SLAC,
the study of charmed meson spectroscopy and decays has made signi�cant experimental
[43, 44, 45, 46] and theoretical process [47, 48, 49, 50]. Therefore, we are interested to study
the vacuum properties of open and hidden charmed mesons.
In present work, we show how the original SU(3) �avour symmetry of hadrons can be

extended to SU(4) in the framework of a chirally symmetric model with charm as an extra
quantum number. Twelve new charmed mesons are included in addition to the nonstrange-
strange sector. The new charmed mesons of lowest mass, the D, Ds, and the higher mass ηc
are quark-antiquark spin-singlet states with quantum number JPC ≡ 0−+, i.e., pseudoscalar
mesons. The scalar mesons D∗0, D

∗
S0, and χC0 are spin-singlet states with JPC = 0++. The

vector mesons D∗, D∗S , and J/ψ are quark-antiquark spin triplets with JPC = 1−−. The
axial-vector mesons D1, DS1, and χC1 are quark-antiquark spin triplets with JPC = 1++.
The additional charmed �elds D∗0, D∗, D∗00 , χC1, χC0, and J/ψ are assigned to the physical
resonances D∗(2007)0, D∗(2010)±, D∗0(2400)0, D∗0(2400)±, χC1(1P ), χC0(1P ), and the well
known ground state J/ψ(1P ), respectively. The isospin doublet D0

1 is D1(2420). The D is
assigned to the well-established D resonance. The isospin singlet DS1 can be assigned to two
di�erent physical resonances, DS1(2460) and DS1(2536) as listed by the Particle Data Group
PDG [51]. The �rst candidate can be interpreted as a molecular or a tetraquark state as
shown in Refs.[46, 52, 53, 54, 55, 56, 57], which leads us assignDS1 toDS1(2536). Finally, the
strange-charmed meson D∗S0 is assigned to the only existing candidate D∗S0(2317)± although
it is also interpreted as a molecular or a tetraquark [47, 48, 52, 53, 58, 59] (For more details
of the charmed meson assignment, see Sec. 4.2). We compute charmed meson masses,
weak decay constants, and strong decay widths of (open and hidden) charmed mesons.
Moreover, we calculate the decay width of a pseudoscalar ground state charmonium ηc into
a pseudoscalar glueball and the decay widths of a scalar charmonium χC0 into a scalar
glueball. The precise description of the decays of open charmed states is important for
the CBM experiment at FAIR, while the description of hidden charmed states and the
pseudoscalar glueball is vital for the PANDA experiment at the upcoming FAIR facility.

1.6.2. Glueball

The bound states of gluons form colourless, or `white', states which are called glueballs. The
�rst calculations of glueball masses were based on the bag-model approach [60, 61, 62, 63, 64].
Later on, the rapid improvement of lattice QCD allowed for precise simulations of Yang-Mills
theory, leading to a determination of the full glueball spectrum [65, 66, 67] (see Table 1.3).
However, in full QCD (i.e., gluons plus quarks) the mixing of glueball and quark-antiquark
con�gurations with the same quantum number occurs, rendering the identi�cation of the
resonances listed by the Particle Data Group (PDG) [23] more di�cult. The search for
states which are (predominantly) glueballs represents an active experimental and theoretical
area of research, see Refs. [10, 68, 69, 70] and refs. therein. The reason for these e�orts is
that a better understanding of the glueball properties would represent an important step in
the comprehension of the non-perturbative behavior of QCD. However, although up to now
some glueball candidates exist (see below), no state which is (predominantly) glueball has
been unambiguously identi�ed.
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Figure 1.3: The lightest six states in the spectrum of the SU(3) Yang-Mills theory [65].

In general, a glueball state should ful�ll two properties regarding its decays: it exhibits
`�avour blindness', because the gluons couple with the same strength to all quark �avours,
and it is narrow, because QCD in the large-Nc limit shows that all glueball decay widths
scale as N−2

c , which should be compared to the N−1
c scaling law for a quark-antiquark state.

In Fig. 1.3, one can obtained that the lightest glueball state predicted by lattice QCD
simulations is a scalar-isoscalar state (JPC = 0++) with a mass of about 1.7 GeV [65, 66,
67, 71]. The resonance f0(1500) shows a �avour-blind decay pattern and is narrow, thus
representing an optimal candidate to be (predominantly) a scalar glueball. It has been
investigated in a large variety of works, e.g. Refs. [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83] and refs. therein, in which mixing scenarios involving the scalar resonances f0(1370),
f0(1500), and f0(1710) are considered. The second lightest lattice-predicted glueball state
has tensor quantum numbers (JPC = 2++) and a mass of about 2.2 GeV; a good candidate
could be the very narrow resonance fJ(2200) [84, 85], if the total spin of the latter will be
experimentally con�rmed to be J = 2.

The third least massive glueball predicted by lattice QCD has pseudoscalar quantum
numbers (JPC = 0−+) and a mass of about 2.6 GeV. Quite remarkably, most theoretical
works investigating the pseudoscalar glueball did not take into account this prediction of
Yang-Mills lattice studies, but concentrated their search around 1.5 GeV in connection with
the isoscalar-pseudoscalar resonances η(1295), η(1405), and η(1475). A candidate for a pre-
dominantly light pseudoscalar glueball is the middle-lying state η(1405) due to the fact that
it is largely produced in (gluon-rich) J/ψ radiative decays and is missing in γγ reactions
[86, 87, 88, 89, 90, 91]. In this framework the resonances η(1295) and η(1475) represent ra-
dial excitations of the resonances η and η′. Indeed, in relation to η and η′, a lot of work has
been done in determining the gluonic amount of their wave functions. The KLOE Collabora-
tion found that the pseudoscalar glueball fraction in the mixing of the pseudoscalar-isoscalar
states η and η′ can be large (∼ 14%) [92]. However, the theoretical work of Ref. [93] found
that the glueball amount in η and η′ is compatible with zero.
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In this work we study the decay properties of a pseudoscalar glueball state, (see chapter
6), whose mass lies, in agreement with lattice QCD, between 2 and 3 GeV.

1.7. Thesis Content

1.7.1. Second chapter

We construct the QCD Lagrangian and discuss the symmetries of QCD and their breaking.
We then construct also a chirally invariant Lagrangian for mesons, the so-called extended
Linear Sigma Model (eLSM) which satis�es two requirements: (i) global chiral symmetry,
and (ii) dilatation invariance. This model includes scalar and pseudoscalar mesons, as well
as vector and axial-vector mesons.

1.7.2. Third chapter

We present the extended linear sigma model (eLSM) for Nf = 2 which describes the inter-
action of a scalar glueball and a tetraquark with baryonic degrees of freedom which are the
nucleon N and its chiral partner N∗. We present the outline of extension of the eLSM from
the two-�avour case (Nf = 2) to the three-�avour case (Nf = 3) which includes the strange
sector as a new degree of freedom. We discuss the �t parameters and present the results for
the light meson masses.

1.7.3. Fourth chapter

We enlarge the so-called extended linear Sigma model (eLSM) by including the charm quark
to a global U(4)r × U(4)l chiral symmetry. Most of the parameters of the model have been
determined in a previous work by �tting hadron properties involving three quark �avours.
Only three new parameters, all related to the current charm quark mass, appear when intro-
ducing charmed mesons. Surprisingly, within the accuracy expected from our approach, the
masses of open charmed mesons turn out to be in quantitative agreement with experimental
data. On the other hand, with the exception of J/ψ, the masses of charmonia are underpre-
dicted by about 10%. It is remarkable that our approach correctly predicts (within errors)
the mass splitting between spin-0 and spin-1 negative-parity open charm states. This indi-
cates that, although the charm quark mass breaks chiral symmetry quite strongly explicitly,
this symmetry still seems to have some in�uence on the properties of charmed mesons.

1.7.4. Fifth chapter

In our framework we study the decays of the pseudoscalar glueball and charmed mesons.
Therefore, we develop the two- and three-body decay formalisms which are used in this
study. Moreover, we present a simple method for the calculation of the decay constants by
using an axial transformation.

1.7.5. Sixth chapter

In this chapter we present a chirally invariant Lagrangian for Nf = 2 which describes the
interaction of a pseudoscalar glueball, G̃, with baryonic degrees of freedom which are the
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nucleon N and its chiral partner N∗. Then we consider an Nf = 3 chiral Lagrangian which
describes the interaction between the pseudoscalar glueball, JPC = 0−+, and scalar and
pseudoscalar mesons. We calculate the mesonic and baryonic decays of the pseudoscalar
glueball, where we �xed its mass to 2.6 GeV, as predicted by lattice-QCD simulations,
and take a closer look at the scalar-isoscalar decay channel. We present our results as
branching ratios which are relevant for the future PANDA experiment at the FAIR facility.
For completeness, we also repeat the calculation for a glueball mass of 2.37 GeV which
corresponds to the mass of the resonance X(2370) measured in the BESIII experiment.

1.7.6. Seventh chapter

In this chapter we study the OZI-dominant decays of the heavy open charmed states into
light mesons within the chiral model at tree level. We also obtain the value of the charm-
anticharm condensate and the values of the weak decay constants of open charmed D and
DS mesons and the charmonium state ηC . Most of the parameters in the model have been
determined in the case of Nf = 3 by �tting hadron properties for three �avours. Only
three new parameters, all related to the current charm quark mass, are �xed in the fourth
chapter. The results are compatible with the experimental data, although the theoretical
uncertainties are still large. The precise description of the decays of open charmed states is
important for the CBM experiment at FAIR and the upcoming PANDA experiment.

1.7.7. Eighth chapter

In this chapter we expand our work of a U(4)r × U(4)l symmetric linear sigma model with
(axial-)vector mesons by including a dilaton �eld, a scalar glueball, and the interaction of
a pseudoscalar glueball with (pseudo)scalar mesons to study the phenomenology of char-
monium states. We compute the decay channels of the scalar and pseudoscalar charmo-
nium states χc0(1P ) and ηc(1S), respectively. We calculate the decays of χc0 into the two
scalar-isoscalar resonances f0(1370) and f0(1500). We also study the decay of ηC into a
pseudoscalar glueball. We compute the mixing angle between a pseudoscalar glueball, with
a mass of 2.6 GeV, and the hidden charmed meson ηC .
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2. Construction of mesonic Lagrangians

2.1. Introduction

For many years, it has been known that chiral symmetry breaking in QCD is responsible
for the low mass of pions, which leads us to describe the low-energy limit of QCD by the
e�ective chiral Lagrangian as in Ref. [12, 29, 94]. We have to note that e�ective chiral
models are widely used to study such phenomena because perturbative QCD calculations
cannot reproduce low-energy hadronic properties due to con�nement of colour charges.

E�ective �eld theory (EFT) provides a fundamental framework to describe physical sys-
tems with quantum �eld theory. The chiral model is an e�ective �eld theory containing
hadrons as degrees of freedom, which are colour-neutral because of the con�nement hypoth-
esis. Moreover, in e�ective hadronic theories the chiral symmetry of QCD can be realized
in the so-called nonlinear or in the linear representations. In the nonlinear case, only the
Goldstone bosons are considered [95, 96, 97, 98, 99] [in recent extensions vector mesons are
also added, see e.g. Refs. [100, 101, 102, 103]]. On the contrary, in the linear case also the
chiral partners of the Goldstone bosons, the scalar mesons, are retained [104, 105, 106, 107].
When extending this approach to the vector sector, both vector and axial-vector mesons
are present [106, 107]. Along these lines, recent e�orts have led to the construction of the
so-called extended linear sigma model (eLSM), �rst for Nf = 2 [78, 108, 109] and then
for Nf = 3 [110] (see the details in chapter 3). In the eLSM, besides chiral symmetry, a
basic phenomenon of QCD in the chiral limit has been taken into account: the symmetry
under dilatation transformation and its anomalous breaking (trace anomaly), see e.g. Ref.
[111, 112, 113, 114, 115]. For these reasons, we have used the linear sigma model (LSM)
which has also other important motivations, summarized as follows:
(a) The LSM contains pseudoscalar states and their chiral partners from the outset.
(b) The LSM can be extended to include a large number of di�erent �elds, i.e., quark-
antiquarks with various �avours (two �avours [108, 106, 78, 116], three �avours [117, 101,
110, 116, 83], four �avours [118, 119, 120, 121, 122]), the nucleon and its chiral partner
[109, 123], a pseudoscalar glueball [124, 125, 126, 127], tensor mesons, and tetraquarks
(q q q q mesons) [128].
(c) In the LSM the properties of �elds at non-zero temperatures and densities (T 6= 0 6= µ)
can be studied. As seen in Refs. [129, 130, 131] the critical point of QCD at �nite densities
is studied, as well as the chiral phase transition.

In this chapter we will construct the QCD Lagrangian and discuss its symmetries. We then
go further to construct an e�ective model, the extended Linear Sigma Model (eLSM), based
on the global chiral symmetry and dilatation symmetry and containing the (axial-)vector
mesons as well as the (pseudo-)scalar mesons. The spontaneous and explicit symmetry
breaking allows us to study the phenomenology of mesons and glueballs such as masses,
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decay widths, and scattering lengths, etc.

2.2. Construction of QCD Lagrangian

In this section we construct the QCD Lagrangian which is required to possess two kinds of
symmetries: (i) a global chiral symmetry. (ii) a local (gauge) SU(Nc = 3) symmetry [132].
The QCD Lagrangian contains quarks qf with Nf �avours and gluons. It can be constructed
by gauging the colour degrees of freedom with an SU(3)−colour gauge transformation.
The full QCD Lagrangian density is the sum of quark and gluon terms

LQCD = Lq + Lg . (2.1)

Firstly, let us describe the quark term Lq:

Quarks are spin-1
2 fermions. The Dirac-conjugate spinor is denoted as q̄ ≡ q†γ0. Each

quark of a particular �avour qf is a triplet in colour space, which is given by the following
3-component quark vector

qf =

 qf,r
qf,g
qf,b

 , (2.2)

where f represents the �avour index u, d, s,, etc. whereas r, g, and b refer to the three
di�erent fundamental colour charges of quarks, red, green, and blue, respectively.

In the fundamental representation each quark �avour qf separately transforms under the
local colour SU(3)c group as

qf (x)→ q′f (x) = U(θ(x)) qf (x) , (2.3)

where U(θ(x)) is a special unitary matrix, U(θ(x)) ∈ SU(3), acting on the colour index and
requires eight real parameters. It is usually written in the form

U(θ(x)) = exp

(
− i

8∑
a=1

λa
2

Θa(x)

)
, U †U = UU † = 1, detU = 1 , (2.4)

where Θa(x) denotes the associated local parameters and λa
2 are hermitian 3×3 matrices;

the generators of the SU(3) gauge group, while λa are the Gell-Mann matrices which can
be found in the Appendix.

In general, the quarks are represented by 4NcNf− dimensional Dirac spinors. The Dirac
Lagrangian for a free fermion ψ takes the following form

LDirac = ψ(iγµ∂µ −mψ)ψ , (2.5)

which leads us to construct a Lagrangian involving the quark �avours, which is invariant
under arbitrary local SU(3) transformations (2.3) in colour space; with the same structure
as the Dirac Lagrangian (2.5)
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Lq =

Nf∑
f=1

qf (iγµDµ −Mf )qf , (2.6)

where γµ are the Dirac matrices and Mf denotes the diagonal Nf ×Nf quark mass matrix.
The SU(3) covariant derivative in Eq. (2.6) is

Dµ = ∂µ − ig Aaµ
λa
2
, (2.7)

where Aaµ are the gauge �elds (gluons), and g is the strong coupling constant.

Now let us turn to describe the gluon term Lg:

Gluons are massless gauge bosons with spin-one and form an octet under the global
colour SU(3) group, because the gluons are described by eight real-valued functions Aaµ.
They mediate the strong interaction between quarks and do not make a distinction between
di�erent quark �avours. The gauge �elds (gluons), Aaµ, can be written as

Aµ(x) =

8∑
a=1

Aaµ(x)
λa

2
, (2.8)

where Aµ is the matrix-valued vector potential of the non-Abelian gauge group SU(3). It
is a 3× 3 matrix. The gluon �elds transform under local SU(3) transformations as follows:

Aµ(x)→ A′µ(x) = U(θ(x))

(
Aµ(x)− i

g
∂µ

)
U †(θ(x)) . (2.9)

The gluons carry colour charge, and their self-interactions are responsible for many of the
unique features of QCD. The self-interactions of the gauge �elds are described by

Gaµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x) , (2.10)

representing the gauge-invariant gluon �eld strength tensor. Here, fabc denote the antisym-
metric structure constants of the SU(3) group.

[ta, tb] = i fabctc, a, b, c = 1, ..., 8 . (2.11)

The �eld strength tensor (2.10) transform as follows under local SU(Nc) transformation

Gaµν(x)
λa
2
→
(
Gaµν(x)

λa
2

)′
= U(θ(x))Gaµν

λa
2
U †(θ(x)) . (2.12)

We can then construct an additional gauge-invariant term involving only gluons [133],
which is identical to the Yang-Mills Lagrangian LYM

Lg = −1

4
Gaµν(x)Gµνa (x) . (2.13)

Therefore, we construct the SU(3)c-invariant Lagrangian of Quantum Chromodynamics
(QCD) from the sum of Eq.(2.6) and Eq.(2.13)
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LQCD =

Nf∑
f=1

qf (iγµDµ −Mf )qf −
1

4
GaµνG

µν
a . (2.14)

QCD has unique features, such as asymptotic freedom, quark con�nement, and chiral
symmetry breaking, which are mentioned in detail in the introduction. Beside these features
there are other symmetry features of the Lagrangian (2.14), which will be discussed in the
following section.

2.3. Symmetry features of QCD

In the previous section, the QCD Lagrangian has been constructed, which is the basis for
all hadronic models. Therefore, all models must implement the features of the QCD La-
grangian, such as symmetries and their spontaneous and explicit breaking. For this reason
let us study these features before constructing the so-called extended Linear Sigma Model
(eLSM) with vector and axial-vector mesons [116].

The features of the QCD Lagrangian are as follows:

2.3.1. Z(Nc) Symmetry

The Abelian group Z(Nc) is the center of the SU(Nc) gauge group. The special unitary
Nf ×Nf matrix, containing the center elements Zn, has the following general form

U(θ(x)) = Zn exp

(
− iλa

2
Θa(x)

)
, a = 1, ..., N2

f − 1 , (2.15)

where

Zn ≡ exp

(
− i2πn

Nc
t0
)
, n = 0, 1, 2, ..., Nc − 1 , (2.16)

where t0 = λ0/2. Quarks and gluon �elds transform under the Z(Nc) group as

qf → q′f = Zn qf , (2.17)

Aµ → A′µ = ZnAµ Z
†
n = Aµ . (2.18)

Consequently, these transformations leave the QCD Lagrangian LQCD (2.14) invariant. At
large temperature, this symmetry is spontaneously broken in the gauge sector of QCD (with-
out quarks). The spontaneous breaking of this symmetry indicates decon�nement of gluons.
At nonzero temperature, the Z(Nc) symmetry is explicitly broken in the presence of quarks,
since the necessary antisymmetric boundary conditions are not ful�lled for the fermion �eld.
This symmetry is important for much modern research in hadronic physics at nonzero tem-
perature and density. The order parameter of the spontaneous symmetry breaking of the
center group Z(Nc) at high T is the Polyakov loop.
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2.3.2. Local SU(3)c colour symmetry

The colour group SU(3) corresponds to a local symmetry. As seen in Eq.(2.9), the QCD
Lagrangian LQCD is invariant under local SU(3)c symmetry transformations. In hadronic
models, this local symmetry is satis�ed automatically. Hadrons are colour singlets. The
SU(Nc = 3) group involves also the transformation under the center elements Zn, while the
gauge �elds (i.e., gluons) transform under the Z(Nc) group as seen in Eq. (2.18).

2.3.3. Scale invariance and trace anomaly

Scale invariance (the so-called dilatation symmetry) is one of the most important features
of QCD because the classical scale invariance is a profound phenomenon for the QCD La-
grangian. The classical QCD Lagrangian (2.14) is invariant under space-time dilatations in
the limit of vanishing quark masses (Mf → 0). That is clear, since no dimensionful param-
eters appear in the QCD Lagrangian density, which has a dimensionless coupling constant
g (discussed in chapter 1).
Note that the dilatation symmetry is broken by quantum �uctuations. Let us consider the
gauge sector (no quarks), which is described by the Yang-Mills (YM) Lagrangian (2.13)

LYM = −1

4
Gaµν(x)Gµνa (x) . (2.19)

The scalar (or dilatation) transformation is de�ned as

xµ −→ x′µ = λ−1 xµ . (2.20)

The gauge �elds transform as

Aaµ(x) −→ Aaµ
′(x′) = λAaµ(x) , (2.21)

The action SYM =
∫
d4xLYM is dimensionless and invariant under the scale transforma-

tions,

S′YM =

∫
d4X ′L′YM = −1

4

∫
d4X ′Ga′µνG

µν′
a

= −1

4

∫
λ−4d4Xλ2Gaµνλ

2Gµνa

= −1

4

∫
d4XGaµνG

µν
a

=

∫
d4XLYM = SYM . (2.22)

Then, the scale invariance (dilatation symmetry) is ful�lled in the limit Mf = 0. Dilatation
symmetry is continuous and leads to the conserved Noether current

Jµscale = xν T
µν , (2.23)
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where the energy-momentum tensor for the gauge �eld Tµν reads

Tµν =
∂LYM
∂(∂µAξ)

∂νAξ − gµνLYM . (2.24)

On the classical level, the current is conserved because the action is invariant under a con-
tinuous scale transformation (as discussed above)

∂µJ
µ
scale = 0 . (2.25)

Then, the divergence

∂µJ
µ
scale = ∂µ(xνT

µν(x)) = ∂µ(gνρ x
ρ Tµν(x))

= gνρ g
ρ
µ T

µν(x) + gνρ x
ρ∂µT

µν(x)

= gνµT
µν(x) = Tµµ (x) , (2.26)

where the energy-momentum tensor is conserved for a time-translation invariant and homo-
geneous system

∂µT
µν(x) = 0 . (2.27)

A conserved scaling current leads to a vanishing trace of the energy-momentum tensor,

Tµµ (x) = 0 . (2.28)

Note that if all particles are massive, the scaling current would be not conserved, having a
nonvanishing trace of the energy-momentum tensor.

At the quantum level, the scale current Jµscale is anomalous and the classical scale invariance
is broken. This breaking is generate by a gluon condensate, i.e., a nonvanishing vacuum
expectation value of (Gaµν G

µν
a ). From the renormalization techniques [19, 24, 25, 26] and

perturbative QCD, one knows

∂µJ
µ
scale = Tµµ =

β(g)

4 g
Gaµν G

µν
a 6= 0 , (2.29)

where β(g) is the β−function of QCD (1.8).
For massive quark �avours (Mf 6= 0), the quark �elds transform unbder dilatation as

qf −→ q′f = λ3/2 qf . (2.30)

The result of explicit breaking of the scale invariance by nonvanishing quark masses gives

Tµµ (x) =

Nf∑
f=1

qf Mf qf . (2.31)

Therefore, the divergence of the quantum current becomes

∂µJ
µ
scale = Tµµ =

β(g)

4 g
Gaµν G

µν
a +

Nf∑
f=1

qf Mf qf . (2.32)
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2.3.4. CP- symmetry

The charge-conjugation and parity symmetry (CP-symmetry) is one of the fundamental
properties of QCD, which describes the symmetry between matter and antimatter.
CP-symmetry is the combination of a C-symmetry (charge-conjugation symmetry) and P-

symmetry (parity symmetry). The strong interaction as described by the QCD Lagrangian
(2.14) is invariant under the combination of CP transformations, as is the electromagnetic
interaction, while CP-symmetry is violated by the weak interaction. Now, let us prove the
CP-symmetry of the QCD Lagrangian (2.14):

i) C-symmetry : is the transformation of a particle into an antiparticle, without a change
in the physical law. The charge conjugation transformation C maps matter into antimatter.
This symmetry is between positive and negative charge.

The charge conjugation of quarks is

q
C−→ −i γ2 γ0 qt = −i γ2 γ0 (γ0)t q∗ , (2.33)

where the superscript t is the transposition. Using the Dirac notation, δ = −iγ2γ0, the
previous equation becomes

q
C−→ δ qt = δ (γ0)t q∗ , (2.34)

and then,

q†
C→ [δ(γ0)tq∗]† = qt(γ0)∗δ† . (2.35)

Note that the properties of the Dirac notation are:

δ−1 = δ† (unitary transformation) ,

δ−1γµδ = δ†γµδ = (−γµ)t, and δ†γµ = (−γµ)t δ−1 .

Moreover, useful properties for Dirac matrices are

γ0(γ0)† = 1, (γ0)∗(γ0)t = [γ0(γ0)†]t = 1t = 1.

All of these properties are used to prove the C-symmetry of LQCD (2.14) (see below).
Furthermore, the gluon �elds in the term (Dµ = ∂µ − igAµ) transforms odd under C and
the commutation of the quark �elds which are fermions leads to an additional minus sign.

The QCD Lagrangian is invariant under charge-conjugation transformations.

The quark part of the QCD Lagrangian (2.14) transforms under charge conjugation as
proven in Ref. [116]:

Lq = q̄f iγ
µDµqf − q̄fMfqf

C−→ iqtf (γ0)∗δ†γ0γµ(∂µ + igAµ)δ(γ0)tq∗f − qtf (γ0)∗δ†γ0Mfδ(γ
0)tq∗f

= iq̄fγ
µDµqf − q̄fMfqf . (2.36)
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ii) P-symmetry : is the symmetry under re�ection of spatial coordinates. The parity
transformation creates the re�ection of spatial coordinates (mirror image) of a physical
system.
The parity transformation for quark �elds (fermions) reads

q(t, ~x)
P−→ γ0q(t,−~x) , (2.37)

and thus

q†(t, ~x)
P−→ q†(t,−~x)γ0 . (2.38)

The anticommutation formula of the Dirac matrices

{γµ, γν} = 2 gµν , gµν = diag(1,−1,−1,−1) , (2.39)

is used below.

The QCD Lagrangian is invariant under parity transformations.

Lq = q̄f (t, ~x)iγiDiqf (t, ~x)− q̄f (t, ~x)Mfqf (t, ~x)

P−→ q̄f (t,−~x)iγiDiqf (t,−~x)− q̄f (t,−~x)Mfqf (t,−~x) , (2.40)

where i = 1, 2, 3 and it is invariant when µ = 0 [116]. The gauge part of the QCD La-
grangian (2.14) is also conserved under parity transformations.

From Eq.(2.36) and Eq.(2.40), we conclude that the QCD Lagrangian (2.14) has a CP-
symmetry (it is invariant under the combined set of transformations CP and also separately
under C and P ).

2.3.5. Chiral symmetry and U(1)A anomaly

The QCD Lagrangian (2.14) for Nf �avours of massless quarks possesses a large global
symmetry, namely a global chiral U(Nf )R × U(Nf )L symmetry [134, 135]. The notion of
chirality allows us to decompose a quark spinor into two-component spinors corresponding
to left- and right-handed components as

qf = (PR + PL) qf = qf,R + qf, L , (2.41)

and for the Dirac-conjugate spinors :

q̄f = q̄f (PR + PL) = q̄f, L + q̄f,R , (2.42)

where PR,L are the left- and right-handed projection operators which are de�ned as

PR =
1 + γ5

2
, PL =

1− γ5

2
, (2.43)
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including a Dirac matrix

γ5 = iγ0γ
1γ2γ3 =

(
1 0
0 −1

)
.

The QCD Lagrangian (2.14) can be written in terms of �right-handed quarks�, qR = PR q,
and the � left-handed quarks�, qR = PR q, by using decomposed quark �elds (2.41) and (2.42)
as

LQCD =

Nf∑
f=1

i(qf,Lγ
µDµqf,L + qf,Rγ

µDµqf,R)

−
Nf∑
f=1

(qf,RMfqf,L + qf,LMfqf,R)− 1

4

8∑
a=1

GaµνG
µν
a , (2.44)

which is invariant under the following global chiral U(Nf )R × U(Nf )L transformations of
right- and left-handed quark spinors in the chiral limit (without the terms containing Mf )

qf, L −→ q′f, L = ULqf, L = exp

−i
N2
f−1∑
a=0

Θa
Lt
a

 qf, L , (2.45)

qf,R −→ q′f,R = URqf,R = exp

−i
N2
f−1∑
a=0

Θa
Rt
a

 qf,R . (2.46)

This is the so-called chiral symmetry which is exact only when Mf → 0, because the terms
which contain masses (Mf ) break the chiral symmetry explicitly. Note that chiral symmetry

is not exact in nature. However, on the hadronic mass scale ∼ 1 GeV, the current masses of
up, down, and strange quarks are very small, which leads one to approximate their masses
as nearly massless (mu = md = ms ' 0). Then, chiral symmetry approximately holds.
Moreover, the current mass of the charm quark is already of the order of the typical hadronic
mass scale, and the masses of bottom and top quark exceed the hadronic mass scale. In the
chiral limit mu = md = ms ∼ 0, the QCD Lagrangian (2.44) reads

L0
QCD =

Nf∑
f=1

i(qf,Lγ
µDµqf,L + qf,Rγ

µDµqf,R)− 1

4

8∑
a=1

GaµνG
µν
a , (2.47)

where the superscript 0 denotes the chiral limit. As mentioned above this Lagrangian is
invariant under the chiral symmetry group U(Nf )R ×U(Nf )L. Note that if the Lagrangian
contains non-vanishing quark mass terms, some of the 2N2

f chiral currents are not conserved,
which reveals the pattern of explicit chiral symmetry breaking, see below.
In addition, the transformation of the left- and right-handed quarks under the symmetry
group U(Nf )A×U(Nf )V whereby the subscript A stands for �axial vector � and V for �vector �
is de�ned as

qf,L → q′f,L = UV U
†
Aqf,L = exp(2iθata) exp(−2iθ̃ata)qf,L , (2.48)
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qf,R → q′f,R = UV UAqf,R = exp(2iθata) exp(2iθ̃ata)qf,R , (2.49)

where UV ∈ U(Nf )V and UA ∈ U(Nf )A. This transformation is equivalent to the transfor-
mation under U(Nf )L × U(Nf )R, if one sets

θaL = 2(θa − θ̃a), θaR = 2(θa + θ̃a) . (2.50)

Therefore,
U(Nf )L × U(Nf )R ∼= U(Nf )A × U(Nf )V . (2.51)

Then, in the chiral limit, the QCD Lagrangian (2.14) is invariant also under the symmetry
group U(Nf )A × U(Nf )V . Note that, for all V ∈ U(n) with n ∈ N there exists U ∈ SU(n),
so that

V = det(V )
1
nU , (2.52)

and for all n ∈ N =⇒ det(V )
1
n ∈ U(1), yields

U(n) = U(1)× SU(n) . (2.53)

Therefore, the unitary group can be represented as a product of a special unitary group and
a complex phase as

U(Nf )A × U(Nf )V = [U(1)A × SU(Nf )A]× [U(1)V × SU(Nf )V ]

= SU(Nf )A × SU(Nf )V × U(1)A × U(1)V . (2.54)

Similarly,
U(Nf )R × U(Nf )L = SU(Nf )R × SU(Nf )L × U(1)R × U(1)L . (2.55)

Using Eq.(2.51), we obtain

SU(Nf )R × SU(Nf )L ×U(1)R ×U(1)L ∼= SU(Nf )R × SU(Nf )L ×U(1)V ×U(1)A , (2.56)

which gives

U(Nf )R × U(Nf )L ≡ SU(Nf )R × SU(Nf )L × U(1)V × U(1)A . (2.57)

In the quantized theory [94], QCD is not invariant under U(1)A anymore, as a result of the
explicit breaking of axial U(1)A symmetry, which is known as the U(1)A anomaly of QCD
[15, 16, 17]. Therefore the chiral symmetry is reduced to SU(Nf )R × SU(Nf )L × U(1)V .
However, in classical �eld theory, LQCD is invariant under U(1)A. Therefore, one has to take
this symmetry breaking into account when constructing the e�ective chiral model. More-
over, this symmetry is broken at the classical level for massive quark.

According to the Noether theorem [136], the conserved Noether current is:

∂L(ϕ(x), ∂µϕ(x))

∂(∂µϕ(x))
δϕ(x) + δxµL(ϕ(x), ∂µϕ(x)) . (2.58)

where the Lagrangian L(ϕ(x), ∂µϕ(x)) is invariant under the transformation of the form
x→ x′(x) = x+δx and ϕ(x)→ ϕ′(x) = ϕ(x)+δϕ(x). This symmetry leads to the conserved
left-handed and right-handed currents denoted as Lµa and Rµa , respectively,
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Rµa = qRγ
µtaqR ⇒ Rµ = V µ −Aµ , (2.59)

Lµa = qLγ
µtaqL ⇒ Lµ = V µ +Aµ . (2.60)

• The vector U(1)V symmetry of the full Lagrangian (2.14) coincides with quark number
conservation. According to the Noether theorem [137], the conserved U(1)V current reads

V µ
0 =

∂L
∂(∂µqf )

δqf = qfγ
µt0δqf , (2.61)

and its divergence is
∂µV

µ
0 = iqf [t0, Mf ]qf = 0 . (2.62)

The integration over the zeroth component of V µ
0 yields the conserved baryon-number charge

Q =

∫
d3x qf γ

0 qf . (2.63)

• The SU(Nf )V symmetry: the Lagrangian is symmetric under SU(Nf )V transformations
only when the quark masses of all �avours are degenerate m1 = m2 = ... = mNf . According
to the Noether theorem [138], the conserved vector current is

V µa = qfγ
µtaqf . (2.64)

Its divergence reads
∂µV

µa = iqf [ta, Mf ]qf , (2.65)

which vanishes only for degenerate quark masses.

• The SU(Nf )A symmetry: This symmetry is broken spontaneously. The axial-vector
current and its divergence (according to the Noether theorem), respectively, read

Aµa = qfγ
µγ5taqf , (2.66)

and
∂µA

µa = iqf {ta, Mf} qf , (2.67)

which is conserved only if all quarks are massless.

From the linear combination of the left- and right-handed currents, described in Eq. (2.59)
and Eq. (2.60), one can obtain the vector and axial vector currents as follows:

V µ =
Lµ +Rµ

2
, (2.68)

and

Aµ =
Lµ −Rµ

2
. (2.69)

Using the de�nition of the transformation under parity

q(t,x)
P−→ γ0q(t,x) ,
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the vector and axial-vector transform under parity transformations into + or − themselves:

V µ,0(t,x)
P−→ PV µ,0(t,x)P−1 = +V 0

µ (t,−x) , (2.70)

V µ,a(t,x)
P−→ PV µ,a(t,x)P−1 = −V a

µ (t,−x) , (2.71)

and
Aµ,0(t,x)

P−→ PAµ,0(t,x)P−1 = −A0
µ(t,−x) , (2.72)

Aµ,a(t,x)
P−→ PV µ,a(t,x)P−1 = +Aaµ(t,−x) , (2.73)

where a denotes the spatial index.

2.4. Chiral symmetry breaking

2.4.1. Explicit symmetry breaking

The chiral symmetry of QCD is completely broken in the case of non-vanishing quark masses
Mf 6= 0, which enters the QCD Lagrangian via the mass term (combining the left- and right-
handed components) as

Lmass =

Nf∑
f=1

qfMfqf =

Nf∑
f=1

(qf,LMfqf,R + qf,LMfqf,R) . (2.74)

The mass term breaks the SU(Nf )A symmetry. The axial U(Nf )A symmetry of the QCD is
explicitly broken even when all quark masses are equal and non-vanishing m1 = m2 = ... =
Mf 6= 0. This breaking leaves only the SU(Nf )V symmetry. Consequently, the SU(Nf )V
of QCD is preserved, but only if the quark masses of all �avours are degenerate. In nature
mu ≈ md which leads to the so-called isospin symmetry. The SU(3)V �avour symmetry is
also approximately preserved although it is explicitly broken due to a sizable mass of the s
quark.

2.4.2. Spontaneous symmetry breaking

The central phenomenon in the low-energy hadronic realm is the spontaneous chiral symme-
try breaking. This mechanism is the reason for the almost massless pions, and their weak
interaction [139]. It has profound consequences for the hadron masses, especially the mass
splitting of chiral partners (see below), and causes mass di�erences between multiplets and
in�uences many strong decay modes.
As discussed previously, the QCD Lagrangian for massless quarks is invariant under chiral
transformations. Consequently, one should expect that the approximate chiral symmetry
should be evident in the mass spectrum of the lightest mesons. For Nf = 2, the current
masses of the up and down quark �avours are small compared to the typical hadronic scale
which is about 1 GeV, mu ' 0.002 GeV and md ' 0.005 GeV. Therefore, these two lightest
quark �avours can be considered to be approximately massless. As a consequence, the QCD
Lagrangian is invariant under a global SU(2)R × SU(2)L transformation. One may write
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the lightest mesonic states composed of up and down quarks, q ≡ (u, d), (σ, π, ρ, a1) [116]
as

scalar singlet state : σ ≡ q̄q ,
pseudoscalar triplet state : ~π ≡ iq̄~τγ5q ,

vector triplet state : ~ρµ ≡ q̄~τγµq ,
axial− vector triplet state : ~aµ1 ≡ q̄~τγ

µγ5q .
(2.75)

The quark �avour transforms under an axial-vector transformation as

U(2)A : q = q′ → e−iγ5
~τ
2
·~Θq ' (1− iγ5

~τ

2
· ~Θ) q , (2.76)

where τi are the Pauli matrices. Consequently, the states (2.75) transform under an axial-
vector transformation as

U(2)A : σ → σ′ = σ − ~Θ · ~π ,
U(2)A : ~π → ~π′ = ~π + ~Θ · ~π ,
U(2)A : ~ρµ → ~ρ ′µ = ~ρµ + ~Θ× ~aµ1 ,
U(2)A : ~aµ1 → ~a′µ1 = ~aµ1 + ~Θ× ~ρµ , (2.77)

which gives that the scalar state σ is rotated to the pseudoscalar state π and vice versa,
i.e., they are chiral partners. Likewise, the vector state ~ρ is rotated to its partner, the
axial-vector ~a1, and vice versa. The axial symmetry SU(Nf )A is still exact within the QCD
Lagrangian. The explicit breaking of axial symmetry does not occur in the limit of small
u, d quark masses. The chiral partners have the same masses. In this case, the vector state
ρ is assigned to the ρ(770) meson with a mass of mρ = 775.49 MeV and the axial-vector
state a1 to the a1(1260) meson with a mass of ma1 ' 1230 MeV [23]. The mass di�erence of
the chiral partners ρ and a1 is of the order of the ρ mass itself and cannot be explained by
the explicit symmetry breaking even if the nonvanishing masses of the up and down quark
�avours are taken into account. However, the spontaneous symmetry breaking explains this
phenomena successfully, i.e., the axial symmetry of the QCD Lagrangian is spontaneously
broken in the ground state at zero temperature as

SU(Nf )R × SU(Nf )L → SU(Nf )V . (2.78)

In the case of nonvanishing quark masses, the chiral symmetry is explicitly broken by the
mass term. However, even in the limit of Mf → 0 the chiral symmetry is also broken, but
this time spontaneously, when the ground state has a lower symmetry than the Lagrangian.
The QCD vacuum has a nonvanishing expectation value for the quark condensate [140]

< q̄q >vac=< q̄R qL + q̄L qR >6= 0 . (2.79)

According to Goldstone's theorem [141], through the spontaneous breaking of a global sym-
metry there emerge massless Goldstone bosons, whose mumber is identical to the number of
broken symmetries (N2

f − 1) and which are indeed experimentally observed. In the Nf = 2
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case, three Goldstone bosons were observed and are identi�ed with the pions [38, 39, 40].
Their mass of about 140 MeV is small on a hadronic mass scale, but evidently they are
not completely massless. The small nonvanishing mass arises from explicit chiral symmetry
breaking, and thus they are named pseudo-Goldstone bosons. In the Nf = 3 case, addition-
ally �ve pseudo-Goldstone bosons have been experimentally observed, which are named the
four kaons and the η meson. In the Nf = 4 case, there are 15 pseudoscalar Goldstone bosons
comprising pions, kaons, η's, and charmed mesons, which consist of the fourth quark �avour;
the so-called charm quark. Charm thus strongly breaks the chiral symmetry explicitly.

2.5. Construction of an e�ective model

The main aim of the present work is to study low-energy hadronic properties from an ef-
fective chiral model which is based on QCD. Therefore, the e�ective model must possess all
features of the QCD Lagrangian, which are: The exact SU(3)c local gauge symmetry, the
dilatation symmetry, the chiral U(1)A anomaly, CP symmetry, the global U(Nf )R×U(Nf )L
chiral symmetry for massless quark �avours, as well as the explicit and spontaneous breaking
of chiral symmetry. The relationship between these symmetries gives us an opportunity to
formulate an e�ective model: the so-called extended Linear Sigma Model (eLSM).
In this section, we construct the eLSM [116, 142] for the (pseudo)scalar and (axial-)vector
mesons as well as a dilaton �eld, which is valid for an arbitrary number of �avours Nf and
colours Nc. Hadrons are the degrees of freedom in the eLSM; they are colour neutral as a
result of the con�nement hypothesis. Therefore, in the construction of the eLSM, we do not
have to take into account the SU(3)c colour symmetry, it is automatically ful�lled. Note
that we construct all terms of the eLSM with global chiral invariance up to naive scaling
dimension four [29, 107, 143, 144]. As shown in Refs. [94, 108, 110, 116], the description of
meson decay widths is quite reasonable.

The �rst and fundamental step for the construction of the eLSM is to de�ne the mesonic
matrix Φ which contains bound quark-antiquark states. The matrix Φ is a non-perturbative
object, and one uses it to build the multiplet of the scalar and pseudoscalar mesons as

Φij ≡
√

2q̄j,Rqi,L . (2.80)

According to the left- and right-handed transformations of quarks (2.45) and (2.46), the
mesonic matrix transforms under chiral transformations as

Φij −→
√

2q̄k,RU
†
kj,RUil,Lql,L ≡ Uil,LΦlkU

†
kj,R, (2.81)

thus,
Φ −→ ULΦU †R , (2.82)

Using Eq.(2.43), Eq.(2.80) can be written as

Φij ≡
√

2q̄j,Rqi,L =
√

2q̄jPLPLqi =
√

2q̄jPLqi

=
1√
2

(
q̄jqi − q̄jγ5qi

)
=

1√
2

(
q̄jqi + iq̄jiγ

5qi
)

≡ Sij + iPij , (2.83)
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where Sij and Pij are the scalar and the pseudoscalar quark-antiquark currents, respectively,
which are de�ned by

Sij ≡
1√
2
q̄jqi , (2.84)

Pij ≡
1√
2
q̄jiγ

5qi . (2.85)

Eventually, one can write the combination of scalar and pseudoscalar currents via the Φ
matrix as

Φ = S + iP , (2.86)

The matrices S and P are Hermitian and can be expressed as follows:

S = Sata, P = Pata , (2.87)

with
Sa =

√
2q̄taq, Pa =

√
2q̄iγ5taq . (2.88)

where ta denotes the generators of a unitary group U(Nf ) with a = 0, ..., N2
f − 1.

We summarize the transformation properties of the scalar �elds S, the pseudoscalar �elds
P , and Φ in Table 2.1.

S = 1√
2

∑8
a=0 S

a λa P = 1√
2

∑8
a=0 P

a λa Φ = S + iP

Elements Sij ≡ q̄j qi Pij ≡ q̄jiγ5qi Φij ≡
√

2q̄j,Rqi,L
Currents Sa ≡ q̄ λa√

2
q P a ≡ q̄iγ5 λa√

2
q Φa ≡

√
2q̄R

λa√
2
qL

P S(t,−x) −P (t,−x) Φ†(t,−x)

C St P t Φt

U(Nf )V UV SU
†
V UV PU

†
V UV ΦU †V

U(Nf )A
1
2(UAΦUA + U †AΦ†U †A) 1

2i(UAΦUA − U †AΦ†U †A) UAΦUA
U(Nf )R × U(Nf )L

1
2(ULΦU †R + URΦ†U †L) 1

2i(ULΦU †R − URΦ†U †L) ULΦU †R
Table 2.1: The transformation properties of S, P, and Φ [142].

The eLSM contains also the vector and axial-vector mesons, which are the basic degrees
of freedom for the construction of the right- and the left-handed vector �elds. Now let us
de�ne the Nf ×Nf right-handed Rµ and left-handed Lµ matrices, respectively, as

Rµij ≡
√

2q̄j,Rγ
µqi,R =

1√
2

(
q̄jγ

µqi − q̄jγ5γµqi
)
≡ V µ

ij −A
µ
ij , (2.89)

Lµij ≡
√

2q̄j,Lγ
µqi,L =

1√
2

(
q̄jγ

µqi + q̄jγ
5γµqi

)
≡ V µ

ij +Aµij , (2.90)

where the vector and axial-vector currents are de�ned, respectively, as

V µ
ij ≡

1√
2
q̄jγ

µqi = V µ,ata; V µ,a ≡
√

2q̄γµtaq , (2.91)

Aµij ≡
1√
2
q̄jγ

5γµqi = Aµ,ata ;Aµ,a =
√

2q̄γ5γµtaq , (2.92)
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which are also Hermitian matrices. The right-handed matrix and the left-handed matrix
transform under the chiral transformation as

Rµ −→ Rµ′ = URR
µU †R , (2.93)

and
Lµ −→ Lµ′ = ULL

µU †L . (2.94)

From Rµ and Lµ, we construct the right- and left-handed �eld-strength tensors, Rµν and
Lµν , respectively, as

Rµν = ∂µRν − ∂νRµ , (2.95)

Lµν = ∂µLν − ∂νLµ , (2.96)

which transform under chiral transformations as

Rµν −→ Rµν′ = URR
µνU †R , (2.97)

Lµν −→ Lµν′ = ULL
µνU †L . (2.98)

We present the transformation properties of the right- and left-handed (Rµ, Lµ) �elds in
Table 2.2 and the vector and the axial-vector �elds (V µ, Aµ) in Table 2.3.

Rµ = 1√
2

∑8
a=0R

a
µ λa Lµ = 1√

2

∑8
a=0 L

a
µ λa

Elements Rµij ≡
√

2q̄j,Rγ
µ qi,R Lµij ≡

√
2q̄j,Lγ

µqi,L
Currents Raµ ≡ q̄R γµ λa√2

qR Laµ ≡ q̄Liγµ λa√2
qL

P gµνLµ(t,−x) gµνRµ(t,−x)

C −Ltµ Rtµ
U(Nf )V UVRµU

†
V UV LµU

†
V

U(Nf )A UARµU
†
A U †ALµUA

U(Nf )R × U(Nf )L URRµU
†
R ULRµU

†
L

Table 2.2: The transformation properties of Rµ and Lµ [142].

Vµ = 1√
2

∑8
a=0 V

a
µ λa Aµ = 1√

2

∑8
a=0A

a
µ λa

Elements V µ
ij ≡

√
2q̄jγ

µ qi Aµij ≡
√

2q̄jγ
5γµqi

Currents V a ≡ q̄ γµ λa√
2
q Aa ≡ q̄γ5 λa√

2
q

P gµνVµ(t,−x) −gµνAµ(t,−x)

C −V t
µ Atµ

Table 2.3: The transformation properties of Vµ and Aµ [142].

The basic construction of the mesonic Lagrangian of the e�ective model combines several
terms:

Lmes = LΦ,AV + LAV + LU(1)A + LG + LESB . (2.99)

Now let us construct every term in detail.
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(i) The Lagrangian density LΦ,AV :

The chiral symmetry of QCD is exact in the chiral limit Mf → 0. The Lagrangian
density LΦ,AV ful�ls the chiral symmetry exactly. It contains the (pseudo)scalar and the
(axial-)vector degrees of freedom and describes the interaction between them. The covariant
derivative for the coupling of the (pseudo)scalar degrees of freedom to the (axial-)vector ones
has the following structure

DµΦ = ∂µΦ + ig1(ΦRµ − LµΦ) , (2.100)

then
(DµΦ)† = ∂µΦ† − ig1(RµΦ† − Φ†Lµ) , (2.101)

which are invariant under global U(Nf )L × U(Nf )R transformations.

(DµΦ) −→ (DµΦ)′ = ULD
µΦU †R . (2.102)

and
(DµΦ)† −→ (DµΦ)†′ = UR (DµΦ)† U †L . (2.103)

Therefore, the chirally invariant kinetic term can be constructed as

Tr
[
(DµΦ)†(DµΦ)

]
. (2.104)

The following self-interaction terms can be introduced up to naive scaling dimension four,

− λ1(Tr[Φ†Φ])2 , (2.105)

− λ2Tr(Φ
†Φ)2 , (2.106)

which are also invariant under global chiral transformations.
Proof:

−λ1(Tr[Φ†′Φ′])2 = −λ1(Tr[URΦ†U †LULΦU †R])2

= −λ1(Tr[URΦ†ΦU †R])2

= −λ1(Tr[U †RURΦ†Φ])2

= −λ1(Tr[Φ†Φ])2. (2.107)

Similarly,
− λ2Tr(Φ

†′Φ′)2 = −λ2Tr(Φ
†Φ)2 , (2.108)

In the Lagrangian density LΦ,AV , the fourth chirally invariant term, describes a four-body
coupling of the scalar, pseudoscalar, vector, and axial-vector degrees of freedom, is con-
structed in the form

h1

2
Tr[Φ†Φ]Tr[LµL

µ +RµR
µ] . (2.109)

While the �fth term is constructed in the following form:

h2Tr[Φ
†LµL

µΦ + ΦRµR
µΦ†] . (2.110)
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Furthermore, one can construct an additional term as follows:

2h3Tr[ΦRµΦ†Lµ] , (2.111)

which are invariant under global chiral transformations [145].

Finally, we obtain the full Lagrangian density LΦ,AV as

LΦ,AV =Tr
[
(DµΦ)†(DµΦ)

]
− λ1(Tr[Φ†Φ])2 − λ2Tr(Φ

†Φ)2 (2.112)

+
h1

2
Tr[Φ†Φ]Tr[LµL

µ +RµR
µ] + h2Tr[Φ

†LµL
µΦ + ΦRµR

µΦ†]

+ 2h3Tr[ΦRµΦ†Lµ] , (2.113)

which contains terms up to order four in naive scaling dimension. In the Lagrangian density
LΦ,AV (2.113), the parameters depend on the number of colours Nc [142, 146, 147, 148] as
follows

g1 ∝ N−1/2
c ,

λ1, h1 ∝ N−2
c ,

λ2, h2, h3 ∝ N−1
c . (2.114)

The quantities λ2, h2, h3 scale as N−1
c because it describes a four-point interaction of the

quark-antiquark states. The quantities λ1, h1 are suppressed by an additional Nc and scale
as N−2

c because these terms are the product of two separate traces. At the microscopic
quark gluon level, one needs furthers large-Nc suppressed transversal gluons to generate
these terms. The quantity g1 scales as N−1/2

c .

(ii) The term LAV :

The Lagrangian density LAV includes the (axial-)vector degrees of freedom. The con-
struction of this Lagrangian follows the same principles as in the (pseudo)scalar sector with
additional terms of naive scaling dimension four. The mass term can be constructed as

m2
1

2
Tr
[
(Lµ)2 + (Rµ)2

]
. (2.115)

Using Eq.(2.95) and Eq.(2.96), one can construct the keinetic term of the vector degrees of
freedom as

− 1

4
Tr
[
(Lµν)2 + (Rµν)2

]
. (2.116)

From the transformation (2.93, 2.94) and (2.97, 2.98), one can obtain that the mass term
(2.115) and the keintic term (2.116) are invariant under chiral transformations. Moreover,
the Lagrangian density LAV involves also additional terms with 3- and 4-point vertices of
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the (axial-)vector degrees of freedom. The full Lagrangian LAV has the following form:

LAV =
m2

1

2
Tr
[
(Lµ)2 + (Rµ)2

]
− 1

4
Tr
[
(Lµν)2 + (Rµν)2

]
− ig2

2
{Tr(Lµν [Lµ, Lν ]) + Tr(Rµν [Rµ, Rν ])}+ g3[Tr(LµLνL

µLν) + Tr(RµRνR
µRν)]

+ g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)] + g5 Tr (LµL
µ) Tr (RνR

ν)

+ g6[Tr(LµL
µ) Tr(LνL

ν) + Tr(RµR
µ) Tr(RνR

ν)] , (2.117)

with the large-Nc dependence of the parameters as

g2 ∝ N−1/2
c ,

g3, g4 ∝ N−1
c ,

g5, g6 ∝ N−2
c . (2.118)

(iii) The term LU(1)A :

The Lagrangian density LU(1)A contains only the chiral anomaly term [16, 18],

LU(1)A = c
(

det Φ† − det Φ
)2

. (2.119)

which contributes to the mass of the isoscalar-pseudoscalar bosons. Their mass also does
not disappear in the chiral limit. These �elds are therefore no Goldstone bosons. This term
is invariant under SU(Nf )R × SU(Nf )L, but not under U(1)A, as shown in the following :
Proof:

c
(

det Φ†′ − det Φ′
)2

= c
[
det(URΦ†U †L)− det(ULΦU †R)

]2

= c
[
det(eiθ

a
RtaΦ†e−iθ

a
Lta)− det(eiθ

a
LtaΦe−iθ

a
Rta)

]2

= c
[
det(e−iθ

a
AtaΦ†)− det(eiθ

a
AtaΦ)

]2

= c

[
det(e−i

∑N2
f−1

a=1 θaAta) det(e−iθ
0
At0) det Φ†

−det(ei
∑N2

f−1

a=1 θaAta) det(eiθ
0
At0) det Φ

]2

= c
[
det(e−iθ

0
At0) det Φ† − det(eiθ

0
At0) det Φ

]2

= c
[
e−iθ

0
ANf det Φ† − eiθ0ANf det Φ

]2

6= c
[
det Φ† − det Φ

]2
. (2.120)

The parameter c scales in the large-Nc limit [142] as

c ∝ N−Nf/2c , (2.121)
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i.e., it has a dependence on the number of quark �avours (Nf ) in this model. For Nf > 2,
the parameter c vanishes which leads to neglect the anomaly for large Nc. The correspond-
ing meson is then a Goldstone boson for Nc � 1. Note that for Nf 6= 4, the parameter
c is dimensionfull. This is an exception of the discussed rule. Which is possible since the
anomaly also comes from the gauge sector.

(iv) The term LG:

The last �eld entering the model is the dilaton �eld /scalar glueball G through the La-
grangian density LG which consists of the dilaton Lagrangian Ldil and the coupling of the
dilaton �eld with (pseudo)scalar and (axial-)vector degrees of freedom.

Firstly, let us discuss the dilaton Lagrangian

As shown in Eq.(2.22), the Yang-Mills (YM) sector of QCD (which is described by LYM )
is classically invariant under dilatations. However, this symmetry is broken at the quantum
level. This scale invariance and its anomalous breaking is one of the essential features of our
e�ective model. From the trace of the energy-momentum tensor TµνYM of the YM Lagrangian
(2.19), one can write the divergence of the dilatation (Noether) current as follows:

∂µJ
µ
YM,dil = (TYM )µµ =

β(g)

2g

(
1

2
GaµνG

µν
a

)
6= 0 , (2.122)

which does not vanish. The β-function is de�ned in Eq.(1.6), and g = g(µ) is the renor-
malised coupling constant at the scale µ. At the one-loop level,

β(g) =
−11Nc

48π2
g3 . (2.123)

This implies

g2(µ) =

[
2

11Nc

48π2
ln

(
µ

ΛYM

)]−1

, (2.124)

where ΛYM is the YM scale and has a value of about (' 200 MeV). The non-vanishing
expectation value of the trace anomaly represents the gluon condensate

〈
Tµµ
〉

=
−11Nc

48

〈αs
π
Gaµν G

µν
a

〉
=
−11Nc

48
C4 , (2.125)

where 〈αs
π
Gaµν G

µν
a

〉
≡ C4 . (2.126)

The numerical values of C4 have been computed from lattice-QCD simulations (higher range
of the interval) [149] and QCD sum rules (lower range of the interval) [150]:

C4 ≈ [(300− 600)MeV ]4 , (2.127)

whereas, in the lattice-QCD simulation of Ref. [151], its value has been found to be C ≈ 610
MeV.
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The e�ective theory of the YM sector of QCD can be built by introducing a scalar dila-
ton/scalar �eld G at the composite level. The Lagrangian density of the dilaton reads
[111, 112, 113, 114, 115, 151]

Ldil(G) =
1

2
(∂µG)2 − Vdil(G) , (2.128)

where the dilaton potential is

Vdil(G) =
1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
. (2.129)

The value G0 = Λ corresponds to the minimum of the dilaton potential Vdil(G). The
particle mass mG emerges upon shifting G → G0 + G. This particle is interpreted as the
scalar glueball and its mass has been evaluated as mG ≈ (1500 − 1700) MeV by lattice
QCD [65, 66, 71]. The scale invariance is broken explicitly by the logarithmic term of the
potential. The divergence of the dilatation current reads〈

Tµdil, µ

〉
=

〈
−1

4

m2
G

Λ2
G4

〉
= −1

4

m2
G

Λ2
G4

0 = −1

4
m2
GΛ2 , (2.130)

where G is set to be equal to the minimum of the potential G0. By comparing Eq.(2.125)
and Eq.(2.130), one obtains

Λ =

√
11

2mG
C2 . (2.131)

When mG = 1500 MeV and C ≈ 610 MeV [152], the parameter Λ has the value Λ = 400
MeV. Note that a narrow glueball is possible only if Λ & 1000 MeV.

Now let us turn to couple the dilaton �eld/scalar glueball with the (pseudo)scalar and
(axial-)vector degrees of freedom. This coupling must be scale invariance.
We assume that, a part from the U(1)A anomaly and terms related to quark masses, only
the dilaton term breaks the dilatation invariance and generates the scale anomaly in the
e�ective model. Note that the mass term for the (axial-)vector mesons (2.115) break the
symmetry explicitly. It does not has dilatation symmetry, since each scale with λ2. In order
to achieve scale invariance, one should write down the mass term of the scalar degrees of
freedom as follows

− aG2Tr
[
Φ†Φ

]
, (2.132)

with the scalar mass parameter
m2

0 = aG2
0, (2.133)

where a is a dimensionless constant larger than 0, which represents the spontaneous sym-
metry breaking. The mass term for the vector mesons should be written in the same way.
Now let us modify both mass terms by including the scalar glueball as

−m2
0Tr

[
Φ†Φ

]
−→ −m2

0

(
G

G0

)2

Tr
[
Φ†Φ

]
, (2.134)
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and similarly,

m2
1

2
Tr
[
(Lµ)2 + (Rµ)2

]
−→ m2

1

2

(
G

G0

)2

Tr
[
(Lµ)2 + (Rµ)2

]
, (2.135)

which implements the scale-invariance [as proven in Ref. [145]]. From Eqs.(2.128, 2.129,
2.134, 2.135), we get the full structure of the Lagrangian density LG in the e�ective model
as

L(G) =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
−m2

0

(
G

G0

)2

Tr
[
Φ†Φ

]
+
m2

1

2

(
G

G0

)2

Tr
[
(Lµ)2 + (Rµ)2

]
. (2.136)

The Large-Nc dependence of the parameter is given as

mG ∝ N0
c ,

ΛG ∝ Nc . (2.137)

(v) The term LESB:

The chiral symmetry is explicitly broken by the quark masses. Two additional terms ap-
pear in the Lagrangian density LESB, to describe this breaking separately for the (pseudo)scalar
and (axial-)vector �elds. We discuss these separately: In the (pseudo)scalar sector, pions are
not really massless because of the explicit breaking of the SU(Nf )V ×SU(Nf )A -symmetry.
Therefore the following term is introduced to break this symmetry explicitly

Tr[H(Φ† + Φ)] , (2.138)

where
H = diag[h1, h2, ..., hNf ] , (2.139)

is the diagonal matrix with hN0 proportional the mass of the quark �avour number. For
example: Nf = 1⇒ h1 ∝ mu and Nf = 2⇒ h2 ∝ md,...etc.
For the (axial-)vector sector, one can construct the following mass term which breaks the
chiral symmetry explicitly

Tr[∆(L2
µ +R2

µ)] , (2.140)

where
∆ = diag[δu, δd, ..., δNf ] , (2.141)

which is also proportional to the quark mass terms as

δu, δd, ..., δNf ∝ m
2
u, m

2
d, ..., m

2
Nf

Thus, the Lagrangian density LESB is obtained as

LESB = Tr[H(Φ† + Φ)] + Tr[∆(L2
µ +R2

µ)] . (2.142)
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The large-Nc dependence of the parameters in the previous Lagrangian density is given as

hi ∝ N1/2
c ,

δi ∝ N0
c . (2.143)

Spontaneous symmetry breaking

The spontaneous breaking of the chiral symmetry is an important requirement for all
phenomena linked to hadrons in low-energy QCD. One can discuss this point from the
following potential of the mesonic Lagrangian Lmes along the axis Φ = σ t0

V (G, σ) = Vdil(G) +m2
0σ

2 + (λ1 + λ2)σ4 . (2.144)

The symmetry is broken spontaneously by non-trivial minima, which are in the present case
at

G0 6= 0, σ0 6= 0, for, m2
0 < 0 ,

and
σ0 = 0, G0 6= 0, for m2

0 > 0 ,

which means that the vacuum is not invariant under SU(Nf )A transformations. The di-
latation symmetry is broken explicitly which is an important source for the phenomenology
in the vacuum. Note that the conservation of parity and SU(Nf )V symmetry are required,
whereas the U(1)A anomaly is neglected here. The only state that can condense in the
vacuum is the scalar-isosinglet state, because this state is the only one which has the same
quantum numbers as the vacuum.

Now let us summarize the full Lagrangian of the e�ective model, the so-called

extended Linear Sigma Model (eLSM), for a generic number Nf of �avours in

the following section.
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2.6. The extended Linear Sigma Model

In this subsection we present the chirally symmetric linear sigma model Lagrangian which is
essentially constructed with two requirements stemming from the underlying theory QCD:
(i) global chiral symmetry U(N)R × U(N)L. (ii) dilatation invariance (with the exceptions
of the scale anomaly, the U(1)A anomaly and terms proportional to quark masses). It is also
invariant under the discrete symmetries charge conjugation C, parity P , and time reversal
T . It has the following form for a generic number Nf of �avours [108, 110, 116]:

L = Ldil + Tr[(DµΦ)†(DµΦ)]−m2
0

(
G

G0

)2

Tr(Φ†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

− 1

4
Tr[(Lµν)2 + (Rµν)2] + Tr

{[(
G

G0

)2 m2
1

2
+ ∆

] [
(Lµ)2 + (Rµ)2

]}
+ Tr[H(Φ + Φ†)]

+ c(detΦ− detΦ†)2 +
h1

2
Tr(Φ†Φ)Tr

(
L2
µ +R2

µ

)
+ h2Tr[|LµΦ|2 + |ΦRµ|2]

+ 2h3Tr(LµΦRµΦ†) + i
g2

2
{Tr(Lµν [Lµ, Lν ]) + Tr(Rµν [Rµ, Rν ])}

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5 Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ) Tr(LνL

ν) + Tr(RµR
µ) Tr(RνR

ν)] . (2.145)

Here, G is the dilaton �eld/scalar glueball and the dilaton Lagrangian Ldil [112, 114, 151]
reads

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
, (2.146)

which mimics the trace anomaly of QCD [111, 116]. The dimensionful parameter ΛG ∼
NcΛQCD sets the energy scale of low-energy QCD; in the chiral limit it is the only dimension-
ful parameter besides the coe�cient of the term representing the axial anomaly. All other
interaction terms of the Lagrangian are described by dimensionless coupling constants. The
minimum of the dilaton potential in Eq.(2.129) is given by G0 = Λ. A massive particle will
arise after shifting the dilaton �eld G→ G0 +G, where the dilaton �eld G is interpreted as
the scalar glueball which consists of two gluons (G ≡ |gg〉). The value of G0 is related to the
gluon condensate of QCD. According to lattice QCD the glueball mass mG, in the quenched
approximation (no quarks), is about 1.5-1.7 GeV [65]. As mentioned above, the identi�ca-
tion of G is still uncertain, the two most likely candidates are f0(1500) and f0(1710) and/or
admixtures of them. Note that, we include the scalar glueball because it is conceptually
important to guarantee dilatation invariance of the model (thus constraining the number
of possible terms that the Lagrangian can have). We do not make an assignment for the
scalar glueball in the framework of the strange and nonstrange (Nf = 2 and Nf = 3) cases
(see chapter 3) and it does not a�ect the results of the study of the Nf = 4 case for the
masses of open and hidden charmed mesons as well as the decay of open charmed mesons.
Therefore, the scalar glueball is a frozen �eld in these investigations, whereas it becomes a
dynamical �eld in the study of the decay of hidden charmed states as we will see in chapter
8. The logarithmic term of the dilaton potential breaks the dilatation symmetry explicitly,
xµ → Λ−1 xµ, which leads to the divergence of the corresponding current:

∂µJ
µ
dil = T µ

dil, µ = −1

4
m2
GΛ2 . (2.147)
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The model has also mesonic �elds described as quark-antiquark �elds. We have to note
that when working in the so-called large-Nc limit [147, 148]: (i) the glueball self-interaction
term vanishes, (ii) the glueball becomes a free �eld, (iii) the masses are Nc−independent,
(iv) the widths scale as N−1

c .

Let us now turn to the question: How can we introduce a pseudoscalar glueball

into the chiral model (2.145)?

The structure of the chiral anomaly term, ic(detΦ − detΦ†)2, allows one to incorporate a
pseudoscalar glueball �eld G̃ into the model in a simple way, of the form

icG̃ΦG̃
(
detΦ− detΦ†

)
.

This form describes the interaction of the pseudoscalar �eld G̃ with the scalar and pseu-
doscalar �elds by a dimensionless coupling constant cG̃Φ. Through this term one can study
the phenomenology of a pseudoscalar glueball. The details of the introduction of the pseu-
doscalar glueball in the extended Linear Sigma Model are presented in chapter 6. Further-
more, it is relevant in the decay of hidden charmed mesons, see chapter 8 below.
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3. The extended Linear Sigma Model for

two- and three-�avours

3.1. Introduction

In the last decades, e�ective low-energy approaches to the strong interaction have been
developed by imposing chiral symmetry, one of the basic symmetries of the QCD Lagrangian
in the limit of vanishing quark masses (the so-called chiral limit) [11, 12]. Chiral symmetry
is explicitly broken by the nonzero current quark masses, but is also spontaneously broken
by a nonzero quark condensate in the QCD vacuum [13]. As a consequence, pseudoscalar
(quasi-)Goldstone bosons emerge, as discussed in details in the previous chapter. We develop
the eLSM to study the vacuum properties of mesons and glueballs. In the case of Nf = 2
quark �avours, there are only mesons made of u and d quarks. However, the nucleons can
also be taken into account in the context of a chiral model. The interaction of nucleons
with mesons, tetraquarks, and glueballs in the chiral model for Nf = 2 will be described
in the present chapter. Furthermore, in the case Nf = 3, mesons are made of up, down
and strange quarks. It is for the �rst time possible to describe (pseudo)scalar as well as
(axial-)vector meson nonets in a chiral framework: masses and decay widths turn out to be
in very good agreement with the results listed by the Particle Data Group (PDG) [51]. In
this chapter, we thus present the extension of the eLSM from non-strange hadrons (Nf = 2)
[78, 106, 108, 109, 116] to strange hadrons (Nf = 3) [83, 101, 110, 116, 117]. Consequently,
we investigate the vacuum properties of the three-�avour case [110, 116].

3.2. A U(2)R × U(2)L interaction with nucleons

In this section we present the chirally symmetric linear sigma model in the case of Nf = 2
[109]. It contains (pseudo)scalar and (axial-)vector �elds, as well as nucleons and their chiral
partners. Then we describe how the pseudoscalar glueball interacts with the nucleon and its
chiral partner. This allows us to compute the decay widths of a pseudoscalar glueball into
two nucleons (see Sec. 6.5).

3.2.1. A chirally invariant mass term

The mesonic Lagrangian for the Linear Sigma Model with global chiral U(2)R × U(2)L
symmetry has the same form of the Lagrangian (2.145).

In this case, the matrix Φ reads

Φ =
3∑

a=0

φata = (σ + iηN ) t0 + (~a0 + i~π) · ~t , (3.1)
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and includes scalar and pseudoscalar �elds. The eta meson ηN contains only non-strange
degrees of freedom. Under the global U(2)R × U(2)L chiral symmetry, Φ transforms as
Φ→ ULΦ†UR. The vector and axial-vector �elds are described as

V µ =
3∑

a=0

V µ
a ta = ωµ t0 + ~ρµ · ~t , (3.2)

and

Aµ =

3∑
a=0

Aµata = fµ1 t
0 + ~aµ1 · ~t , (3.3)

respectively, where the generators of U(2) are
−→
t = −→τ /2, with the vector of Pauli matri-

ces −→τ and t0 = 12/2. Under global U(2)R × U(2)L transformations, these �elds behave as
Rµ → URR

µU †R , L
µ → ULL

µU †L.
The mesonic Lagrangian (2.145) is invariant under U(2)R × U(2)L transformations for
c = h0 = 0 whereas for h0 6= 0, this symmetry is explicitly broken to the vectorial sub-
group U(2)V [109], where V = L + R. Moreover, the U(1)A symmetry, where A = L − R,
is explicitly broken for c 6= 0. The spontaneous chiral symmetry breaking is implemented
by shifting the scalar-isoscalar �eld σ by its vacuum expectation value ϕ as σ → σ + ϕ,
where the chiral condensate ϕ = 〈0 |σ| 0〉 = Zfπ. The parameter fπ = 92.4 MeV is the pion
decay constant and Z is the wave function renormalization constant of the pseudoscalar
�elds [108, 153].
The meson �elds of the model (2.145) [108, 109] are assigned to the following resonances
listed by the PDG [51]:
(i) The pseudoscalar �elds −→π and ηN correspond to the pion and the SU(2) counterpart of
the η meson, ηN ≡ |uu + dd〉/

√
2, with a mass of about 700 MeV which can be obtained

by �unmixin� the physical η and η′ mesons. In the case of Nf = 3 [110] this mixing is
calculated and the results are presented in the next section, where the model contains also
contributions from strange quarks.
(ii) The vector �elds ωµ and −→ρ µ represent the ω(782) and ρ(770) vector mesons, respectively.
(iii) The axial-vector �elds fµ1 and −→a µ1 represent the f1(1285) and a1(1260), respectively.
The physical ω and f1 states contain ss contributions which are negligibly small.
(iv) The scalar �elds σ and−→a 0 are assigned to the physical f0(1370) and a0(1450) resonances.

We now turn to the baryonic sector in the eLSM for two �avours. The baryon sector
involves two baryon doublets ψ1 and ψ2, where ψ1 has positive parity and ψ2 has nega-
tive parity. In the so-called mirror assignment [154, 155, 156] they transform under chiral
transformation as:

Ψ1R → URΨ1R, Ψ1L → ULΨ1L, Ψ2R → ULΨ2R, Ψ2L → URΨ2L . (3.4)

While ψ1 transforms as usual, ψ2 transforms in a �mirror way� [156, 157]. These �eld
transformations allow us to write the following baryonic Lagrangian for Nf = 2 with a
chirally invariant mass term Lmas for the fermions [109]:

Lbar = Ψ1LiγµD
µ
1LΨ1L + Ψ1RiγµD

µ
1RΨ1R + Ψ2LiγµD

µ
2RΨ2L + Ψ2RiγµD

µ
2LΨ2R

− ĝ1

(
Ψ1LΦΨ1R + Ψ1RΦ†Ψ1L

)
− ĝ2

(
Ψ2LΦ†Ψ2R + Ψ2RΦΨ2L

)
+ Lmass , (3.5)
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where
Dµ

1R = ∂µ − ic1R
µ, Dµ

1L = ∂µ − ic1L
µ ,

and
Dµ

2R = ∂µ − ic2R
µ, Dµ

2L = ∂µ − ic2L
µ ,

are the covariant derivatives for the nucleonic �elds, with the coupling constants c1 and
c2. Note that the three coupling constants c1, c2, and g1 are equal in the case of local
chiral symmetry. The interaction of the baryonic �elds with the scalar and (pseudo)scalar
mesons is parameterized by ĝ1 and ĝ2. The chirally invariant mass term Lmass for fermions
parameterized by µ0, reads

Lmass = −µ0(Ψ1LΨ2R −Ψ1RΨ2L −Ψ2LΨ1R + Ψ2RΨ1L)

= −µ0(Ψ2γ5Ψ1 −Ψ1γ5Ψ2) , (3.6)

where µ0 has the dimension of mass. This mass term plays an important role in generating
the nucleon mass. The physical �elds are the nucleon N and its chiral partner N∗. They
engender by diagonalizing the baryonic part of the Lagrangian. As a result [109] we have(

N
N∗

)
= M̂

(
Ψ1

Ψ2

)
=

1√
2 cosh δ

(
eδ/2 γ5 e

−δ/2

γ5 e
−δ/2 −eδ/2

)(
Ψ1

Ψ2

)
, (3.7)

where δ measures the intensity of the mixing and is related to the parameter µ0 and the
physical masses of N and N∗ by the expression:

cosh δ =
mN +mN∗

2m0
. (3.8)

The masses of nucleon and its partner [109] read

mN,N∗ =

√
m2

0 +

[
1

4
(ĝ1 + ĝ2)ϕ

]2

± 1

4
(ĝ1 − ĝ2)ϕ . (3.9)

The coupling constants ĝ1,2 are determined by the masses of nucleon (mN ), its partner
(mN∗), and the parameter m0,

ĝ1,2 =
1

ϕ

[
±(mN −mN∗) +

√
(mN +mN∗)2 − 4m2

0

]
. (3.10)

The masses of the nucleon and its partner turn into be degenerate, mN = mN∗ = m0, in
the chirally restored phase where ϕ→ 0 as observed from Eq. (3.9). The breaking of chiral
symmetry, ϕ 6= 0, generates the mass splitting.
Note that the mass term (3.6) is not dilatation invariant but we can modify this term to
restore the dilatation symmetry by coupling it to the chirally invariant dilaton �eld G and
a tetraquark �eld χ ≡ [u, d][u, d] in an U(2)R × U(2)L invariant way. Then we obtain the
dilatation invariant mass term as follows:

Lmass = −(αχ+ βG)(Ψ2γ5Ψ1 −Ψ1γ5Ψ2) , (3.11)
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where α and β are dimensionless coupling constants. The term Lmass would not be possible
if the �eld ψ2 would transform as ψ1. If both scalar �elds are shifted around their vacuum
expectation values χ→ χ0 + χ and G→ G0 +G, there emerges a nonvanishing chiral mass

m0 = αχ0 + βG0 , (3.12)

where χ0 and G0 are the tetraquark and gluon condensates, respectively. m0 is the mass
contribution to the nucleon which does not stem from the chiral (qq) condensate σ = φ. In
Ref. [109] the quantitative value for the parameter m0 has been obtained by a �t to vacuum
properties as

m0 = (460± 136) MeV. (3.13)

Under the simplifying assumption β = 0, as seen in the Ref. [158], the parameter m0 is
saturated by the tetraquark condensate, where χ is identi�ed with the resonance f0(600)

while for N∗ there are two candidates with quantum numbers (JP = 1
2

−
), which are the

lightest state N(1535) and the heavier state N(1650) [123]. But in the present section,
we are interested in studying the case α = 0, when the parameter m0 is saturated by the
glueball condensate. The fermions involved are represented by the spinors Ψ1 and Ψ2. Then
we obtain the following interaction term for the glueball with a nucleon

LG−baryons = β G(Ψ2 γ5 Ψ1 −Ψ1 γ5 Ψ2), (3.14)

where β is a dimensionless coupling constant. The physical �elds N and N∗ are related to
the spinors Ψ1 and Ψ2 according to Eq. (3.7) by the following relations:

Ψ1 =
1√

2 cosh δ

(
Neδ/2 + γ5N

∗e−δ/2
)
, (3.15)

Ψ2 =
1√

2 cosh δ

(
γ5Ne

−δ/2 −N∗eδ/2
)
, (3.16)

Ψ1 =
1√

2 cosh δ

(
Neδ/2 −N∗γ5e

−δ/2
)
, (3.17)

and

Ψ2 =
1√

2 cosh δ

(
−Nγ5e

−δ/2 −N∗eδ/2
)
. (3.18)

3.3. The U(3)R × U(3)L linear sigma model

In this section we present the extended linear sigma model (eLSM) including the strange
sector, Nf = 3, and its implications which have been investigated in Refs. [110, 116].

In the case Nf = 3, all quark-antiquark mesons in the Lagrangian (2.145) are assigned
to the light (i.e., with mass . 2 GeV) resonances in the strange-nonstrange sector. The
pseudoscalar �elds P and the scalar �elds S read

P =
1√
2


ηN+π0
√

2
π+ K+

π− ηN−π0
√

2
K0

K− K̄0 ηS

 , (3.19)
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and

S =
1√
2


σN+a00√

2
a+

0 K∗+0

a−0
σN−a00√

2
K∗00

K∗−0 K̄∗00 σS

 , (3.20)

which together form the matrix Φ describing the multiplet of the scalar and pseudoscalar
mesons, as follows

Φ =

8∑
a=0

(Sa + iPa)Ta =
1√
2


(σN+a00)+i(ηN+π0)√

2
a+

0 + iπ+ K?+
0 + iK+

a−0 + iπ−
(σN−a00)+i(ηN−π0)√

2
K?0

0 + iK0

K?−
0 + iK− K̄?0

0 + iK̄0 σS + iηS

 ,

(3.21)

(3.22)

and the adjoint matrix Φ† is

Φ† =
8∑

a=0

(Sa − iPa)Ta =
1√
2


(σN+a00)−i(ηN+π0)√

2
a+

0 − iπ+ K?+
0 − iK+

a−0 − iπ−
(σN−a00)−i(ηN−π0)√

2
K?0

0 − iK0

K?−
0 − iK− K̄?0

0 − iK̄0 σS − iηS

 ,

(3.23)
where Ta (a = 0, . . . , 8) denote the generators of U(3). The assignment of the quark-
antiquark �elds is as follows:
(i) In the pseudoscalar sector the �elds ~π and K represent the pions and the kaons, respec-
tively [51]. The bare �elds ηN ≡

∣∣ūu+ d̄d
〉
/
√

2 and ηS ≡ |s̄s〉 are the non-strange and
strange contributions of the physical states η and η′ [51]:

η = ηN cosϕ+ ηS sinϕ, (3.24)

η′ = −ηN sinϕ+ ηS cosϕ, (3.25)

where ϕ ' −44.6◦ is the mixing angle [110] between η and η′. There are other values for the
mixing angle, e.g. ϕ = −36◦ [159] or ϕ = −41.4◦, as determined by the KLOE Collaboration
[92], but using these a�ects the presented results only marginally.
(ii) In the scalar sector we assign the �eld ~a0 to the physical isotriplet state a0(1450) and the
scalar kaon �elds K?

0 to the resonance K?
0 (1430). Finally, the non-strange and strange bare

�elds σN ≡
∣∣ūu+ d̄d

〉
/
√

2 and σS ≡ |s̄s〉 mix with a scalar glueball G ≡ gg〉 and generate
the three physical isoscalar resonances f0(1370), f0(1500) and f0(1710). As seen in Ref.
[83] that f0(1370), f0(1500) and f0(1710) are predominantly a σN , σS , and a glueball state,
respectively. The mixing of the bare �elds σN and σS is small [110, 116] (in agreement with
large-Nc arguments) and is neglected in this work.
Now let us turn to the vector �elds V (with quantum numbers JPC = 1−−) and the axial-
vector �elds A (with quantum numbers JPC = 1++) which are summarized in the following
3× 3 matrices, respectively:
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V µ =
1√
2


ωµN+ρµ0√

2
ρµ+ K?µ+

ρµ−
ωµN−ρ

µ0

√
2

K?µ0

K?µ− K̄?µ0 ωµS

 , (3.26)

and

Aµ =
1√
2


fµ1N+aµ01√

2
aµ+

1 Kµ+
1

aµ−1
fµ1N−a

µ0
1√

2
Kµ0

1

Kµ−
1 K̄µ0

1 fµ1S

 , (3.27)

which are combined into right-handed and left-handed vector �elds as follows:

Rµ =

8∑
a=0

(V µ
a −Aµa)Ta =

1√
2


ωN+ρ0√

2
− f1N+a01√

2
ρ+ − a+

1 K?+ −K+
1

ρ− − a−1
ωN−ρ0√

2
− f1N−a01√

2
K?0 −K0

1

K?− −K−1 K̄?0 − K̄0
1 ωS − f1S


µ

,

(3.28)

Lµ =
8∑

a=0

(V µ
a +Aµa)Ta =

1√
2


ωN+ρ0√

2
+

f1N+a01√
2

ρ+ + a+
1 K?+ +K+

1

ρ− + a−1
ωN−ρ0√

2
+

f1N−a01√
2

K?0 +K0
1

K?− +K−1 K̄?0 + K̄0
1 ωS + f1S


µ

,

(3.29)

Note that the so-called strange-nonstrange basis in the (0− 8) vector is used [110], which is
de�ned as

ϕN =
1√
3

(√
2 ϕ0 + ϕ8

)
,

ϕS =
1√
3

(
ϕ0 −

√
2 ϕ8

)
, ϕ ∈ (Sa, Pa, V

µ
a , A

µ
a) , (3.30)

The quark-antiquark (axial-)vector �elds in the matrices (3.26, 3.27) are assigned as follows:
(i) In the vector sector the �elds ωN and ρ represent the ω(782) and ρ(770) vector mesons,
respectively, while the ωS and K∗ �elds correspond to the physical φ(1020) and K∗(892)
resonances, respectively.
(ii) In the axial-vector sector we assign the �elds fµ1N and −→a µ1 to the physical resonances
f1(1285) and a1(1260) mesons, respectively. The strange �elds f1S and K1 correspond to
the f1(1420) and K1270 [or K1(1400)] mesons, respectively. [The details of this assignment
are given in Ref. [110]].
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The matrices H and ∆ are de�ned as

H = H0T0 +H8T8 =


h0N

2 0 0

0 h0N
2 0

0 0 h0S√
2

 , (3.31)

∆ = ∆0T0 + ∆8T8 =


δ̃N
2 0 0

0 δ̃N
2 0

0 0 δ̃S√
2

 ≡
 δN 0 0

0 δN 0
0 0 δS

 , (3.32)

where hN ∼ mu, hS ∼ ms, δN ∼ m2
u, δS ∼ m2

s. The matrices H (3.31) and ∆ (3.32) enter
the terms Tr[H(Φ + Φ†)] and Tr[∆(L2

µ + R2
µ)] which explicitly break the global symmetry,

U(3)R × U(3)L [= U(3)V × U(3)A], in the (pseudo)scalar and (axial-)vector sectors due
to di�erent nonzero values for the quark masses. They break U(3)A, if H0,∆0 6= 0, and
U(3)V → SU(2)V × U(1)V , if H8,∆8 6= 0, for details see Ref. [117].
The spontaneous symmetry breaking of the chiral symmetry is implemented by condensing
the scalar-isosinglet states which are σN ≡ (ūu+ d̄d)/

√
2 and σS ≡ s̄s. We shift these �elds

by their vacuum expectation values φN and φS ,

σN → σN + φN and σS → σS + φS , (3.33)

where the condensates φN and φS are functions of the pion decay constant fπ and the kaon
decay constant fK , respectively, (the detailed calculation is presented in the Appendix)

φN = Zπfπ , (3.34)

φS =
2ZKfK − φN√

2
, (3.35)

Thus leads to the mixing between (axial-)vector and (pseudo)scalar states in the La-
grangian (2.145),

− g1φN (fµ1N∂µηN +−→a µ1 · ∂µ
−→π )−

√
2 g1φSf

µ
1S∂µηS

− ig1

2
(φN − φS)(K ∗µ0 ∂µK

∗0
0 +K∗µ− ∂µK

∗+
0 )

+ i
g1

2
(φN −

√
2φs)(K

∗µ0 ∂µK
∗0
0 +K∗µ+ ∂µK

∗−
0 )

− g1

2
(φN +

√
2φS)(Kµ0

1 ∂µK
0

+Kµ+
1 ∂µK

− +K
µ0
1 ∂µK

0 +Kµ−
1 ∂µK

+) . (3.36)

In order to eliminate this mixing, one performs shifts of the (axial-)vector �elds as follows

fµ1N/S −→ fµ1N/S + ZηN/Swf1N/S∂
µηN/S , (3.37)

aµ1
±,0 −→ aµ1

±,0
+ Zπwa1∂

µπ±,0, (3.38)

Kµ
1
±,0,0̄ −→ Kµ

1
±,0,0̄

+ ZKwK1∂
µK±0,0̄ , (3.39)

K?µ±,0,0̄ −→ K?µ±,0,0̄ + ZK?wK?∂µK?±,0,0̄
0 . (3.40)
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which produce additional kinetic terms for the (pseudo)scalar �elds. The shift (3.37) was
performed in the case Nf = 2 in Ref. [108], and the shifts (3.38 - 3.40) were performed in the
case Nf = 3 Ref. [110]. The wave-function renormalization constants have been introduced
to retain the canonical normalization

π±,0 → Zππ
±,0, (3.41)

K±,0,0̄ → ZKK
±,0,0̄ , (3.42)

ηN/S → ZηN/ηSηN/S , (3.43)

K?µ
0
±,0,0̄ → ZK?

0
K?µ

0
±,0,0̄

. (3.44)

Note that for simplicity the isotriplet states have been grouped together with the notation

π±,0, aµ1
±,0 and the isodoublet states with the notation K±,0,0̄,K?µ

0
±,0,0̄, where 0̄ refers to

K̄0. The explicit expressions for the coe�cients wi are obtained after some straightforward
calculation (for details see Ref. [116]) as

wf1N = wa1 =
g1φN
m2
a1

, (3.45)

wf1S =

√
2g1φS
m2
f1S

, (3.46)

wK? =
ig1(φN −

√
2φS)

2m2
K?

, (3.47)

wK1 =
g1(φN +

√
2φS)

2m2
K1

. (3.48)

The wave-function renormalization constants Zi, introduced in Eq. (3.37-3.40), are deter-
mined such that one obtains the canonical normalization of the π, ηN , ηS ,K and K∗0 . Their
explicit expressions read [110, 116]:

Zπ = ZηN =
ma1√

m2
a1 − g

2
1φ

2
N

, (3.49)

ZK =
2mK1√

4m2
K1
− g2

1(φN +
√

2φS)2
, (3.50)

ZKS =
2mK?√

4m2
K? − g2

1(φN −
√

2φS)2
, (3.51)

ZηS =
mf1S√

m2
f1S
− 2g2

1φ
2
S

, (3.52)

which are always larger than one. After some straightforward calculation the tree-level
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(squared) masses for all nonets in the chiral Lagrangian (2.145) are given[110, 116] by

m2
π = Z2

π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S

]
≡ Z2

πh0N

φN
, (3.53)

m2
K = Z2

K

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N −

λ2√
2
φNφS + (λ1 + λ2)φ2

S

]
, (3.54)

m2
ηN

= Z2
π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S + c1 φ

2
Nφ

2
S

]
≡ Z2

π

(
h0N

φN
+ c1 φ

2
Nφ

2
S

)
, (3.55)

m2
ηS

= Z2
ηS

[
m2

0 + λ1φ
2
N + (λ1 + λ2)φ2

S +
c1

4
φ4
N

]
≡ Z2

ηS

(
h0S

φS
+
c1

4
φ4
N

)
, (3.56)

m2
ηNS

= ZπZπS
c1

2
φ3
NφS , (3.57)

for the (squared) pseudoscalar masses, while

m2
a0 = m2

0 +

(
λ1 +

3

2
λ2

)
φ2
N + λ1φ

2
S , (3.58)

m2
K?

0
= Z2

K?
0

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N +

λ2√
2
φNφS + (λ1 + λ2)φ2

S

]
, (3.59)

m2
σN

= m2
0 + 3

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S , (3.60)

m2
σS

= m2
0 + λ1φ

2
N + 3 (λ1 + λ2)φ2

S , (3.61)

m2
σNS

= 2λ1φNφS , (3.62)

are the (squared) scalar masses. Moreover, the (squared) vector masses are obtained as

m2
ρ = m2

1 +
1

2
(h1 + h2 + h3)φ2

N +
h1

2
φ2
S + 2δN , (3.63)

m2
K? = m2

1 +
1

4

(
g2

1 + 2h1 + h2

)
φ2
N +

1√
2
φNφS(h3 − g2

1) +
1

2
(g2

1 + h1 + h2)φ2
S + δN + δS ,

(3.64)

m2
ωN

= m2
ρ , (3.65)

m2
ωS

= m2
1 +

h1

2
φ2
N +

(
h1

2
+ h2 + h3

)
φ2
S + 2δS , (3.66)

while the (squared) axial-vector meson masses are

m2
a1 = m2

1 +
1

2
(2g2

1 + h1 + h2 − h3)φ2
N +

h1

2
φ2
S + 2δN , (3.67)

m2
K1

= m2
1 +

1

4

(
g2

1 + 2h1 + h2

)
φ2
N −

1√
2
φNφS(h3 − g2

1) +
1

2

(
g2

1 + h1 + h2

)
φ2
S + δN + δS ,

(3.68)

m2
f1N

= m2
a1 , (3.69)

m2
f1S

= m2
1 +

h1

2
φ2
N +

(
2g2

1 +
h1

2
+ h2 − h3

)
φ2
S + 2δS . (3.70)

All previous expressions coincide with Refs. [110, 116].
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3.3.1. Model Parameters

The chirally symmetric model Eq.(2.145) contains 18 parameters which are: m2
0, m

2
1, c1, δN ,

δS , g1, g2, g3, g4, g5, g6, h0N , h0S , h1, h2, h3, λ1, λ2. Note that the coupling of the glueball
with the other mesons has been neglected. The parameters g3, g4, g5, and g6 are not
considered in the �t because they do not in�uence any decay channels in the case of the
Nf = 3 [110] investigation. The explicit symmetry breaking in the vector and axial-vector
channel is described by δN and δS . The ESB arises from non-vanishing quark masses,
which leads us to the correspondence δN ∝ m2

u,d and δS ∝ m2
S . The linear combination

m2
1/2 + δN/S appears in the vector-meson mass term Tr[(m2

1/2 + ∆)(L2
µ + R2

µ)]. We can
rede�ne m2

1/2→ m2
1/2− δN which leads to the appearance of only the combination δS − δN

in the mass formulas. This di�erence is determined by the �t of the (axial-)vector masses.
Without los of generally, we may take δN ≡ 0. Then the unknown parameters are decreased
to 13 in the chiral Lagrangian (or the so-called the extended Linear Sigma Model) [110]:
m2

0, m
2
1, c1, δS , g1, g2, h0N , h0S , h1, h2, h3, λ1, λ2 .

Moreover, the experimental quantities that are used in the �t do not depend on all previous
13 parameters. The following two linear combinations have been used in the �t rather than
the parameters m0, λ1, m1, h1 separately.

C1 = m2
0 + λ1

(
φ2
N + φ2

S

)
,

C2 = m2
1 +

h1

2

(
φ2
N + φ2

S

)
. (3.71)

The condensates φN and φS are used instead of the parameters h0N and h0S which are
determined by the masses of pion and ηS , as presented in Eqs. (3.53), (3.56). Consequently,
there are eleven parameters left:

C1, C2, c1, δS , g1, g2, φN , φS , h2, h3, λ2 .

The eleven parameters are �tted by 21 experimental quantities as seen in Ref. [116]. The
parameter values are obtained with χ2 ' 1 [110] as summarized in the Table 3.1.

Parameter Value
C1 (−0.9183± 0.0006)GeV2

C2 (0.4135± 0.0147)GeV2

c1 (450.5420± 7.0339)GeV−2

δS (0.1511± 0.0038)GeV2

g1 5.8433± 0.0176

g2 3.0250± 0.2329

φN (0.1646± 0.0001)GeV
φS (0.1262± 0.0001)GeV
h2 9.8796± 0.6627

h3 4.8667± 0.0864

λ2 68.2972± 0.0435

Table 3.1.: Parameters and their errors.
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Note that the parameters λ1 and h1 are set to zero because the �t uses all scalar mass
terms except mσN and mσS , due to the well-known ambiguities regarding the assignment
of scalar mesons. The parameter λ1 is expressed via the bare mass parameter m2

0 which is
allowed due to the knowledge of the mentioned linear combination. Moreover the parameter
h1 is suppressed in large-Nc as well as λ1.

3.3.2. Results

The �t results for masses [110] are interesting because they prove that a chiral framework
is applicable for the study of hadron vacuum phenomenology up to 1.7 GeV, (as listed in
Table 3.1)

Observable Fit [MeV] Experiment [MeV]
mπ 141.0± 5.8 137.3± 6.9

mK 485.6± 3.0 495.6± 24.8

mη 509.4± 3.0 547.9± 27.4

mη′ 962.5± 5.6 957.8± 47.9

mρ 783.1± 7.0 775.5± 38.8

mK? 885.1± 6.3 893.8± 44.7

mφ 975.1± 6.4 1019.5± 51.0

ma1 1186± 6 1230± 62

mf1(1420) 1372.5± 5.3 1426.4± 71.3

ma0 1363± 1 1474± 74

mK?
0

1450± 1 1425± 71

Table 3.2.: Best-�t results for masses compared with experiment (from Ref. [110]).

The mass results of the (pseudo)scalar and (axial-)vector sectors are in good agreement
with experimental results as seen in Table 3.2. The resonances a0(1450) and K∗0 (1430) are
well described as quark-antiquark �elds. The scalar-isoscalar mesons are not included in the
�t. The decay pattern and the masses suggest that f0(1370) and f0(1710) are (predomi-
nantly) the non-strange and strange scalar-isoscalar �elds. In the Refs.[110, 116] there are
further results for the decay widths for light mesons in the chiral model (2.145) which are
also in a good agreement with experiment.
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4. Charmed mesons in the extended

Linear Sigma Model

�Research is to see what everybody has seen and to think what nobody else has thought�

Albert Szent-Györgi

4.1. Introduction

In this chapter we investigate the eLSM model in the four-�avour case (Nf = 4), i.e.,
by considering mesons which contain at least one charm quark. This chapter is based on
Refs.[118, 119, 120, 121, 122]. This study is a straightforward extension of Sec 3.3 [110]: the
Lagrangian has the same structure as in the Nf = 3 case, except that all (pseudo)scalar and
(axial-)vector meson �elds are now parametrized in terms of 4×4 (instead of 3×3) matrices.
These now also include the charmed degrees of freedom. Since low-energy (i.e., nonstrange
and strange) hadron phenomenology was described very well [110], we retain the values for
the parameters that already appear in the three-�avour sector. Then, extending the model
to Nf = 4, three additional parameters enter, all of which are related to the current charm
quark mass (two of them in the (pseudo)scalar sector and one in the (axial-)vector sector).
Considering that the explicit breaking of chiral and dilatation symmetries by the current

charm quark mass, mc ' 1.275 GeV, are quite large, one may wonder whether it is at all
justi�ed to apply a model based on chiral symmetry. Related to this, the charmed mesons
entering our model have a mass up to about 3.5 GeV, i.e., they are strictly speaking no
longer part of the low-energy domain of the strong interaction. Naturally, we do not expect
to achieve the same precision as re�ned potential models [47, 48, 49, 160, 161, 162, 163, 164],
lattice-QCD calculations [165, 166, 167], and heavy-quark e�ective theories [50, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179] [see also the review of Ref. [59] and refs.
therein]. Nevertheless, it is still interesting to see how a successful model for low-energy
hadron phenomenology based on chiral symmetry and dilatation invariance fares when ex-
tending it to the high-energy charm sector. Quite surprisingly, a quantitative agreement
with experimental values for the open charmed meson masses is obtained by �tting just the
three additional parameters mentioned above (with deviations of the order of 150 MeV, i.e.,
∼ 5%). On the other hand, with the exception of J/ψ, the charmonium states turn out to be
about 10% too light when compared to experimental data. Nevertheless, the main conclu-
sion is that it is, to �rst approximation, not unreasonable to delegate the strong breaking of
chiral and dilatation symmetries to three mass terms only and still have chirally and dilata-
tion invariant interaction terms. Moreover, our model correctly predicts the mass splitting
between spin-0 and spin-1 negative-parity open charm states, i.e., naturally incorporates the
right amount of breaking of the heavy-quark spin symmetry.



56 4. Charmed mesons in the extended Linear Sigma Model

4.2. The U(4)r × U(4)l linear sigma model

In this section we extend the eLSM [110, 116] to the four-�avour case. To this end, we
introduce 4 × 4 matrices which contain, in addition to the usual nonstrange and strange
mesons, also charmed states. The matrix of pseudoscalar �elds P (with quantum numbers
JPC = 0−+) reads

P =
1√
2


1√
2
(ηN + π0) π+ K+ D0

π− 1√
2
(ηN − π0) K0 D−

K− K
0

ηS D−S
D

0
D+ D+

S ηc

 ∼ 1√
2


ūΓu d̄Γu s̄Γu c̄Γu
ūΓd d̄Γd s̄Γd c̄Γd
ūΓs d̄Γs s̄Γs c̄Γs
ūΓc d̄Γc s̄Γc c̄Γc

 ,

(4.1)
where, for sake of clarity, we also show the quark-antiquark content of the mesons (in the
pseudoscalar channel Γ = iγ5). In the nonstrange-strange sector (the upper left 3×3 matrix)
the matrix P contains the pion triplet ~π, the four kaon states K+, K−, K0, K̄0, and the
isoscalar �elds ηN =

√
1/2(ūu + d̄d) and ηS = s̄s, see Eq. (3.19). The latter two �elds

mix and generate the physical �elds η (3.24) and η′ (3.25) [see details in Ref. [110]]. In
the charm sector (fourth line and fourth column) the matrix P contains the open charmed
states D+, D−, D0, D̄0, which correspond to the well-established D resonance, the open
strange-charmed states D±S , and, �nally, the hidden charmed state ηc, which represents the
well-known pseudoscalar ground state charmonium ηc(1S).
The matrix of scalar �elds S (with quantum numbers JPC = 0++) reads

S =
1√
2


1√
2
(σN + a0

0) a+
0 K∗+0 D∗00

a−0
1√
2
(σN − a0

0) K∗00 D∗−0

K∗−0 K
∗0
0 σS D∗−S0

D
∗0
0 D∗+0 D∗+S0 χc0

 . (4.2)

The quark-antiquark content is the same as in Eq. (4.1), but using Γ = 14. A long debate
about the correct assignment of light scalar states has taken place in the last decades. Present
results [9, 10, 72, 73, 74], which have been independently con�rmed in the framework of the
eLSM [110], show that the scalar quarkonia have masses between 1-2 GeV. In particular, the
isotriplet ~a0 is assigned to the resonance a0(1450) (and not to the lighter state a0(980)). Sim-

ilarly, the kaonic states K∗+0 , K∗−0 , K∗+0 , K
∗0
0 are assigned to the resonance K∗0 (1430) (and

not to the K∗0 (800) state). The situation in the scalar-isoscalar sector is more complicated,
due to the presence of a scalar glueball state G, see Ref. [78] and below. Then, σN , σS , G
mix and generate the three resonances f0(1370), f0(1500), and f0(1710). There is evidence
[83] that f0(1370) is predominantly a

√
1/2(ūu+ d̄d) state, while f0(1500) is predominantly

a s̄s state and f0(1710) predominantly a glueball state. As a consequence, the light scalar
states f0(500) and f0(980) are not quarkonia (but, arguably, tetraquark or molecular states)
[128, 180, 181, 182, 183, 184, 185, 186, 187, 188]. In the open charm sector, we assign the
charmed states D∗0 to the resonances D∗0(2400)0 and D∗0(2400)± (the latter state has not yet
been unambiguously established). In the strange-charm sector we assign the state D∗±S0 to
the only existing candidate D∗S0(2317)±; it should, however, be stressed that the latter state
has also been interpreted as a tetraquark or molecular state because it is too light when
compared to quark-model predictions, see Refs. [47, 48, 52, 53, 58, 59, 189, 190, 191]. In
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the next section, we discuss in more detail the possibility that a heavier, very broad (and
therefore not yet discovered) scalar charmed state exists. In the hidden charm sector the
resonance χc0 corresponds to the ground-state scalar charmonium χc0(1P ).
The matrices P and S are used to construct the matrix Φ as follows,

Φ = S + i P =
1√
2


(σN+a00)+i(ηN+π0)√

2
a+

0 + iπ+ K∗+0 + iK+ D∗00 + iD0

a−0 + iπ−
(σN−a00)+i(ηN−π0)√

2
K∗00 + iK0 D∗−0 + iD−

K∗−0 + iK− K
∗0
0 + iK

0
σS + iηS D∗−S0 + iD−S

D
∗0
0 + iD

0
D∗+0 + iD+ D∗+S0 + iD+

S χC0 + iηC

 ,

(4.3)
and the adjoint matrix Φ† reads

Φ† = S − i P =
1√
2


(σN+a00)−i(ηN+π0)√

2
a+

0 − iπ+ K∗+0 − iK+ D∗00 − iD0

a−0 − iπ−
(σN−a00)−i(ηN−π0)√

2
K∗00 − iK0 D∗−0 − iD−

K∗−0 − iK− K
∗0
0 − iK

0
σS − iηS D∗−S0 − iD

−
S

D
∗0
0 − iD

0
D∗+0 − iD+ D∗+S0 − iD

+
S χC0 − iηC

 .

(4.4)

The multiplet matrix Φ transforms as Φ → ULΦU †R under UL(4) × UR(4) chiral trans-

formations, where UL(R) = e
−iθa

L(R)
ta is an element of U(4)R(L), under parity, Φ(t,−→x ) →

Φ†(t,−−→x ), and under charge conjugate Φ → Φ†. The determinant of Φ is invariant under

SU(4)L × SU(4)R, but not under U(1)A because detΦ → detUAΦUA = e−iθ
0
A

√
2NfdetΦ 6=

detΦ.

We now turn to the vector sector. The matrix V µ which includes the vector degrees of
freedom is:

V µ =
1√
2


1√
2
(ωN + ρ0) ρ+ K∗(892)+ D∗0

ρ− 1√
2
(ωN − ρ0) K∗(892)0 D∗−

K∗(892)− K̄∗(892)0 ωS D∗−S
D
∗0

D∗+ D∗+S J/ψ


µ

. (4.5)

The quark-antiquark content is that shown in Eq. (4.1), setting Γ = γµ. The isotriplet �eld
~ρ corresponds to the ρ meson, the four kaonic states correspond to the resonance K∗(892),
the isoscalar states ωN and ωS correspond to the ω and φ mesons, respectively. [No mixing
between strange and nonstrange isoscalars is present in the eLSM; this mixing is small any-
way [192].] In the charm sector, the �elds D∗0, D

∗0
, D∗+, and D∗− correspond to the vector

charmed resonances D∗(2007)0 and D∗(2010)±, respectively, while the strange-charmed D∗±S
corresponds to the resonance D∗±S (with mass MD∗±S

= (2112.3 ± 0.5) MeV; note, however,

that the quantum numbers JP = 1− are not yet fully established). Finally, J/ψ is the very
well-known lowest vector charmonium state J/ψ(1S).
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The matrix Aµ describing the axial-vector degrees of freedom is given by:

Aµ =
1√
2


1√
2
(f1,N + a0

1) a+
1 K+

1 D0
1

a−1
1√
2
(f1,N − a0

1) K0
1 D−1

K−1 K̄0
1 f1,S D−S1

D̄0
1 D+

1 D+
S1 χc,1


µ

. (4.6)

The quark-antiquark content is that shown in Eq. (4.1), setting Γ = γµγ5. The isotriplet �eld
~a1 corresponds to the �eld a1(1260), the four kaonic states K1 correspond (predominantly)
to the resonance K1(1200) [but also to K1(1400), because of mixing between axial-vector
and pseudovector states, see Refs. [193, 194, 195, 196, 197] and ref. therein]. The isoscalar
�elds f1,N and f1,S correspond to f1(1285) and f1(1420), respectively. In the charm sector,
the D1 �eld is chosen to correspond to the resonances D1(2420)0 and D1(2420)±. (Another
possibility would be the not yet very well established resonance D1(2430)0, or, due to mixing
between axial- and pseudovector states, to a mixture of D1(2420) and D1(2430). Irrespective
of this uncertainty, the small mass di�erence between these states would leave our results
virtually unchanged.) The assignment of the strange-charmed doublet D±S1 is not yet settled,
the two possibilities listed by the PDG are the resonances DS1(2460)± and DS1(2536)± [51].
According to various studies, the latter option is favored, while the former can be inter-
preted as a molecular or a tetraquark state [46, 52, 53, 56, 57, 58, 198]. Thus, we assign our
quark-antiquark D1 state to the resonance DS1(2536)±. Finally, the charm-anticharm state
χc,1 can be unambiguously assigned to the charm-anticharm resonance χc,1(1P ).

From the matrices V µ and Aµ we construct the left-handed and right-handed vector �elds
as follows:

Lµ = V µ +Aµ =
1√
2


ωN+ρ0√

2
+

f1N+a01√
2

ρ+ + a+
1 K∗+ +K+

1 D∗0 +D0
1

ρ− + a−1
ωN−ρ0√

2
+

f1N−a01√
2

K∗0 +K0
1 D∗− +D−1

K∗− +K−1 K
∗0

+K
0
1 ωS + f1S D∗−S +D−S1

D
∗0

+D
0
1 D∗+ +D+

1 D∗+S +D+
S1 J/ψ + χC1


µ

,

(4.7)

Rµ = V µ −Aµ =
1√
2


ωN+ρ0√

2
− f1N+a01√

2
ρ+ − a+

1 K∗+ −K+
1 D∗0 −D0

1

ρ− − a−1
ωN−ρ0√

2
− f1N−a01√

2
K∗0 −K0

1 D∗− −D−1
K∗− −K−1 K

∗0 −K0
1 ωS − f1S D∗−S −D

−
S1

D
∗0 −D0

1 D∗+ −D+
1 D∗+S −D

+
S1 J/ψ − χC1


µ

,

(4.8)
which transform under chiral transformations as Lµ → ULL

µU †L and Rµ → URR
µU †R.

The Lagrangian of the Nf = 4 model with global chiral invariance has an analogous form
as the corresponding eLSM Lagrangian for Nf = 3 [110, 116], which is discussed in Sec. 2.6
and described in Eq.(2.145), with the additional mass term

−2Tr[EΦ†Φ]
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which has been added to account for the mass of the charm quark, as well as to obtain a
better �t to the masses.

The terms involving the matrices H, E, and ∆ break the dilatation symmetry explicitly,
because they involve dimensionful coupling constants, and chiral symmetry due to nonzero
current quark masses in the (pseudo)scalar and (axial-)vector sectors. They are of partic-
ular importance when the charmed mesons are considered, because the charm quark mass
is large. In the light sectors, these terms are surely subleading when the quarks u and d
are considered (unless one is studying some particular isospin-breaking processes), while the
quark s is somewhat on the border between light and heavy. We describe these terms sepa-
rately:

(i) The term Tr[H(Φ + Φ†)] with

H =
1

2


hU 0 0 0
0 hD 0 0

0 0
√

2hS 0

0 0 0
√

2hC

 , (4.9)

describes the usual explicit symmetry breaking (tilting of the Mexican-hat potential). The
constants hi are proportional to the current quark masses, hi ∝ mi. Here we work in the
isospin limit, hU = hD = hN . The pion mass, for instance, turns out to be m2

π ∝ mu, in
agreement with the Gell-Mann�Oakes�Renner (GOR) relation [199]. The parameter hC is
one of the three new parameters entering the Nf = 4 version of the model when compared
to the Nf = 3 case of Ref. [110].

(ii) The term −2 Tr[EΦ†Φ] with

E =


εU 0 0 0
0 εD 0 0
0 0 εS 0
0 0 0 εC

 , (4.10)

where εi ∝ m2
i , is the next-to-leading order correction in the current quark-mass expansion.

In the isospin-symmetric limit εU = εD = εN one can subtract from ε a matrix proportional
to the identity in such a way that the parameter εN can be absorbed in the parameter
m2

0. Thus, without loss of generality we can set εN = 0. Following Ref. [110], for the sake
of simplicity we shall here also set εS = 0, while we keep εC nonzero. This is the second
additional parameter with respect to Ref. [110].

(iii) The term Tr
[
∆(Lµ2 +Rµ2)

]
with

∆ =


δU 0 0 0
0 δD 0 0
0 0 δS 0
0 0 0 δC

 , (4.11)

where δi ∼ m2
i , describes the current quark-mass contribution to the masses of the (axial-

)vector mesons. Also in this case, in the isospin-symmetric limit it is possible to set δU =
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δD = δN = 0 because an identity matrix can be absorbed in the term proportional to m2
1.

The parameter δS is taken from Ref. [110]. The third new parameter with respect to Ref.
[110] is δC . Note that in the present e�ective model the mass parameters δC and εC are not
to be regarded as the second-order contribution in an expansion in powers of mC . They
simply represent the direct, and in this case dominant, contribution ∼ m2

C of a charm quark
to the masses of charmed (pseudo)scalar and (axial-)vector mesons.
Another important term in the Lagrangian (2.145) is c(detΦ−detΦ†)2, which is responsi-

ble for the large η′ mass. Care is needed, because a determinant changes when the number
of �avours changes.

We conclude this section with a few remarks on how to extend the Lagrangian (2.145) in
order to improve the description of hadron vacuum properties. First of all, note that the
requirement of dilatation invariance restricts the interaction terms in the Lagrangian to have
naive scaling dimension four: higher-order dilatation-invariant terms would have to contain
inverse powers of G, and thus would be non-analytic in this �eld. In this sense, our La-
grangian is complete and cannot be systematically improved by the inclusion of higher-order
interaction terms, such as in theories with nonlinearly realized chiral symmetry. However,
one may add further terms that violate dilatation invariance (which is already broken by the
mass terms ∼ H, ε,∆, and the U(1)A�violating term ∼ c) to improve the model.
Another possibility is to sacri�ce chiral symmetry. For instance, since the explicit breaking

of chiral symmetry by the charm quark mass is large (which is accounted for by the terms ∼
hC , εC , δC), one could also consider chiral-symmetry violating interaction terms, e.g. replace

λ2Tr(Φ†Φ)2 −→ λ2Tr(Φ†Φ)2 + δλ2Tr(PCΦ†Φ)2 (4.12)

where PC = diag{0, 0, 0, 1} is a projection operator onto the charmed states. A value δλ2 6= 0
explicitly breaks the symmetry of this interaction term from UR(4)×UL(4) to UR(3)×UL(3).
One could modify the interaction terms proportional to λ1, c, g1, g2, h1, h2, and h3 in Eq.
(2.145) in a similar manner.

4.3. Four-�avour linear sigma model implications

The Lagrangian (2.145) induces spontaneous symmetry breaking if m2
0 < 0 : as a conse-

quence, the scalar-isoscalar �elds G, σN , σS , and χC0 develop nonzero vacuum expectation
values. One has to perform the shifts as

G0 → G+G0, σN → σN + φN , σS → σS + φS , (4.13)

as obtained in Eq.(3.33) and in Refs. [116], and similarly for χC0,

χC0 → χC0 + φC , (4.14)

to implement this breaking. The quantity G0 is proportional to the gluon condenstate
[78], while the quantities φN , φS , and φC correspond to the nonstrange, strange and charm
quark-antiquark condensates.
The relations between the nonstrange, strange, and charm condensates with the pion

decay constant fπ and the kaon decay constant fK are presented in Eq.(3.34) and Eq.
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(3.35), respectively, whereas the decay constants of the pseudoscalar D, DS , and ηC mesons,
fD, fDs , and fηC are

fD =
φN +

√
2φC√

2ZD
, (4.15)

fDS =
φS + φC
ZDS

, (4.16)

fηc =
2φC
ZηC

. (4.17)

where the detailed calculation is presented in Appendices A.3 and A.4. The chiral con-
densates φN,S,C lead to the mixing between (axial-)vector and (pseudo)scalar states in the
Lagrangian (2.145), with the additional term −2 Tr[EΦ†Φ], with bilinear mixing terms in-
volving the light mesons ηN −f1N ,

−→π −−→a 1 [116], ηS−f1S , KS−K∗, and K−K1, which are
presented in Eq.(3.36). In addition, for charmed mesons similar mixing terms of the type
D −D1, D∗0 −D∗, DS −DS1, D∗S0 −D∗S , and ηC − χC1 are present:

− g1φC χ
µ
C1 ∂µηC −

g1√
2
g1φS(Dµ−

S1 ∂µD
+
S +Dµ+

S1 ∂µD
−
S )

+ i
g1√

2
φS(D∗µ−S ∂µD

∗+
S0 −D

∗µ+
S ∂µD

∗−
S0 )

+ i
g1

2
φN (D∗µ− ∂µD

∗+
0 −D

∗µ+ ∂µD
∗−
0 +D∗µ0 ∂µD

∗0
0 −D ∗µ0 ∂µD

∗0
0 )

− g1

2
φN (D0µ

1 ∂µD
0

+D µ0
1 ∂µD

0 +Dµ+
1 ∂µD

− +Dµ−
1 ∂µD

+) . (4.18)

Note that the Lagrangian (2.145) is real despite the imaginary KS − K∗, D∗S0 − D∗S1,
DS −DS1 and D∗0 −D∗ coupling because these mixing terms are equal to their Hermitian
conjugates.
The mixing terms (3.36) are removed by performing �eld transformations of the (axial-

)vector states as presented in Eqs.(3.37-3.40). The mixing terms (4.18) are removed by
performing �eld transformations of the (axial-)vector states as follows

χµC1 → χµC1 + wχC1 ZηC ∂
µηC , (4.19)

Dµ±
S1 → Dµ±

S1 + wDS1 ZDS ∂
µD±S , (4.20)

D∗µ−S → D∗µ−S + wD∗S ZD
∗
S0
∂µD∗−S0 , (4.21)

D∗µ+
S → D∗µ+

S + w∗D∗S
ZD∗S0 ∂

µD∗+S0 , (4.22)

D∗µ+ → D∗µ+ + w∗D∗ ZD∗0 ∂
µD∗+0 , (4.23)

D∗µ− → D∗µ− + wD∗ ZD∗0 ∂
µD∗−0 , (4.24)

D ∗µ0 → D ∗µ0 + w∗D∗0 ZD∗00 ∂µD ∗00 , (4.25)

D∗µ0 → D∗µ0 + wD∗0 ZD∗00 ∂µD∗00 , (4.26)

Dµ±,0,0̄
1 → Dµ±,0,0̄

1 + wD1 ZD ∂
µD±,0,0̄ . (4.27)

These shifts produce additional kinetic terms for the open and hidden (pseudo)scalar
charmed �elds. Furthermore, one has to rescale the strange-nonstrange (pseudo)scalar �elds
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as described in Eqs.(3.41-3.41) as well as the open and hidden charmed pseudoscalar �elds
as

D±,0,0̄ → ZDD
±,0,0̄ , (4.28)

D∗±0 → ZD∗0D
∗±
0 , (4.29)

D∗0,0̄0 → ZD∗00 D
∗0,0̄
0 , (4.30)

D∗±S0 → ZD∗S0D
∗±
S0 , (4.31)

ηC → ZηCηC . (4.32)

Note that for the sake of simplicity we have grouped together the isodoublet states with the
notation D±,0,0̄, andD∗0,0̄0 , where 0̄ refers to D̄0 and D̄∗00 . The coe�cients wi and Zi are
determined in order to eliminate the mixing terms and to obtain the canonical normalization
of the D, D?

0, D
?
S0, and ηC �elds. This is described next.

The quantities wf1N , wa1 , wf1S , wK∗ , wK1 , are given in Eqs. (3.37-3.40), while wχC1 , wDS1 ,
wD∗S , wD∗ , wD∗0 , and wD1 are calculated from the condition that the mixing terms (4.18)
vanish once the shifts of the (axial-)vectors have been implemented:[
− g1 φN +

1

2
(2 g2

1 + h1 + h2− h3)wf1N φ
2
N + (m2

1 + 2δN )wf1N +
h1

2
wf1N φ

2
S +

h1

2
wf1N φ

2
C

]
× (fµ1N∂µηN +−→a µ1 · ∂µ

−→π ) = 0 ,
(4.33)

[
−
√

2g1 φS + (2 g2
1 +

h1

2
+ h2 − h3)wf1S φ

2
S + (m2

1 + 2δS)wf1S +
h1

2
wf1S φ

2
N +

h1

2
wf1S φ

2
C

]
× fµ1S∂µηS = 0 , (4.34)

[
i
g1√

2
φS +

h3 − g2
1√

2
wK∗φNφS +

g2
1 + h1 + h2

2
wK∗φ

2
S + (m2

1 + δN + δS)wK∗ − i
g1

2
φN

+
1

4
(g2

1 + 2h1 + h2)wK∗φ
2
N +

h1

2
wK∗φ

2
C

]
(K ∗µ0 ∂µK

0
S +K∗µ− ∂µK

+
S ) = 0 , (4.35)

[
− i g1√

2
φS +

h3 − g2
1√

2
w∗K∗φNφS +

g2
1 + h1 + h2

2
w∗K∗φ

2
S + (m2

1 + δN + δS)w∗K∗ + i
g1

2
φN

+
1

4
(g2

1 + 2h1 + h2)w∗K∗φ
2
N +

h1

2
w∗K∗φ

2
C

]
(K∗µ0 ∂µK

0
S +K∗µ+ ∂µK

−
S ) = 0 , (4.36)

[
− g1√

2
φS +

g2
1 − h3√

2
wK1φNφS +

g2
1 + h1 + h2

2
wK1φ

2
S + (m2

1 + δN + δS)wK1 −
g1

2
φN

+
1

4
(g2

1+2h1+h2)wK1φ
2
N+

h1

2
wK1φ

2
C

]
(Kµ0

1 ∂µK
0
+Kµ+

1 ∂µK
−+K

µ0
1 ∂µK

0+Kµ−
1 ∂µK

+) = 0 ,

(4.37)
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[
− g1√

2
φS + (g2

1 − h3)wDS1φSφC +
g2

1 + h1 + h2

2
wDS1φ

2
S + (m2

1 + δS + δC)wDS1 −
g1√

2
φC

+
g2

1 + h1 + h2

2
wDS1φ

2
C +

h1

2
wDS1φ

2
N

]
(Dµ−

S1 ∂µD
+
S +Dµ+

S1 ∂µD
−
S ) = 0 , (4.38)

[
− i g1√

2
φS + (h3 − g2

1)wD∗S1φSφC +
g2

1 + h1 + h2

2
wD∗S1φ

2
S + (m2

1 + δS + δC)wD∗S1 + i
g1√

2
φC

+
g2

1 + h1 + h2

2
wD∗S1φ

2
C +

h1

2
wD∗S1φ

2
N

]
D∗µ+
S1 ∂µD

∗−
S0 = 0 , (4.39)

[
i
g1√

2
φS + (h3 − g2

1)w∗D∗S1
φSφC +

g2
1 + h1 + h2

2
w∗D∗S1

φ2
S + (m2

1 + δS + δC)w∗D∗S1
− i g1√

2
φC

+
g2

1 + h1 + h2

2
w∗D∗S1

φ2
C +

h1

2
w∗D∗S1

φ2
N

]
D∗µ−S1 ∂µD

∗+
S0 = 0 , (4.40)

[
− ig1

2
φN +

h3 − g2
1√

2
wD∗φNφC +

1

4
(g2

1 + 2h1 + h2)wD∗φ
2
N + (m2

1 + δN + δC)wD∗ + i
g1√

2
φC

+
g2

1 + h1 + h2

2
wD∗φ

2
C +

h1

2
wD∗φ

2
S

]
D∗µ+ ∂µD

∗−
0 = 0 , (4.41)

[
i
g1

2
φN +

h3 − g2
1√

2
w∗D∗φNφC +

1

4
(g2

1 + 2h1 + h2)w∗D∗φ
2
N + (m2

1 + δN + δC)w∗D∗ − i
g1√

2
φC

+
g2

1 + h1 + h2

2
w∗D∗φ

2
C +

h1

2
w∗D∗φ

2
S

]
D∗µ− ∂µD

∗+
0 = 0 , (4.42)

[
− ig1

2
φN +

h3 − g2
1√

2
wD∗0φNφC +

1

4
(g2

1 +2h1 +h2)wD∗0φ
2
N +(m2

1 +δN +δC)wD∗0 + i
g1√

2
φC

+
g2

1 + h1 + h2

2
wD∗0φ

2
C +

h1

2
wD∗0φ

2
S

]
D ∗µ0 ∂µD

∗0
0 = 0 , (4.43)

[
i
g1

2
φN +

h3 − g2
1√

2
w∗D∗0φNφC +

1

4
(g2

1 + 2h1 + h2)w∗D∗0φ
2
N + (m2

1 + δN + δC)w∗D∗0 − i
g1√

2
φC

+
g2

1 + h1 + h2

2
w∗D∗0φ

2
C +

h1

2
w∗D∗0φ

2
S

]
D∗µ0 ∂µD

∗0
0 = 0 , (4.44)

[
− g1

2
φN +

g2
1 − h3√

2
wD1φNφC +

1

4
(g2

1 + 2h1 + h2)wD1φ
2
N + (m2

1 + δN + δC)wD1 −
g1√

2
φC

+
g2

1 + h1 + h2

2
wD1φ

2
C+

h1

2
wD1φ

2
S

]
(D0µ

1 ∂µD
0
+D µ0

1 ∂µD
0+Dµ+

1 ∂µD
−+Dµ−

1 ∂µD
+) = 0 ,

(4.45)
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[
−
√

2 g1 φC + (2g2
1 +

h1

2
+ h2 − h3)wχc1φ

2
C + (m2

1 + 2δC)wχc1 +
h1

2
wχc1φ

2
N +

h1

2
wχc1φ

2
S

]
× χµC1 ∂µηC = 0 , (4.46)

Equations (4.33) - (4.37) correspond to the mixing terms (3.36) obtained in the case of
strange-nonstrange investigation [116]. Equations (4.33)-(4.46) are ful�lled only if we de�ne

wχC1 =

√
2g1φC
m2
χC1

, (4.47)

wDS1 =
g1(φS + φC)√

2m2
DS1

, (4.48)

wD∗S =
ig1(φS − φC)√

2m2
D∗S

, (4.49)

wD∗ =
ig1(φN −

√
2φC)

2m2
D∗

, (4.50)

wD∗0 =
ig1(φN −

√
2φC)

2m2
D∗0

, (4.51)

wD1 =
g1(φN +

√
2φC)

2m2
D1

. (4.52)

The wave-function renormalization constants of the strange-nonstrange �elds are given in
Eqs.(3.49-3.52) [110, 116]. For the charmed �elds, they read

ZηC =
mχC1√

m2
χC1
− 2g2

1φ
2
C

, (4.53)

ZDS =

√
2mDS1√

2m2
DS1
− g2

1(φS + φC)2
, (4.54)

ZD∗S0 =

√
2mD∗S√

2m2
D∗S
− g2

1(φS − φC)2
, (4.55)

ZD∗0 =
2mD∗√

4m2
D∗ − g2

1(φN −
√

2φC)2
, (4.56)

ZD∗00 =
2mD∗0√

4m2
D∗0
− g2

1(φN −
√

2φC)2
, (4.57)

ZD =
2mD1√

4m2
D1
− g2

1(φN +
√

2φC)2
. (4.58)

It is obvious from Eqs.(3.49-3.52) and Eqs.(4.53)-(4.58) that all the renormalization coe�-
cients will have values larger than one.
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4.4. Tree-level masses

In this section we present the squared meson masses of all mesons in the model after having
performed the transformation above as well as transforming the unphysical �elds to the
physical �elds, e.g. for the pseudoscalar mesons ηN , ηS to η, η′, and the scalar mesons
σN , σS to σ1, σ2 due to the mixing terms of these �elds.
We obtain the tree-level masses of nonstrange-strange mesons in the eLSM:

(i) Pseudoscalar mesons:

m2
π = Z2

π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1 φ

2
S + λ1 φ

2
C

]
, (4.59)

m2
K = Z2

K

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N −

λ2√
2
φN φS + (λ1 + λ2)φ2

S + λ1 φ
2
C

]
, (4.60)

m2
ηN

= Z2
π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1 φ

2
S + λ1 φ

2
C +

c

2
φ2
N φ

2
S φ

2
C

]
, (4.61)

m2
ηS

= Z2
ηS

[
m2

0 + λ1 φ
2
N + (λ1 + λ2)φ2

S + λ1 φ
2
C +

c

8
φ4
N φ

2
C

]
. (4.62)

(ii) Scalar mesons:

m2
a0 = m2

0 +

(
λ1 +

3

2
λ2

)
φ2
N + λ1 φ

2
S + λ1 φ

2
C , (4.63)

m2
K∗0

= Z2
K∗0

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N +

λ2√
2
φN φS + (λ1 + λ2)φ2

S + λ1 φ
2
C

]
, (4.64)

m2
σN

= m2
0 + 3

(
λ1 +

λ2

2

)
φ2
N + λ1 φ

2
S + λ1 φ

2
C , (4.65)

m2
σS

= m2
0 + λ1φ

2
N + 3(λ1 + λ2)φ2

S + λ1 φ
2
C . (4.66)

(iii) Vector mesons:

m2
ρ =m2

ωN
, (4.67)

m2
ωN

=m2
1 + 2 δN +

φ2
N

2
(h1 + h2 + h3) +

h1

2
φ2
S +

h1

2
φ2
C , (4.68)

m2
ωS

=m2
1 + 2 δS +

h1

2
φ2
N +

(
h1

2
+ h2 + h3

)
φ2
S +

h1

2
φ2
C , (4.69)

m2
K∗ =m2

1 + δN + δS +
φ2
N

2

(
g2

1

2
+ h1 +

h2

2

)
+

1√
2
φN φS (h3 − g2

1)

+
φ2
S

2
(g2

1 + h1 + h2) +
h1

2
φ2
C . (4.70)
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(iv) Axial-vector mesons:

m2
f1N

=m2
a1 , (4.71)

m2
a1 =m2

1 + 2δN + g2
1φ

2
N +

φ2
N

2
(h1 + h2 − h3) +

h1

2
φ2
S +

h1

2
φ2
C , (4.72)

m2
f1S

=m2
1 + 2δS +

h1

2
φ2
N +

h1

2
φ2
C + 2g2

1 φ
2
S + φ2

S

(
h1

2
+ h2 − h3

)
, (4.73)

m2
K1

=m2
1 + δN + δS +

φ2
N

2

(
g2

1

2
+ h1 +

h2

2

)
+

1√
2
φN φS (g2

1 − h3)

+
φ2
S

2
(g2

1 + h1 + h2) +
h1

2
φ2
C . (4.74)

Note that all the squared strange-nonstrange mesons masses have the same expressions
obtained in the Nf = 3 case as shown in Sec. 3.3, but with an additional term related to
the charm sector. However, this term will not a�ect the results because it is multiplied by
a vanishing parameter as we will see below in the results section.
The masses of (open and hidden) charmed mesons are as follows:
(i) Pseudoscalar charmed mesons:

m2
ηC

= Z2
ηC

[m2
0 + λ1φ

2
N + λ1φ

2
S + (λ1 + λ2)φ2

C +
c

8
φ4
N φ

2
S + 2 εC ] , (4.75)

m2
D = Z2

D

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S −

λ2√
2
φNφC + (λ1 + λ2)φ2

C + εC

]
, (4.76)

m2
DS

= Z2
DS

[m2
0 + λ1φ

2
N + (λ1 + λ2)φ2

S − λ2φCφS + (λ1 + λ2)φ2
C + εC ] . (4.77)

(ii) Scalar charmed mesons:

m2
χC0

= m2
0 + λ1φ

2
N + λ1φ

2
S + 3(λ1 + λ2)φ2

C + 2 εC , (4.78)

m2
D∗0

= Z2
D∗0

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S +

λ2√
2
φCφN + (λ1 + λ2)φ2

C + εC

]
, (4.79)

m2
D∗00

= Z2
D∗00

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S +

λ2√
2
φNφC + (λ1 + λ2)φ2

C + εC

]
, (4.80)

m2
D∗S0

= Z2
DS0

[m2
0 + λ1φ

2
N + (λ1 + λ2)φ2

S + λ2φCφS + (λ1 + λ2)φ2
C + εC ] . (4.81)

(iii) Vector charmed mesons:

m2
D∗ =m2

1 + δN + δC +
φ2
N

2

(
g2

1

2
+ h1 +

h2

2

)
+

1√
2
φN φC(h3 − g2

1)

+
φ2
C

2
(g2

1 + h1 + h2) +
h1

2
φ2
S , (4.82)

m2
J/ψ =m2

1 + 2δC +
h1

2
φ2
N +

h1

2
φ2
S +

(
h1

2
+ h2 + h3

)
φ2
C , (4.83)

m2
D∗S

=m2
1 + δS + δC +

φ2
S

2
(g2

1 + h1 + h2) + φS φC(h3 − g2
1)

+
φ2
C

2
(g2

1 + h1 + h2) +
h1

2
φ2
N . (4.84)
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(iv) Axial-vector charmed mesons:

m2
DS1

=m2
1 + δS + δC +

φ2
S

2
(g2

1 + h1 + h2) + φS φC(g2
1 − h3)

+
φ2
C

2
(g2

1 + h1 + h2) +
h1

2
φ2
N , (4.85)

m2
D1

=m2
1 + δN + δC +

φ2
N

2

(
g2

1

2
+ h1 +

h2

2

)
+

1√
2
φN φC(g2

1 − h3)

+
φ2
C

2
(g2

1 + h1 + h2) +
h1

2
φ2
S , (4.86)

m2
χC1

= m2
1 + 2δC +

h1

2
φ2
N +

h1

2
φ2
S + 2g2

1 φ
2
C + φ2

C

(
h1

2
+ h2 − h3

)
. (4.87)

Further interesting quantities are also the following mass di�erences, in which the explicit
dependence on the parameters εC and δC cancels:

m2
D1
−m2

D∗ =
√

2 (g2
1 − h3)φNφC , (4.88)

m2
χC1
−m2

J/ψ = 2(g2
1 − h3)φ2

C , (4.89)

m2
DS1
−m2

D∗S
= 2 (g2

1 − h3)φS φC . (4.90)

4.4.1. η and η′ Masses

From the Lagrangian (2.145), we obtain mixing between the pure non-strange and strange
�elds ηN ≡ (ūu− d̄d)/

√
2 and ηS ≡ s̄s as

LηNηS = − c
4
ZηSZπφ

3
NφSφ

2
CηNηS . (4.91)

which has the same formula for Nf = 3 case, as seen in Ref. [116], but it includes charm
quark-antiquark condensate (φC).
The generate part of the ηN -ηS Lagrangian [116] has the form

LηNηS, full =
1

2
(∂µηN )2 +

1

2
(∂µηS)2 − 1

2
m2
ηN
ηN

2 − 1

2
m2
ηS
ηS

2 + ΥηηNηS , (4.92)

where Υη de�nes the mixing term of the pure states ηN and ηS .
By comparing Eqs. (4.91) and (4.92) we obtain the mixing term Υη as follows

Υη = − c
4
ZηSZπφ

3
NφSφ

2
C , (4.93)

We can determine the physical states η and η′ as mixtures of the pure non-strange and
strange �elds ηN and ηS , see the details in Ref. [116], as(

η
η′

)
=

(
cosϕη sinϕη
− sinϕη cosϕη

)(
ηN
ηS

)
, (4.94)

which gives

η = cosϕηηN + sinϕηηS , (4.95)

η′ = − sinϕηηN + cosϕηηS , (4.96)
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where ϕη = 44.6 is the η − η′ mixing angle [110].
By overturning Eqs. (4.95) and (4.96), one obtain the pure states ηN and ηS as

ηN = cosϕηη − sinϕηη
′ , (4.97)

ηS = sinϕηη + cosϕηη
′ , (4.98)

By substituting ηN and ηS by η and η′ in the Lagrangian Eq. (4.92), we get [116]

Lηη′ =
1

2
[(∂µη)2 cos2 ϕη + (∂µη

′)2 sin2 ϕη − sin(2ϕη)∂µη∂
µη′]

+
1

2
[(∂µη)2 sin2 ϕη + (∂µη

′)2 cos2 ϕη + sin(2ϕη)∂µη∂
µη′]

− 1

2
m2
ηN

[η2 cos2 ϕη + (η′)2 sin2 ϕη − sin(2ϕη)ηη
′]

− 1

2
m2
ηS

[η2 sin2 ϕη + (η′)2 cos2 ϕη + sin(2ϕη)ηη
′]

+ Υη{[η2 − (η′)2] sinϕη cosϕη + cos(2ϕη)ηη
′}

=
1

2
(∂µη)2 +

1

2
(∂µη

′)2 − 1

2
[m2

ηN
cos2 ϕη +m2

ηS
sin2 ϕη −Υη sin(2ϕη)]η

2

− 1

2
[m2

ηN
sin2 ϕη +m2

ηS
cos2 ϕη + Υη sin(2ϕη)](η

′)2

− 1

2
[(m2

ηS
−m2

ηN
) sin(2ϕη)− 2Υη cos(2ϕη)]ηη

′ , (4.99)

which gives the masses of the physical states η and η′, mη and mη′ , in terms of the pure
non-strange and strange, ηN and ηS , mass terms:

m2
η = m2

ηN
cos2 ϕη +m2

ηS
sin2 ϕη −Υη sin(2ϕη), (4.100)

m2
η′ = m2

ηN
sin2 ϕη +m2

ηS
cos2 ϕη + Υη sin(2ϕη) . (4.101)

where the mass terms mηN and mηS are known from Eqs. (4.61) and (4.62).

4.4.2. Scalar-Isosinglet Masses

There is a mixing between the pure states σN ≡ (ūu+d̄d)/
√

2 and σS ≡ s̄s in the Lagrangian
(2.145) with the mixing term given by

LσNσS = −2λ1φNφSσNσS . (4.102)

Notice that the mixing term (4.102) of σN and σS does not depend on the charm quark-
antiquark condensate φC . So it is the same mixing term in the case of Nf = 3 [116].
The generate part of the σN -σS Lagrangian has the form

LσNσS , full =
1

2
(∂µσN )2 +

1

2
(∂µσS)2 − 1

2
m2
σN
σN

2 − 1

2
m2
σS
σS

2 + ΥσσNσS , (4.103)

where Υσ is the mixing term of the σN and σS �elds,
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Υσ = −2λ1φNφS . (4.104)

The mixing between the states σN and σS yields σ1 and σ2 �elds [see Ref. [116]]:(
σ1

σ2

)
=

(
cosϕσ sinϕσ
− sinϕσ cosϕσ

)(
σN
σS

)
. (4.105)

which can be written as

σ1 = cosϕσσN + sinϕσσS , (4.106)

σ2 = − sinϕσσN + cosϕσσS , (4.107)

where ϕσ is the σN -σS mixing angle.
By overturning Eqs. (4.106) and (4.107), one obtain the pure states σN and σS as

σN = cosϕσσ1 − sinϕσσ2 , (4.108)

σS = sinϕσσ1 + cosϕσσ2 , (4.109)

Substituting from Eqs. (4.108) and (4.109) into Eq. (4.103), one obtain the σ1 − σ2

Lagrangian as follows:

Lσ1σ2 =
1

2
[(∂µσ1)2 cos2 ϕσ + (∂µσ2)2 sin2 ϕσ − sin(2ϕσ)∂µσ1∂

µσ2]

+
1

2
[(∂µσ1)2 sin2 ϕσ + (∂µσ2)2 cos2 ϕσ + sin(2ϕσ)∂µσ1∂

µσ2]

− 1

2
m2
σN

[σ2
1 cos2 ϕσ + (σ2)2 sin2 ϕσ − sin(2ϕσ)σ1σ2]

− 1

2
m2
σS

[σ2
1 sin2 ϕσ + (σ2)2 cos2 ϕσ + sin(2ϕσ)σ1σ2]

+ Υσ{[σ2
1 − (σ2)2] sinϕσ cosϕσ + cos(2ϕσ)σ1σ2}

=
1

2
(∂µσ)2 +

1

2
(∂µσ

′)2 − 1

2
[m2

σN
cos2 ϕσ +m2

σS
sin2 ϕσ −Υσ sin(2ϕσ)]σ2

1

− 1

2
[m2

σN
sin2 ϕσ +m2

ησ cos2 ϕσ + Υσ sin(2ϕσ)](σ2)2

− 1

2
[(m2

σS
−m2

σN
) sin(2ϕσ)− 2Υσ cos(2ϕσ)]σ1σ2 , (4.110)

We then obtain the mass terms of σ1 and σ2 �elds as

m2
σ1 = m2

σN
cos2 ϕσ +m2

σS
sin2 ϕσ −Υσ sin(2ϕσ), (4.111)

m2
σ2 = m2

σN
sin2 ϕσ +m2

σS
cos2 ϕσ + Υσ sin(2ϕσ) , (4.112)

wheremσN andmσS known from Eq. (4.65) and Eq. (4.66), respectively. While the mixing
term Υσ is

Υσ =
1

2
(m2

σS
−m2

σN
) tan(2ϕσ) . (4.113)
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The resonances σ1 and σ2 will be assigned to the physical states f0(1370) and f0(1710)
[116], respectively.

One can determine the σ1 − σ2 mixing angle ϕσ from Eqs. (4.104) and (4.113) [116] as

ϕσ = −1

2
arctan

(
4λ1φNφS
m2
σS
−m2

σN

)
=

1

2
arctan

[
8λ1φNφS

(4λ1 + 3λ2)φ2
N − (4λ1 + 6λ2)φ2

S

]
, (4.114)

In the large-Nc limit, one sets λ1 = 0, as shown in Ref. [116] for the caseNf = 3. Therefore
we get from Eq.(4.114) that the mixing angle ϕσ between σ1 − σ2 is zero. Naturally the
mixing angle between σ1− σ2 is very small, which is in agreement with our result. Then ϕσ
does not a�ect the results in this framework.

4.5. The Model Parameters

The Lagrangian (2.145) contains the following 15 free parameters: m2
0, λ1, λ2, m1, g1, c1, h1,

h2, h3, δS , δC , εC , hN , hS , and hC . For technical reasons, instead of the parameters hN , hS ,
and hC entering Eq. (4.9), it is easier to use the condensates φN , φS , φC . This is obviously
equivalent, because φN , φS , and φC form linearly independent combinations of the parame-
ters.

We can obtain the relation between c and its counterpart in the three-�avour case cNf=3

of Ref. [110] as follows:
The axial-anomaly term as described in the Lagrangian (2.145) in the case of Nf = 3 can
be written as

Lca3 = cNf=3(detΦNf=3 − detΦ†Nf=3)2 , (4.115)

and in the case of Nf = 4

Lca4 = c (detΦ− detΦ†)2 , (4.116)

The (pseudo)scalar multiplet matrix, Φ, in the case of Nf = 4, which includes the 3 × 3
(pseudo)scalar multiplet matrix, ΦNf=3, can be written as

Φ =


0

ΦNf=3 0

0

0 0 0 φC√
2

 . (4.117)

By using Eq.(4.117) to calculate the determinant of Φ, we obtain

detΦ =
φC√

2
detΦNf=3, (4.118)
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The axial-anomaly term in the case of Nf = 3, Eq. (4.115), can be transformed to the case
of Nf = 4 by using Eq.(4.117) as follows:

Lca4 =
2 cNf=3

φ2
C

(detΦ− detΦ†)2 , (4.119)

Comparing between Eq.(4.116) and Eq.(4.119), we get

c =
2 cNf=3

φ2
C

. (4.120)

Thus, the parameter c can be determined once the condensate φC is obtained.

In the large-Nc limit, one sets h1 = λ1 = 0. Then, as shown in Ref. [110] for the case
Nf = 3, ten parameters can be determined by a �t to masses and decay widths of mesons
below 1.5 GeV as shown in Table 1. In the following we use these values for our numerical
calculations. As a consequence, the masses and the decay widths of the nonstrange-strange
mesons are � by construction � identical to the results of Ref. [110] (see Table 2 and Fig. 1
in that ref.). Note also that, in virtue of Eq. (4.120), the parameter combination φ2

Cc/2 is
determined by the �t of Ref. [110].

Parameter Value Parameter Value
m2

1 0.413× 106 MeV2 m2
0 −0.918× 106 MeV2

φ2
Cc/2 450 · 10−6 MeV−2 δS 0.151× 106MeV2

g1 5.84 h1 0

h2 9.88 h3 3.87

φN 164.6 MeV φS 126.2 MeV
λ1 0 λ2 68.3

Table 4.1.: Values of the parameters (from Ref. [110])

For the purposes of the present work, we are left with three unknown parameters: φC , εC ,
δC . We determine these by performing a �t to twelve experimental (hidden and open)
charmed meson masses listed by the PDG [51], minimizing

χ2 ≡
12∑
i

(
M th
i −M

exp
i

ξM exp
i

)2

, (4.121)

where ξ is a constant. We do not use the experimental errors for the masses, because we
do not expect to reach the same precision with our e�ective model, which (besides other
e�ects) already neglects isospin breaking. In Ref. [110], we required a minimum error of 5%
for experimental quantities entering our �t, and obtained a reduced χ2 of about 1.23. Here,
we slightly change our �t strategy: we choose the parameter ξ such that the reduced χ2

takes the value χ2/(12 − 3) = 1, which yields ξ = 0.07. This implies that we enlarge the
experimental errors to 7% of the respective masses.
The parameters (together with their theoretical errors) are:
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Parameter Value
φC 176± 28 MeV
δC (3.91± 0.36)× 106 MeV2

εC (2.23± 0.71)× 106 MeV
c (2.91± 0.94)× 10−8 MeV−4

Table 4.2.: Values of the unknown parameters.

4.6. Results

In this section we present the wi and the wave-function renormalization constants Zi values
which are important parameters for the determination of the masses and the decay widths
of mesons. We present also the masses of light mesons as well as (open and hidden) charmed
mesons.

4.6.1. The wi and the wave-function renormalization constants Zi

All 15 parameter have been determined as shown in the previous section. Then, the param-
eters wi can be determined from Eqs. (3.46 - 3.49) and (4.45 - 4.50) and the wave-function
renormalization constants from Eqs. (3.49-3.52) as summarized in Table 4.3:

parameter value parameter value
wa1 0.00068384 wf1N 0.00068384
wf1S 0.0005538 wK1 0.000609921
wK∗ -0.0000523i wDS1 0.000203

wD∗ = wD∗0 -0.0000523i wD∗0 -0.0000423i
wD1 0.00020 wχC1 0.000138

Zπ = ZηN 1.70927 ZηS 1.53854
ZK 1.60406 ZKS 1.00105
ZηC 1.11892 ZD 1.15256
ZDS 1.15716 ZD∗S0 1.00437

ZD∗0 = ZD∗00 1.00649 ZD∗00 1.00649

Table 4.3.: wi and the wave-function renormalization
constants Zi values.

As seen in Table 4.3, all wave-function renormalization constants have values larger than
one. The parameter wD∗ is equal to wD∗0 and the parameter wD∗0 is equal to wD∗00 for isospin
symmetry reasons.
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4.6.2. Masses of light mesons

The results for the light meson masses are reported in Table 4.4. By construction, one �nds
the same values as in Refs. [110, 116].

observable JP theoretical value [MeV] experimental value [MeV]
mπ 0− 141 139.57018 ± 0.00035
mη 0− 509 547.853 ± 0.024
mη′ 0− 962 957.78 ± 0.06
mK 0− 485 493.677 ± 0.016
ma0 0+ 1363 1474 ± 19
mσ1 0+ 1362 (1200-1500)-i(150-250)
mσ2 0+ 1531 1720 ± 60
mK∗0

0+ 1449 1425 ± 50
mωN 1− 783 782.65 ± 0.12
mωS 1− 975 1019.46 ± 0.020
mρ 1− 783 775.5 ± 38.8
mK∗ 1− 885 891.66 ± 0.26
mf1N 1+ 1186 1281.8 ± 0.6
ma1 1+ 1185 1230 ± 40
mf1S 1+ 1372 1426.4 ± 0.9
mK1 1+ 1281 1272 ± 7

Table 4.4.: Light meson masses.

Note that the values of the light mesons are the same as in the case of Nf = 3, shown in
Table 3.2, as they are not a�ected by the charm sector because λ1 = h1 = 0.
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4.6.3. Masses of charmed mesons

In Table 4.5 we present the results of our �t for the masses of the open and hidden charmed
mesons, by comparing the theoretically computed with the experimentally measured masses
[see also Ref. [118] for preliminary results]. For the nonstrange-charmed states we use the
masses of the neutral members of the multiplet in the �t, because the corresponding reso-
nances have been clearly identi�ed and the masses have been well determined for all quantum
numbers. In view of the fact that the employed model is built as a low-energy chiral model
and that only three parameters enter the �t, the masses are quite well described. The mis-
match grows for increasing masses because Eq. (4.121) imposes, by construction, a better
precision for low masses. For comparison, in the right column of Table 4.5 we also show the
value 0.07M exp

i which represents the `arti�cial experimental error' that we have used in our
�t.

Resonance Quark content JP Our Value Experimental Value 7% of the exp.
[MeV] [MeV] value [MeV]

D0 uc̄, ūc 0− 1981± 73 1864.86± 0.13 130

D±S sc̄, s̄c 0− 2004± 74 1968.50± 0.32 138

ηc(1S) cc̄ 0− 2673± 118 2983.7± 0.7 209

D∗0(2400)0 uc̄, ūc 0+ 2414± 77 2318± 29 162

D∗S0(2317)± sc̄, s̄c 0+ 2467± 76 2317.8± 0.6 162

χc0(1P ) cc̄ 0+ 3144± 128 3414.75± 0.31 239

D∗(2007)0 uc̄, ūc 1− 2168± 70 2006.99± 0.15 140

D∗s sc̄, s̄c 1− 2203± 69 2112.3± 0.5 148

J/ψ(1S) cc̄ 1− 2947± 109 3096.916± 0.011 217

D1(2420)0 uc̄, ūc 1+ 2429± 63 2421.4± 0.6 169

DS1(2536)± sc̄, s̄c 1+ 2480± 63 2535.12± 0.13 177

χc1(1P ) cc̄ 1+ 3239± 101 3510.66± 0.07 246

Table 4.5.: Masses of charmed mesons used in the �t.

The following remarks about our results are in order:

(i) Remembering that our model is a low-energy e�ective approach to the strong interac-
tion, it is quite surprising that the masses of the open charmed states are in good quantitative
agreement (within the theoretical error) with experiment data. In particular, when taking
into account the 7% range (right column of Table 2), almost all the results are within 1σ
or only slightly above it. Clearly, our results cannot compete with the precision of other
approaches, but show that a connection to low-energy models is possible.
(ii) With the exception of J/ψ, the masses of the charmonia states are somewhat un-

derestimated as is particularly visible for the resonance ηc(1S). On the one hand, this is
due to the way the �t has been performed; on the other hand, it points to the fact that
unique values of the parameters hC , δC , and εC are not su�cient for a precise descrip-
tion of both open and hidden charmed states over the whole energy range. One way to
improve the �t of the charmonium masses would be to include non-zero values for λ1, h1.
Another way is explicitly breaking the chiral symmetry as discussed at the end of Sec. 4.2.
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However, since the description of open charm states is already reasonable, we only need to
consider the charmonium states. For the (pseudo)scalar charmonia, we would thus modify
the second term in Eq. (4.12) by introducing another projection operator under the trace,
Tr(PCΦ†Φ)2 → Tr(PCΦ†PCΦ)2. A similar consideration could be done for the (axial-)vector
charmonia.
(iii) The experimental value for the mass of the charged scalar state D∗0(2400)±, which is

(2403±14±35) MeV, is in fair agreement with our theoretical result, although the existence
of this resonance has not yet been unambiguously established.
(iv) The theoretically computed mass of the strange-charmed scalar state D∗±S0 turns out

to be larger than that of the charmed state D∗0(2400)0. In this respect, the experimental
result is puzzling because the mass of D∗S0(2317)± is smaller than that of D∗0(2400)0. A
possibility is that the resonance D∗S0(2317) is not a quarkonium, or that the current mass of
the quarkonium �eld is diminished by quantum �uctuations [see e.g. Ref. [200, 201, 202].]
(v) The theoretical mass of the axial-vector strange-charmed state DS1 reads 2480 MeV,

which lies in between the two physical states DS1(2460)± and DS1(2536)±. We shall re-
analyze the scalar and the axial-vector strange-charmed states in light of the results for the
decay widths, see chapter 7.
The theoretical results for the squared charmed vector and axial-vector mass di�erences,

in which the explicit dependence on the parameters εC and δC cancels and which were
presented in Eqs.(4.88-4.90) are

mass di�erence theoretical value MeV2 experimental value MeV2

m2
D1
−m2

D∗ (1.2± 0.6)× 106 1.82× 106

m2
χC1
−m2

J/ψ (1.8± 1.3)× 106 2.73× 106

m2
DS1
−m2

D∗S
(1.2± 0.6)× 106 1.97× 106

Table 4.6.: Mass di�erences.

Here we compare them also with the experimental results ( the experimental error is omit-
ted because, being of the order of 103 MeV2, they are very small w.r.t. the theoretical ones).
The agreement is fairly good, which shows that our determination of the charm condensate
φC is compatible with the experiment, although it still has a large uncertainty. Note that
a similar determination of φC via the weak decay constants of charmed mesons determined
via the PCAC relations has been presented in Ref. [203]. Their result is φC/φN ' 1.35,
which is compatible to our ratio of about 1.07 ± 0.20. Previously, Ref. [204] determined
φC/φN ' 1.08 in the framework of the NJL model, which is in perfect agreement with our
result.

From a theoretical point of view, it is instructive to study the behavior of the condensate
φC as function of the heavy quark mass mC . To this end, we recall that the equation
determining φC is of the third-order type and reads (for λ1 = 0)

h0,C = (m2
0 + 2εC)φC + λ2φ

3
C . (4.122)

By imposing the scaling behaviors h0,C = mC h̃0,C and εC = ε̃Cm
2
C , the solution for large

values of mC reads φC ' h0,C/2εC ∝ 1/mC , which shows that the mass di�erences of Eqs.
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(4.88-4.90) vanish in the heavy-quark limit. However, the fact that the value of the charm
condensate turns out to be quite large implies that the charm quark is not yet that close to
the heavy-quark limit. To show this aspect, we plot in Fig. 4.1 the condensate φC as function
of mc by keeping all other parameters �xed. Obviously, this is a simplifying assumption,
but the main point of this study is a qualitative demonstration that the chiral condensate
of charm-anticharm quarks is non-negligible.

5000 10000 15000 20000 25000
mc @MeVD

50

100

150

200

FC @MeVD

Figure 4.1.: Condensate φC as function of the quark mass mC . The dot corresponds to the
physical value mC = 1.275 GeV [51].

Note that, in contrast to the demands of heavy-quark spin symmetry, our chiral approach
does not necessarily imply an equal mass of the vector and pseudoscalar states and of scalar
and axial-vector states. Namely, for a very large heavy quark mass one has m2

D ' εC and
m2
D∗ ' δC . Thus, in order to obtain a degeneracy of these mesons, as predicted by heavy-

quark symmetry [50, 168, 169, 170, 171, 172], we should additionally impose that εC = δC .
Numerically, the values have indeed the same order of magnitude, but di�er by a factor of
two, see Table 4.2. Nevertheless, the di�erences of masses mD∗−mD ' 180 MeV of the spin-
0 and spin-1 negative-parity open charm states turns out to be (at least within theoretical
errors) in quantitative agreement with the experiment. Thus, at least for negative-parity
mesons, our chiral approach seems to correctly predict the amount of breaking of the heavy-
quark spin symmetry. For the mass di�erence mD1 −mD∗0

of spin-0 and spin-1 mesons with
positive parity, our model underpredicts the experimental values by an order of magnitude,
i.e., our approach based on chiral symmetry follows the predictions of heavy-quark symmetry
even more closely than nature!
We conclude our discussion of the charmed meson masses by remarking that chiral symmetry
(and its breaking) may still have a sizable in�uence in the charm sector. In this context it
is interesting to note that in the theoretical works of Refs. [174, 175, 176, 177, 178] the
degeneracy of vector and axial-vector charmed states in the heavy-quark limit [see Eqs.
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(4.88-4.90)] as well as of scalar and pseudoscalar charmed states was obtained by combining
the heavy-quark and the (linear) chiral symmetries.
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5. Particle decays

5.1. Introduction

The study of decays of resonances plays a central role in understanding hadron phenomenol-
ogy. One can describe the behaviour and the inner structure of subatomic particles in
mathematical expressions of decays based on Feynman diagrams, which are applications of
quantum �eld theory.
An unstable particle transforms spontaneously into other more stable particles, with less

mass. This can be followed by another transformation, until one arrives at the lightest
particles. These transformations occur according to some conservation rules and are called
decays. There are three types of decays: strong, weak, and electromagnetic. Strong decays
occur when an unstable meson (quark-antiquark state with gluons mediating the interaction)
decay into lighter mesons. Weak decays occur when a quark couples to the massive bosons
W± and Z0 due to weak interactions. A famous electromagnetic decay is that of the neutral
pion into two photons (π0 → 2γ), but not into objects consisting of charged subcomponents.
In the 1960s, Okubo, Zweig, and lizuka explained independently the reason why certain

decay modes appear less frequently than otherwise might be expected. This is summarized
in their famous rule (OZI rule) [205, 206, 207] which states that decays whose Feynman
diagrams contain disconnected quark lines (which occur by cutting internal gluon lines) are
suppressed.
The probability of a decay's occurrence can be computed. For a particle with rest mass

M with energy and momentum (E,
−→
P ), the survival probability P(t) (the probability that

the particle survives for a time t before decaying) [51] is

P(t) = e−t/γτ = e−MtΓ/E . (5.1)

where τ(≡ 1/Γ) is the mean life time and Γ is the decay width. After the particle moves a
distance x, the probability is

P(t) = e−t/γτ = e−MxΓ/|
−→
P |. (5.2)

In this chapter, we will study two-body decays of mesons. Also three-body decays of mesons
will be analyzed. Moreover, the decay constant of mesons will be calculated. Therefore, in
the present chapter, we develop formalisms for computing the corresponding decay constants
and for both the two- and three-body decays.
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5.2. Decay constants

In this section we develop the general formula for the decay constant by using the transfor-
mation method. As seen in Sec. 2.5 the matrix Φ is a combination of scalar and pseudoscalar
currents:

Φ = S + iP . (5.3)

The hermitian conjugate is
Φ† = S − iP , (5.4)

which transforms as

Φ† → URΦ†U †L . (5.5)

The pseudoscalar matrix can be written as

P =
1

2i
(Φ− Φ†) , (5.6)

which transforms as

P → 1

2i
(ULΦU †R − URΦ†U †L) , (5.7)

with
UL ∈ U(Nf )L, UR ∈ U(Nf )R . (5.8)

The chiral symmetry group of QCD is

U(Nf )L × U(Nf )R ≡ U(1)V × SU(Nf )V × U(1)A × SU(Nf )A . (5.9)

The U(1)V transformation corresponds to

U1 = UL = UR = eiθt
0
, (5.10)

while an SU(Nf )V transformation corresponds to

UV = UL = UR = eiθ
V
a t
a
, (5.11)

and an SU(Nf )A transformation corresponds to

UA = UL = U †R = eiθ
A
a t
a
, (5.12)

where θV,Aa are the parameters, and ta are the generators of the group, with a = 1, ..., N2
f −1.

For Nf = 2, t0 = 1
212 and ti = 1

2τi where τi are the Pauli matrices. Note that the matrices
of the scalar mesons S and of the pseudoscalar mesons in the model (2.88) are hermitian.
Therefore they can be decomposed in terms of generators ta of a unitary group U(Nf ) with
a = 0, ..., N2

f − 1. For small parameters

U = 1 + iθa t
a, (5.13)
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Under a UA(Nf ) transformation, the pseudoscalar matrix becomes

P → 1

2i
(UAΦUA − U †AΦ†U †A) . (5.14)

Using Eqs.(5.3), (5.6), and (5.13), we obtain the transformation of �elds

P → P + θAa {ta, S} , (5.15)

Introducing the wave-function renormalization of the �elds

Zi P → Zi P + θAa {ta, S} , (5.16)

which can be written as

P → P + θAa
{ta, S}
Zi

, (5.17)

The weak decay constants take the following form

fi =
{ta, S}
Zi

. (5.18)

5.3. Two-body decay

In this section, we investigate various aspects of the decay of a particle into a two-particle
�nal state [208].

Consider a particle with four-momenta P described by P (M, 0), in its rest frame, which
decays into two particles with momenta pi and massesmi, where i = 1, 2, withM > m1+m2.
This two-body decay is described by the Feynman diagram in Fig. 5.1.

Figure 5.1.: Feynman diagram of a two-body decay [51].

The initial state of the decaying particle and the �nal state can be de�ned as

|in >= b†P | 0 > , (5.19)

|fin >= a†p1a
†
p2 | 0 > . (5.20)

Assume that the decaying particle and the decay products are con�ned in a `box' with
length L and volume V = L3. The three-momenta are quantized in the box, as known from
quantum mechanics, as P = 2πnP /L and p1,2 = 2πnp1,2/L. The corresponding energies of



82 5. Particle decays

these particles are described by wP =
√
M2 + P 2 and wp1,p2 =

√
m2

1,2 + p2
1,2.

The corresponding matrix element of the scattering matrix in terms of the initial and �nal
states is

< fin|S(1)|in >=
S

V 3/2

−iM√
2ωp12ωp22ωP

(2π)4δ4(P − p1 − p2) , (5.21)

where S refers to a symmetrization factor, δ4(P−p1−p2) denotes the delta distribution which
describes the energy-momentum conservation for each vertex, and M is the corresponding
tree-level decay amplitude.
The squared modulus of the scattering matrix (5.21) gives the probability for the particle
decaying from the initial state |in > state to the �nal |fin > as:

| < fin|S(1)|in > |2 =
1

V 3

| − iM|2√
2ωp12ωp22ωP

(2π)8(δ4(P − p1 − p2))2 . (5.22)

Using the �Fermi trick� [209], the square of the delta distribution can be obtained as follows:

(2π)8(δ4(P − p1 − p2))2 = (2π)4δ4(P − p1 − p2)

∫
d4x eix(P−p1−p2)

= (2π)4δ4(P − p1 − p2)

∫
d4x

= (2π)4δ4(P − p1 − p2)

∫
V
d3x

∫ t

0
dt

= (2π)4δ4(P − p1 − p2)V t , (5.23)

where x is the Minkowski space-time vector. Consequently, the probability of the two-body
decay (5.22) can be written as

| < fin|S(1)|in > |2 =
1

V 3

| − iM|2√
2ωp12ωp22ωP

(2π)4 δ4(P − p1 − p2)V t . (5.24)

The number of �nal states is obtained as the factor V d3p1
(2π)3

V d3p2
(2π)3

when the three-momenta

of the outgoing particles lie between (p1, p1 + d3p1) and (p2, p2 + d3p2). Consequently, the
probability for the decay in the momentum range becomes

| < fin|S(1)|in > |2 V d3p1

(2π)3
V
d3p2

(2π)3
=

S| − iM|2

2ωp12ωp22ωP

×(2π)4δ4(P − p1 − p2)× d3p1

(2π)3
× d3p2

(2π)3
t .

(5.25)

By integrating over all possible �nal momenta (p1 and p2), we obtain the de�nition of the
decay rate Γ of the two-body decay as

Γ = S

∫
d3p1

(2π)3

d3p2

(2π)3

| − iM|2

2ωp1 2ωp22ωP
(2π)4 δ4(P − p1 − p2) . (5.26)
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The probability to obtain the two particles as decay products at any instant t is

Pd(t) = Γt . (5.27)

Consequently, the probability of the initial particle surviving at the same instant is

Ps(t) = 1− Γt . (5.28)

which holds only when t << Γ−1. The mean-life time is

τ = Γ−1 . (5.29)

Now, let us turn to the evaluation of the decay rate (5.26) of the two-body decay:

Γ =
S

2(2π)2

∫
d3p1 d

3p2
| − iM|2

2ωp1 2ωp22ωP
δ4(P − p1 − p2) . (5.30)

Consider the two outgoing particles to have the same mass (m1 = m2) and note that, in the
rest frame of the decaying particle the four momentum is P = (M, 0). Therefore, the delta
function can be obtained as

δ4(P − p1 − p2) = δ3(p1 + p2) δ(M − ωp1 − ωp2)

= δ3(p1 + p2)δ(M − 2ωp1) . (5.31)

Using the Dirac delta function to solve the integral over d3p2, we obtain

Γ =
S

2(2π)2

∫
d3p1

| − iM|2

(2ωp1)2 2M
δ(M − 2ωp1) . (5.32)

When we use the generic identity δ(g(x)) =
∑

i δ(x− xi)/|g′(xi)|, where g(xi) = 0, the δ
distribution can be written as

δ(M − 2ωp1) =
4M

kf
δ(|p1| − kf ) , (5.33)

where the energy-momentum conservation gives

|p1| =
√
M2

4
−m2

1,2 ≡ kf , for (m1 = m2) . (5.34)

Using the spherical coordinates d3p1 ≡ p2
1dΩd|p1| and integrating over d|p1|, the decay

rate (5.32) becomes

Γ =
S kf

32π2M2

∫
dΩ| − iM|2 , (5.35)

When the decay amplitude does not depend on the angle, we obtain the general formula
[116, 208] of the two-body decay rate as

ΓA→BC = I
Skf

8πM2
| − iM|2 , (5.36)
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with the center-of-mass momentum of the two decay particles

kf =
1

2M

√
M4 + (m2

1 −m2
2)2 − 2M2 (m2

1 +m2
2)θ(M −m1 −m2) , (5.37)

and the symmetrization factor S equals 1 if the outgoing particles are di�erent, and 2
for two identical outgoing particles (because of the inter change ability of outgoing particles
lines). The isospin factor I considers all subchannels of a particular decay channel. The
decay threshold is encoded by the θ function.

5.4. Three-body decay

In this section we expand our investigation to various aspects of the decay into a three-body
�nal state which is more complicated than the two-body decay, as we will see in the following.

Consider a particle A with four-momentum P in its rest frame, with P = (M, 0), decaying
into three particles (B1, B2, B3) with momenta pi and mass mi, where i = 1, 2, 3, with
M > m1+m2+m3. This decay is con�ned in a �box� that has length L with volume V = L3.
The momenta of the decaying particle and the three outgoing particles are quantized in the
box as P = 2πnP /L and p1,2,3 = 2πnp1,2,3/L, respectively. The corresponding energies for
the decaying particle are ωP =

√
M2 + P 2 whereas those for the produced particles are

ωp1,2,3 =
√
m2

1,2,3 + p2
1,2,3. The Feynman diagram that describes the three-body decay is

presented in Fig. 5.2.

Figure 5.2.: Feynman diagram of the three body decay [51].

The initial and �nal states read

|in >= b†P | 0 > , (5.38)

|fin >= a†p1a
†
p2a
†
p3 | 0 > , (5.39)

and the corresponding element of the scattering matrix is

< fin|S(1)|in >=
1

V 3/2

1√
2ωp12ωp22ωp32ωP

(2π)4

× δ4(P − p1 − p2 − p3)(−iMA→B1B2B3) , (5.40)

where −iM1 is the invariant amplitude of the vertex function that enters into the Feynman
rule for the vertex A − B1B2B3. The probability for the process A → B1B2B3 can be
computed by squaring the amplitude (5.40)
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| < fin|S(1)|in > |2 =
1

V 3

1√
2ωp12ωp22ωp32ωP

(2π)8

× (δ4(P − p1 − p2 − p3))2| − iMA→B1B2B3 |2 . (5.41)

Due to the Fermi Trick [209], we simplify the delta squared as

(2π)8(δ4(P − p1 − p2 − p3))2 = (2π)4δ4(P − p1 − p2 − p3)

∫
d4x eix(P−p1−p2−p3)

= (2π)4δ4(P − p1 − p2 − p3)

∫
d4x

= (2π)4δ4(P − p1 − p2 − p3)

∫
V
d3x

∫ t

0
dt

= (2π)4δ4(P − p1 − p2 − p3)V t , (5.42)

where x = (t, x1, x2, x3). The probability for the decayA→ B1B2B3 when the three particles
B1, B2, andB3 have momenta between (p1, p1 +d3p1), (p2, p2 +d3p2) and (p3, p3 +d3p3),
respectively, is given by

| < fin|S(1)|in > |2 V d3p1

(2π)3
V
d3p2

(2π)3
V
d3p3

(2π)3
, (5.43)

where V d3p1/(2π)3 describes the number of states with four momenta between (p1, p1 +
d3p1). Using Eqs. (5.41) and (5.42), the probability of the three-body decay Eq.(5.43)
becomes

| < fin|S(1)|in > |2 V d3p1

(2π)3
V
d3p2

(2π)3
V
d2p3

(2π)3

=
1

2ωp12ωp22ωp32ωP
× (2π)4δ4(P − p1 − p2 − p3)

× d3p1

(2π)3

d3p2

(2π)3

d2p3

(2π)3
| − iMA→B1B2B3 |2t , (5.44)

which does not depend on the normalization volume V . By integrating over all possible �nal
momenta, we can obtain the decay rate Γ as:

Γ =

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

| − iMA→B1B2B3 |2

2ωp12ωp22ωp32ωP
(2π)4δ4(P − p1 − p2 − p3) , (5.45)

which can be written as

Γ =
1

(2π)5

∫
d3p1 d

3p2 d
3p3
| − iMA→B1B2B3 |2

2ωp12ωp22ωp32ωP
δ4(P − p1 − p2 − p3) . (5.46)

In the rest frame of the decaying particle with P = (M, 0) we have

δ4(P − p1 − p2 − p3) = δ3(p1 + p2 + p3)δ(M − ωp1 − ωp2 − ωp3) . (5.47)
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Substituting Eq.(5.47) into Eq.(5.46), we obtain

Γ =
1

16(2π)5

∫
d3p1 d

3p2 d
3p3
| − iMA→B1B2B3(p1, p2, p3)|2

ωp1ωp2ωp3M

× δ3(p1 + p2 + p3)δ(M − ωp1 − ωp2 − ωp3) , (5.48)

solving the integral over d3p3 (by use of the Dirac delta function), we get

Γ =
1

16(2π)5

∫
d3p1 d

3p2
| − iMA→B1B2B3(p1, p2, −(p1 + p2)|2

ωp1ωp2ωp3M
δ(M − ωp1 − ωp2 − ωp3) ,

(5.49)
where ωp3 = (p2

3 + m2
B3

)1/2 and now p3 is a notation for −(p1 + p2). The matrix element
depends on the angle θ between p1 and p2, and so Eq. (5.49) becomes

Γ =
1

8(2π)3

∫
p1 dp1. p2dp2

ωp1ωp2ωp3M
p1 p2 d cos θ | − iMA→B1B2B3{p1, p2, −(p1 + p2)}|2

× δ(M − ωp1 − ωp2 − ωp3) , (5.50)

but

ω2
p1 = p2

1 +m2
B1
⇒ 2ωp1dωp1 = 2p1dp1,

∴ ωp1dωp1 = p1dp1 . (5.51)

Similarly,

ωp2dωp2 = p2dp2 , (5.52)

ω2
p3 = (−→p1 +−→p2)2 +m2

B3
= p2

1 + p2
2 + 2p1p2 cos θ +m2

B3
,

At p1 and p2 �xed, we have

2ωp3dωp3 = 2p1 p2 d cos θ , (5.53)

Substituting Eqs.(5.51 - 5.53) into Eq.(5.50), we obtain

Γ =
1

8(2π)3

∫
dωp1 dωp2 dωp3

M
| − iMA→B1B2B3 |2 δ(M − ωp1 − ωp2 − ωp3) , (5.54)

Using the Dirac delta to eliminate ωp3

Γ =
1

(2π)3

1

8M

∫
| − iMA→B1B2B3 |2 dωp1 dωp2 ,

=
1

(2π)3

1

32M3

∫
| − iMA→B1B2B3 |2 dm2

12 dm
2
23 , (5.55)

which is the standard form for the Dalitz plot [51].
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Figure 5.3.: Dalitz plot for a three-body �nal state [51].

The limits of integration can be determined from the Dalitz plot [51], which leads to the
following formula for the decay rate of A into B1, B2, B3

ΓA→B1B2B3 =
SA→B1B2B3

32(2π)3M3

∫ (M−m3)2

(m1+m2)2

∫ (m2
23)max

(m2
23)min

| − iMA→B1B2B3 |2 dm2
23 dm

2
12 . (5.56)

Integrating over m2
23, we obtain

ΓA→B1B2B3 =
SA→B1B2B3

32(2π)3M3

∫ (M−m3)2

(m1+m2)2
| − iMA→B1B2B3 |2 [(m2

23)max − (m2
23)min] dm2

12 .

(5.57)

The range of m2
23 is determined by the value of m2

12 when p2 is parallel or antiparallel to p3

as follows [51]

(m2
23)min = (E∗2 + E∗3)2 −

(√
E∗22 −m2

2 +
√
E∗23 −m2

3

)2

, (5.58)

(m2
23)max = (E∗2 + E∗3)2 −

(√
E∗22 −m2

2 −
√
E∗23 −m2

3

)2

, (5.59)

where E∗2 and E∗3 are the energies of particles B2 and B3, respectively, in the m12 rest frame,

E∗2 =
m2

12 −m2
1 +m2

2

2m12
,

E∗3 =
M2 −m2

12 −m2
3

2m12
. (5.60)

Finally, the explicit expression for the three-body decay rate for the process A → B1B2B3
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is:

ΓA→B1B2B3 =
SA→B1B2B3

32(2π)3M3

∫ (M−m3)2

(m1+m2)2
| − iMA→B1B2B3 |2

×

√
(−m1 +m12 −m2)(m1 +m12 −m2)(−m1 +m12 +m2)(m1 +m12 +m2)

m2
12

×

√
(−M +m12 −m3)(M +m12 −m3)(−M +m12 +m3)(M +m12 +m3)

m2
12

dm2
12 ,

(5.61)

where MA→B1B2B3 is the corresponding tree-level decay amplitude, and SA→B1B2B3 is a
symmetrization factor (it is equal to 1 if B1, B2, and B3 are all di�erent, and equal to 2 for
two identical particles in the �nal state, and equal to 6 for three identical particles in the
�nal state).
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6. Decay of the pseudoscalar glueball into

scalar and pseudoscalar mesons

�The most exciting phrase to hear in science, the one that heralds new discoveries, is not

`Eureka' (I found it), but `that's funny'...�

Isaac Asimov

6.1. Introduction

The fundamental symmetry underlying Quantum Chromodynamics (QCD), the theory of
strong interactions, is the exact local SU(3)c colour symmetry. As a consequence of the non-
Abelian nature of this symmetry the gauge �elds of QCD (the gluons) are coloured objects
and therefore interact strongly with each other. Because of con�nement, one expects that
gluons can also form colourless, or `white', states which are called glueballs.
In this chapter we study the decay properties of a pseudoscalar glueball state whose mass

lies, in agreement with lattice QCD, between 2 and 3 GeV. Following Ref. [111, 113, 210, 211]
we write down an e�ective chiral Lagrangian which couples the pseudoscalar glueball �eld
(denoted as G̃) to scalar and pseudoscalar mesons. We can thus evaluate the widths for the
decays G̃ → PPP and G̃ → PS, where P and S stand for pseudoscalar and scalar quark-
antiquark states. The pseudoscalar state P refers to the well-known light pseudoscalars
{π,K, η, η′}, while the scalar state S refers to the quark-antiquark nonet of scalars above
1 GeV: {a0(1450),K∗0 (1430), f0(1370), f0(1710)}. The reason for the latter assignment is a
growing consensus that the chiral partners of the pseudoscalar states should not be identi�ed
with the resonances below 1 GeV, see Refs. [78, 108, 110] for results within the extended
linear sigma model, see also other theoretical works in Refs. [72, 73, 74, 75, 76, 77, 131, 212,
213, 214, 215, 216, 217] (and refs. therein).
The chiral Lagrangian that we construct contains one unknown coupling constant which

cannot be determined without experimental data. However, the branching ratios can be
unambiguously calculated and may represent a useful guideline for an experimental search
of the pseudoscalar glueball in the energy region between 2 to 3 GeV. In this respect, the
planned PANDA experiment at the FAIR facility [218] will prove fruitful, since it will be
capable of scanning the mass region above 2.5 GeV. The experiment is based on proton-
antiproton scattering, thus the pseudoscalar glueball G̃ can be directly produced as an
intermediate state. We shall therefore present our results for the branching ratios for a
putative pseudoscalar glueball with a mass of 2.6 GeV.
In addition to the vacuum properties of a pseudoscalar glueball, we describe (to our know-

ledge [124, 125, 126, 127] for the �rst time) the interaction of G̃ with baryons: we introduce
the chiral e�ective Lagrangian which couples G̃ to the nucleon �eld and its chiral partner.
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This Lagrangian describes also the proton-antiproton conversion process p̄p → G̃, which
allow us to study the decay of a pseudoscalar glueball into two nucleons.
Additionally, it is possible that the pseudoscalar glueball G̃ has a mass that is slightly

lower than the lattice-QCD prediction and that it has been already observed in the BESIII
experiment where pseudoscalar resonances have been investigated in J/ψ decays [219, 220,
221]. In particular, the resonance X(2370) which has been clearly observed in the π+π−η′

channel represents a good candidate, because it is quite narrow (∼ 80 MeV) and its mass
lies just below the lattice-QCD prediction. For this reason we repeat our calculation for
a pseudoscalar glueball mass of 2.37 GeV, and thus make predictions for the resonance
X(2370), which can be tested in the near future.

6.2. The e�ective Lagrangian with a pseudoscalar glueball

In this section we consider an Nf = 3 chiral Lagrangian which describes the interaction
between the pseudoscalar glueball and (pseudo)scalar mesons. We calculate the decay widths
of the pseudoscalar glueball, where we �xed its mass to 2.6 GeV, as predicted by lattice-QCD
simulations, and take a closer look at the scalar-isoscalar decay channel. We present our
results as branching ratios which are relevant for the future PANDA experiment at the FAIR
facility.
We introduce a chiral Lagrangian which couples the pseudoscalar glueball G̃ ≡ |gg〉 with

quantum numbers JPC = 0−+ to scalar and pseudoscalar mesons as in Refs. [111, 124, 125,
126, 127, 211]

Lint
G̃−mesons = icG̃ΦG̃

(
detΦ− detΦ†

)
, (6.1)

where cG̃φ is a (unknown) dimensionless coupling constant.

Φ = (Sa + iP a)ta (6.2)

represents the multiplet of scalar and pseudoscalar quark-antiquark states, and ta are the
generators of the group U(Nf ). In the present case Nf = 3 the explicit representation of
the scalar and pseudoscalar mesons reads [110, 116]:

Φ =
1√
2


(σN+a00)+i(ηN+π0)√

2
a+

0 + iπ+ K∗+0 + iK+

a−0 + iπ−
(σN−a00)+i(ηN−π0)√

2
K∗00 + iK0

K∗−0 + iK− K̄∗00 + iK̄0 σS + iηS

 . (6.3)

Let us consider the symmetry properties [9, 10] of the e�ective Lagrangian (6.1). The pseu-
doscalar glueball G̃ consists of gluons and is therefore a chirally invariant object. Under
U(3)L × U(3)R chiral transformations the multiplet Φ transforms as Φ → ULΦU †R where

UL(R) = e
−iθa

L(R)
ta is an element of the group of U(3)R(L) matrices. Performing these trans-

formations on the determinant of Φ it is easy to prove that this object is invariant under
SU(3)L × SU(3)R, but not under the axial U(1)A transformation,

detΦ→ det(UAΦUA) = e−iθ
0
A

√
2NfdetΦ 6= detΦ .

This is in agreement with the so-called axial anomaly. Consequently the e�ective La-
grangian (6.1) possesses only an SU(3)L×SU(3)R symmetry. Further essential symmetries
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of the strong interaction are the parity P and charge conjugation C. The pseudoscalar
glueball and the multiplet Φ transform under parity as

G̃(t, ~x)→ −G̃(t,−~x) ,

Φ(t, ~x)→ Φ†(t,−~x) .

Performing the discrete transformations P and C on the e�ective Lagrangian (6.1) leave it
unchanged. In conclusion, one can say that the symmetries of the e�ective Lagrangian (6.1)
are in agreement with the symmetries of the QCD Lagrangian. The rest of the mesonic
Lagrangian which describes the interactions of Φ and also includes (axial-)vector degrees of
freedom is presented in Sec. 3.3.

6.2.1. Implications of the interaction Lagrangian

We have to consider that when m2
0 < 0 spontaneous chiral symmetry breaking occurs and

the scalar-isoscalar �elds condense. When this breaking takes place, we need to shift the
scalar-isoscalar �elds by their vacuum expectation values φN and φS ,

σN → σN + φN , (6.4)

and

σS → σS + φS . (6.5)

In addition, when (axial-)vector mesons are present in the Lagrangian, one also has to `shift'
the (axial-)vector �elds and to de�ne the wave-function renormalization constants of the
(pseudo)scalar �elds:

~π → Zπ~π,

Ki → ZKK
i,

ηj → Zηjηj ,

K∗ i0 → ZK∗0K
∗ i
0 , (6.6)

where i = 1, 2, 3, 4 runs over the four kaonic �elds and j = N,S. Once the �eld transforma-
tions in Eqs. (6.5) and (6.6) have been performed, the Lagrangian (6.1) contains the relevant
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tree-level vertices for the decay processes of G̃, and takes the form [124]:

Lint
G̃−mesons =

cG̃Φ

2
√

2
G̃(
√

2ZK∗0ZKa
0
0K
∗0
0 K

0
+
√

2ZKZK∗0a
0
0K

0K
∗
0 − 2ZK∗0ZKa

+
0 K

∗0
0 K−

− 2ZK∗0ZKa
+
0 K

∗−
0 K0 − 2ZK0∗ZKa

−
0 K

∗0
0 K

+ −
√

2ZK∗0ZKa
0
0K
∗−
0 K+

−
√

2Z2
KZηNK

0K
0
ηN +

√
2Z2

KS
ZηNK

0
SK

0
SηN + 2ZηSa

−
0 a

+
0 ηS

−
√

2Z2
KZηNK

−K+ηN −
√

2Z2
KZπK

0K
0
π0 +

√
2Z2

K∗0
ZπK

∗0
0 K

∗0
0 π

0

+
√

2Z2
KZπK

−K+π0 + ZηSa
0
0

2
ηS + Z2

ηN
ZηSη

2
NηS − ZηSZ

2
πηS π

02

+ 2Z2
KZπK

0
K+π− + 2Z2

KZπK
0K−π+ − 2Z2

K∗0
ZπK

∗0
0 K∗−0 π+

− 2ZηSZ
2
πηSπ

−π+ − 2ZK∗0ZKa
−
0 K

∗+
0 K

0
+
√

2Z2
K∗0
ZηNK

∗+
0 K∗−0 ηN

−
√

2Z2
K∗0
ZπK

∗+
0 K∗−0 π0 − 2Z2

K∗0
ZπK

∗+
0 K

∗0
0 π
− + 2Zπa

0
0π

0φS

+ 2Zπa
0
0π

0σS −
√

2ZK∗0ZKa
0
0K
∗+
0 K− +

√
2ZKZK∗0K

−K∗+0 φN

+
√

2ZKZK∗0K
−K∗+0 σN +

√
2ZK∗0ZKK

∗0
0 K

0
φN − 2ZηN ηNφNφS

+
√

2ZK∗0ZKK
∗0
0 K

0
σN +

√
2ZKZK∗0K

0K
∗0
0 φN − ZηSηSφ

2
N

+
√

2ZKZK∗0K
0K
∗0
0 σN +

√
2ZK∗0ZKK

∗−
0 K+φN

− ZηSηSσ
2
N − 2ZηSηSφNσN +

√
2ZK∗0ZKK

∗−
0 K+σN

+ 2Zπa
+
0 π
−φS + 2Zπa

+
0 π
−σS + 2Zπa

−
0 π

+φS + 2Zπa
−
0 π

+σS

− 2ZηN ηNφNσS − 2ZηN ηNσNφS − 2ZηN ηNσNσS) . (6.7)

which is used to determine the coupling of the �eld G̃ to the scalar and pseudoscalar
mesons.

6.3. Field assignments

The assignment of the quark-antiquark �elds in Eq. (6.1) or (6.3) is as follows:
(i) In the pseudoscalar sector the �elds ~π and K represent the pions and the kaons, respec-
tively [23]. The bare �elds ηN ≡

∣∣ūu+ d̄d
〉
/
√

2 and ηS ≡ |s̄s〉 are the non-strange and
strange contributions of the physical states η and η′ [23]:

η = ηN cosϕ+ ηS sinϕ,

η′ = −ηN sinϕ+ ηS cosϕ, (6.8)

where ϕ ' −44.6◦ is the mixing angle [110]. Using other values for the mixing angle, e.g.
ϕ = −36◦ [159] or ϕ = −41.4◦, as determined by the KLOE Collaboration [92], a�ects the
presented results only marginally. In the e�ective Lagrangian (6.1) there exists a mixing
between the bare pseudoscalar glueball G̃ and both bare �elds ηN and ηS , but due to
the large mass di�erence between the pseudoscalar glueball and the pseudoscalar quark-
antiquark �elds, it turns out that this mixing is very small and is therefore negligible.
(ii) In the scalar sector the �eld ~a0 corresponds to the physical isotriplet state a0(1450)
and the scalar kaon �eld K∗0 to the physical isodoublet state K?

0 (1430) [23]. The �eld
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σN ≡ (ūu+ d̄d)/
√

2 is the bare nonstrange isoscalar �eld and it corresponds to the resonance
f0(1370) [110, 80]. The �eld σS ≡ s̄s is the bare strange isoscalar �eld and the debate about
its assignment to a physical state is still ongoing; in a �rst approximation it can be assigned
to the resonance f0(1710) [110] or f0(1500) [80]. (Scalars below 1 GeV are predominantly
tetraquarks or mesonic molecular states, as seen in Refs. [212, 213, 214, 222, 216, 223, 224,
225, 226, 227, 228], which are not considered here). In order to properly take into account
mixing e�ects in the scalar-isoscalar sector, we have also used the results of Refs. [79, 80].
The mixing takes the form:

 f0(1370)
f0(1500)
f0(1710)

 = B ·

 σN ≡ n̄n = (ūu+ d̄d)/
√

2
G ≡ gg
σS ≡ s̄s

 , (6.9)

where G ≡ gg is a scalar glueball �eld which is absent in this study and B is an orthogonal
(3 × 3) matrix which has three solutions. The solution 1 and 2 from Ref. [79] is:

B1 =

 0.86 0.45 0.24
−0.45 0.89 −0.06
−0.24 −0.06 0.97

 , (6.10)

B2 =

 0.81 0.54 0.19
−0.49 0.49 0.72
0.30 −0.68 0.67

 , (6.11)

and the solution 3 from Ref. [80]:

B3 =

 0.78 −0.36 0.51
−0.54 0.03 0.84
0.32 0.93 0.18

 . (6.12)

In the solution 1 of Ref. [79] the resonance f0(1370) is predominantly an n̄n state, the
resonance f0(1500) is predominantly a glueball, and f0(1710) is predominantly a strange s̄s
state. In the solution 2 of Ref. [79] and in the solution of Ref. [80] the resonance f0(1370)
is still predominantly a nonstrange n̄n state, but f0(1710) is now predominantly a glueball,
and f0(1500) predominantly a strange s̄s state.

Note that the experimental values of the �elds are used, which are summarized with the
numerical values of the renormalization constants Zi [110], the vacuum expectation values
of σN and σS which are φN (3.34) and φS (3.35), respectively, and the decay constants of
pion (fπ ) and kaon (fK) [51] in the following Table 6.1
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Observable Experiment([51])[MeV] constants Value
mπ 137.3± 6.9 Zπ 1.709
mK 495.6± 24.8 ZK 1.604
mη 547.9± 27.4 ZKS 1.001
mη′ 957.8± 47.9 ZηN 1.709
ma0 1474± 74 ZηS 1.539
mKS 893.8± 44.7 φN 158 MeV

mf1(1370) (1200− 1500)− i(150− 250) φS 138 MeV
mf1(1500) 1505± 6 fπ 92.2 MeV
mf1(1710) 1722+6

−5 fK 110 MeV

Table 6.1.: Masses and wave-function renormalization constants.

6.4. Decay widths of a pseudoscalar glueball into
(pseudo)scalar mesons

The chiral Lagrangian (6.7) describes the two- and three-body decays of a pseudoscalar
glueball, G̃, into scalar and pseudoscalar mesons. All the decay rates depend on the un-
known coupling constant cG̃Φ. The decay widths for the two- and three-body decays of a
pseudoscalar glueball are listed in the following:

Firstly, let us list the two-body decay widths for a pseudoscalar glueball, G̃. Performing
the two-body decay-width calculation Eq.(5.36), the decay widths for every channel can be
obtain as follows:

ΓG̃→KK∗0
= ΓG̃→K−K∗+0

+ Γ
G̃→K0

K∗00
+ Γ

G̃→K0K
∗0
0

+ ΓG̃→K+K∗−0

=
Z2
K φ

2
N c

2
G̃φ

16πm3
G̃

[
m4
G̃

+ (m2
K −m2

K∗0
)2 − 2(m2

K +m2
K∗0

)m2
G̃

]1/2
, (6.13)

ΓG̃→a0 π = ΓG̃→a00 π0 + ΓG̃→a+0 π−
+ ΓG̃→a−0 π+

=
3Z2

π φ
2
S c

2
G̃φ

32πm3
G̃

[
m4
G̃

+ (m2
a0 −m

2
π)2 − 2(m2

a0 +m2
π)m2

G̃

]1/2
, (6.14)

ΓG̃→η σN =
Z2
ηS
φ2
N c

2
G̃φ

sin2 ϕ

32πm3
G̃

[
m4
G̃

+ (m2
η −m2

σN
)2 − 2(m2

η +m2
σN

)m2
G̃

]1/2
, (6.15)

ΓG̃→η′ σN =
Z2
ηS
φ2
N c

2
G̃φ

cos2 ϕ

32πm3
G̃

[
m4
G̃

+ (m2
η′ −m2

σN
)2 − 2(m2

η′ +m2
σN

)m2
G̃

]1/2
, (6.16)

ΓG̃→η σS =
Z2
ηN
φ2
N c

2
G̃φ

cos2 ϕ

32πm3
G̃

[
m4
G̃

+ (m2
η −m2

σS
)2 − 2(m2

η +m2
σS

)m2
G̃

]1/2
, (6.17)
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ΓG̃→η′ σS =
Z2
ηN
φ2
N c

2
G̃φ

sin2 ϕ

32πm3
G̃

[
m4
G̃

+ (m2
η′ −m2

σS
)2 − 2(m2

η′ +m2
σS

)m2
G̃

]1/2
. (6.18)

Secondly, let us turn to the three-body decay widths for a pseudoscalar glueball, G̃. We
use the three-body decay-width expression Eq.(5.61), which reads in the present case for the
decay of G̃ into three pseudoscalar mesons P̄1, P̄2, and P̄3,

ΓG̃→P̄1P̄2P̄3
=
SG̃→P̄1P̄2P̄3

32(2π)3m3
G̃

∫ (mG̃−m3)2

(m1+m2)2
| − iMG̃→P̄1P̄2P̄3

|2 dm2
12

×

√
(−m1 +m12 −m2)(m1 +m12 −m2)(−m1 +m12+m2)(m1 +m12 +m2)

m2
12

×

√
(−mG̃ +m12 −m3)(mG̃ +m12 −m3)(−mG̃ +m12 +m3)(mG̃ +m12 +m3)

m2
12

, (6.19)

The quantities m1, m2, m3 are the masses of P̄1, P̄2, and P̄3,MG̃→P̄1P̄2P̄3
is the tree-level

decay amplitude, and SG̃→P̄1P̄2P̄3
is a symmetrization factor (it is equal to 1 if P̄1, P̄2, and

P̄3 are all di�erent, equal to 2 for two identical particles in the �nal state, and equal to 6
for three identical particles in the �nal state). The decay channels can be obtained as follows:

(1) The full decay width into the channel KKη results from the sum

ΓG̃→KKη = ΓG̃→K0K̄0η + ΓG̃→K−K+η = 2ΓG̃→K−K+η , (6.20)

with the modulus squared decay amplitude

| − iMG̃→K−K+η|
2 =

1

4
c2
G̃Φ
Z2
KZ

2
ηN

cos2 ϕ,

where m1 = m2 = mK and m3 = mη.

(2) The full decay width into the channel KKη′ results from the sum

ΓG̃→KKη′ = ΓG̃→K0K̄0η′ + ΓG̃→K−K+η = 2ΓG̃→K−K+η′ , (6.21)

with the modulus squared decay amplitude

| − iMG̃→K−K+η′ |
2 =

1

4
c2
G̃Φ
Z2
KZ

2
ηN

sin2 ϕ,

where m1 = m2 = mK , and m3 = mη.

(3) The decay width into the channel ηηη has as modulus squared decay amplitude

| − iMG̃→ηηη|
2 =

1

8
c2
G̃Φ
Z4
ηN
Z2
ηS

cos4 ϕ sin2 ϕ,
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where m1 = m2 = m3 = mη and the symmetrization factor SG̃→ηηη = 6.

(4) The decay width into the channel ηηη′ has as modulus squared decay amplitude

| − iMG̃→ηηη′ |
2 =

1

8
c2
G̃Φ
Z4
ηN
Z2
ηS

(cos3 ϕ− 2 cosϕ sin2 ϕ)2,

where m1 = m2 = mη, m3 = mη′ and the symmetrization factor SG̃→ηηη′ = 2.

(5) The decay width into the channel ηη′η′ has as modulus squared decay amplitude

| − iMG̃→ηη′η′ |
2 =

1

8
c2
G̃Φ
Z4
ηN
Z2
ηS

(sin3 ϕ− 2 cos2 ϕ sinϕ)2,

where m1 = mη, m2 = m3 = mη′ and the symmetrization factor SG̃→ηη′η′ = 2.

(6) The full decay width into the channel ηππ is computed from the sum

ΓG̃→ηππ = ΓG̃→ηπ0π0 + ΓG̃→ηπ−π+ =
3

2
ΓG̃→ηπ−π+ , (6.22)

with the modulus squared decay amplitude

| − iMG̃→ηπ−π+ |2 =
1

8
c2
G̃Φ
Z4
πZ

2
ηS

sin2 ϕ ,

where m1 = mη and m2 = m3 = mπ.

(7) The full decay width into the channel η′ππ is computed from the sum

ΓG̃→η′ππ = ΓG̃→η′π0π0 + ΓG̃→η′π−π+ =
3

2
ΓG̃→η′π−π+ , (6.23)

with the modulus squared decay amplitude

| − iMG̃→ηπ−π+ |2 =
1

8
c2
G̃Φ
Z4
πZ

2
ηS

cos2 ϕ,

where m1 = mη′ and m2 = m3 = mπ.

(8) In the case G̃→ K−K+π0 one has:

| − iMG̃→K−K+π0 |2 =
1

4
c2
G̃Φ
Z4
KZ

2
π,

where m1 = m2 = mK and m3 = mπ0 . Then:

ΓG̃→K−K+π0 = 0.00041 c2
G̃Φ

[GeV] . (6.24)

The full decay width into the channel KKπ results from the sum

ΓG̃→KKπ = ΓG̃→K−K+π0 + ΓG̃→K0K̄0π0 + ΓG̃→K̄0K+π− + ΓG̃→K0K−π+

= 6ΓG̃→K−K+π0 . (6.25)
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There exists an interesting and subtle issue: a decay channel which involves some scalar
states which decay further into two pseudoscalar ones. For instance, K∗0 ≡ K∗0 (1430) decays
into Kπ. There are then two possible decay amplitudes for the process G̃ → KKπ: one
is the direct decay mechanism reported in Table 6.2, and the other is the decay chain
G̃ → KK∗0 → KKπ. The immediate question is, if interference e�ects emerge which spoil
the results presented in Table 6.2 and 6.3. Namely, simply performing the sum of the
direct three-body decay (Table 6.2) and the corresponding two-body decay (Table 6.3) is
not correct.
We now describe this point in more detail using the neutral channel G̃ → K0K̄0π as an

illustrative case. To this end, we describe the coupling K∗0 to Kπ via the Lagrangian

LK∗0Kπ = gK∗0K̄0π
0 +
√

2gK∗0K
−π+ + h.c. . (6.26)

The coupling constant g = 2.73 GeV is obtained by using the experimental value for the
total decay width ΓK∗0 = 270 MeV [23]. The full amplitude for the process G̃ → K0K̄0π0

will result from the sum

Mfull

G̃→K0K̄0π0 =Mdirect

G̃→K0K̄0π0 +MviaK∗0
G̃→K̄0K∗00 →K0K̄0π0

+MviaK̄∗0
G̃→K0K̄∗00 →K0K̄0π0

. (6.27)

Thus for the decay width we obtain

Γfull

G̃→K0K̄0π0 = Γdirect

G̃→K0K̄0π0 + Γ
viaK∗0
G̃→K0K∗00 →K0K̄0π0

+

Γ
viaK̄∗0
G̃→K0K̄∗00 →K0K̄0π0

+ Γmix

G̃→K0K̄0π0 , (6.28)

where Γmix

G̃→K0K̄0π0 is the sum of all interference terms. We can then investigate the magni-
tude of the mixing term Γmix, and thus the error incurred when it is neglected. The explicit
calculation for the K0K̄0π0 case gives a relative error of∣∣∣∣∣∣∣

Γmix

G̃→K0K̄0π0

Γdirect

G̃→K0K̄0π0
+ Γ

viaK∗0
G̃→K0K∗00 →K0K̄0π0

+ Γ
viaK̄∗0
G̃→K0K̄∗00 →K0K̄0π0

∣∣∣∣∣∣∣ ≈
7.3 % (g > 0)
2.2 % (g < 0)

. (6.29)

Present results from the model in Ref. [110] show that g < 0: the estimates presented in Ref.
[124] may be regarded as upper limits. We thus conclude that the total error for the channel
G̃→ K0K̄0π0 is not large and can be neglected at this stage. However, in any future, more
detailed and precise theoretical calculation, these interference e�ects should also be taken
into account.
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6.4.1. Results

The branching ratios of G̃ for the decays into three pseudoscalar mesons are reported in Table
6.2 for both choices of the pseudoscalar masses, 2.6 and 2.37 GeV (relevant for PANDA and
BESIII experiments, respectively). The branching ratios are presented relative to the total
decay width of the pseudoscalar glueball Γtot

G̃
.

Quantity Case (i): mG̃ = 2.6 GeV Case (ii): mG̃ = 2.37 GeV
ΓG̃→KKη/Γ

tot
G̃

0.049 0.043

ΓG̃→KKη′/Γ
tot
G̃

0.019 0.011

ΓG̃→ηηη/Γ
tot
G̃

0.016 0.013

ΓG̃→ηηη′/Γ
tot
G̃

0.0017 0.00082

ΓG̃→ηη′η′/Γ
tot
G̃

0.00013 0

ΓG̃→KKπ/Γ
tot
G̃

0.47 0.47

ΓG̃→ηππ/Γ
tot
G̃

0.16 0.17

ΓG̃→η′ππ/Γ
tot
G̃

0.095 0.090

Table 6.2.: Branching ratios for the decay of the pseudoscalar glueball G̃ into three pseu-
doscalar mesons.

Next we turn to the decay process G̃ → PS. The results, for both choices of mG̃, are
reported in Table 6.3 for the cases in which the bare resonance σS is assigned to f0(1710) or
to f0(1500).

Quantity Case (i): mG̃ = 2.6 GeV Case (ii): mG̃ = 2.37 GeV
ΓG̃→KKS/Γ

tot
G̃

0.060 0.070

ΓG̃→a0π/Γ
tot
G̃

0.083 0.10

ΓG̃→ησN /Γ
tot
G̃

0.0000026 0.0000030

ΓG̃→η′σN /Γ
tot
G̃

0.039 0.026

ΓG̃→ησS/Γ
tot
G̃

0.012 (0.015) 0.0094 (0.017)

ΓG̃→η′σS/Γ
tot
G̃

0 (0.0082) 0 (0)

Table 6.3.: Branching ratios for the decay of the pseudoscalar glueball G̃ into a scalar and
a pseudoscalar meson. In the last two rows σS is assigned to f0(1710) or to
f0(1500) (values in parentheses).

Note that the results are presented as branching ratios because of the as of yet unde-
termined coupling constant cG̃Φ. Concerning the decays involving scalar-isoscalar mesons,
one should go beyond the results of Table 6.3 by including the full mixing pattern above
1 GeV, in which the resonances f0(1370), f0(1500), and f0(1710) are mixed states of the
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bare quark-antiquark contributions σN ≡
∣∣ūu+ d̄d

〉
/
√

2, σS = s̄s〉, and a bare scalar
glueball �eld G. This mixing is described by an orthogonal (3 × 3) matrix, see Eq. (6.9)
[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82]. In view of the fact that a complete evaluation of
this mixing in the framework of our chiral approach has not yet been done, we use the two
solutions for the mixing matrix of Ref. [79] and the solution of Ref. [80] in order to evaluate
the decays of the pseudoscalar glueball into the three scalar-isoscalar resonances f0(1370),
f0(1500), and f0(1710). In all three solutions f0(1370) is predominantly described by the
bare con�guration σN ≡

∣∣ūu+ d̄d
〉
/
√

2, but the assignments for the other resonances vary:
in the �rst solution of Ref. [79] the resonance f0(1500) is predominantly gluonic, while in the
second solution of Ref. [79] and the solution of Ref. [80] the resonance f0(1710) has the largest
gluonic content. The results for the decay of the pseudoscalar glueball into scalar-isoscalar
resonances are reported in Table 6.4.

Quantity Sol. 1 of Ref. [79] Sol. 2 of Ref. [79] Sol. of Ref. [80]
ΓG̃→ηf0(1370)/Γ

tot
G̃

0.00093 (0.0011) 0.00058 (0.00068) 0.0044 (0.0052)

ΓG̃→ηf0(1500)/Γ
tot
G̃

0.000046 (0.000051) 0.0082 (0.0090) 0.011 (0.012)

ΓG̃→ηf0(1710)/Γ
tot
G̃

0.011 (0.0089) 0.0053 (0.0042) 0.00037 (0.00029)

ΓG̃→η′f0(1370)/Γ
tot
G̃

0.038 (0.026) 0.033 (0.022) 0.043 (0.029)

ΓG̃→η′f0(1500)/Γ
tot
G̃

0.0062 (0) 0.00020 (0) 0.00013 (0)

ΓG̃→η′f0(1710)/Γ
tot
G̃

0 (0) 0 (0) 0 (0)

Table 6.4.: Branching ratios for the decays of the pseudoscalar glueball G̃ into η and η′, re-
spectively, and one of the scalar-isoscalar states: f0(1370), f0(1500), and f0(1710)
by using three di�erent mixing scenarios of these scalar-isoscalar states reported
in Refs [79, 80]. The mass of the pseudoscalar glueball is mG̃ = 2.6 GeV and
mG̃ = 2.37 GeV (values in parentheses), respectively.

In Fig. 6.1 we show the behavior of the total decay width Γtot
G̃

= ΓG̃→PPP + ΓG̃→PS as
function of the coupling constant cG̃Φ for both choices of the pseudoscalar glueball mass.
(We assume here that other decay channels, such as decays into vector mesons or baryons
are negligible.) In the case of mG̃ = 2.6 GeV, one expects from large-Nc considerations that
the total decay width Γtot

G̃
. 100 MeV. In fact, as discussed in the Introduction, the scalar

glueball candidate f0(1500) is roughly 100 MeV broad and the tensor candidate fJ(2220) is
even narrower. In the present work, the condition Γtot

G̃
. 100 MeV implies that cG̃Φ . 5.

Moreover, in the case of mG̃ = 2.37 GeV for which the identi�cation G̃ ≡ X(2370) has been
made, we can indeed use the experimental knowledge of the full decay width [ΓX(2370) =
83 ± 17 MeV [219, 220, 221]] to determine the coupling constant to be cG̃Φ = 4.48 ± 0.46.
(However, we also refer to the recent work of Ref. [229], where the possibility of a broad
pseudoscalar glueball is discussed.)

Some comments are in order:

(i) The results depend only slightly on the glueball mass. Thus, the two columns of Table
6.2 and 6.3 are similar. It turns out that the channel KKπ is the dominant one (almost
50%), and also that the ηππ and η′ππ channels are sizable. On the other hand, the two-body
decays are subdominant and reach only 20% of the full mesonic decay width.
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Figure 6.1.: Solid (blue) line: Total decay width of the pseudoscalar glueball with the bare mass

MG̃= 2.6 GeV as function of the coupling cG̃Φ. Dashed (red) line: Same curve for

MG̃= 2.37 GeV.

(ii) The decay of the pseudoscalar glueball into three pions vanishes:

ΓG̃→πππ = 0 . (6.30)

This result represents a further testable prediction of our approach.
(iii) The decays of the pseudoscalar glueball into a scalar-isoscalar meson amount only

to 5% of the total decay width. Moreover, the mixing pattern in the scalar-isoscalar sector
has a negligible in�uence on the total decay width of G̃. Nevertheless, in the future it may
represent an interesting and additional test for scalar-isoscalar states.
(iv) Once the shifts of the scalar �elds have been performed, there are also bilinear mixing

terms of the form G̃ηN and G̃ηS which lead to a non-diagonal mass matrix. In principle, one
should take these terms into account (in addition to the already-mentioned ηNηS mixing)
and solve a three-state mixing problem in order to determine the masses of the pseudoscalar
particles. This will also a�ect the calculation of the decay widths. However, due to the
large mass di�erence of the bare glueball �elds G̃ in contrast to the other quark-antiquark
pseudoscalar �elds, the mixing of G̃ turns out to be very small in the present work, and
can be safely neglected. For instance, it turns out that the mass of the mixed state which
is predominantly glueball is (at most) just 0.002 GeV larger than the bare mass mG̃ = 2.6
GeV.
(v) If a standard linear sigma model without (axial-)vector mesons is studied, the re-

placements Zπ = ZK = ZηN = ZηS = 1 need to be performed. Most of the results of the
branching ratios for the three-body decay are qualitatively (but not quantitatively) similar
to the values of Table 6.2 (variations of about 25-30%). However, the branching ratios for
the two-body decay change sizably w.r.t. the results of Table 6.3. This fact shows once more
that the inclusion of (axial-)vector degrees of freedom has sizable e�ects also concerning the
decays of the pseudoscalar glueball.
(vi) In principle, the three-body �nal states for the decays shown in Table 6.2 can also

be reached through a sequential decay from the two-body �nal states shown in Table 6.3,
where the scalar particle S further decays into PP , for instance, K∗0 (1430) → Kπ. There
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are then two possible decay amplitudes: One from the direct three-body decay, and one from
the sequential decay, which have to be added coherently before taking the modulus square
to obtain the total three-body decay width. Summing the results shown in Table 6.2 and
6.3 gives a �rst estimate (which neglects interference terms) for the magnitude of the total
three-body decay width. We have veri�ed that the correction from the interference term
to this total three-body decay width in a given channel is at most of the order of 10% for
mG̃ = 2.6 GeV and 15% for mG̃ = 2.37 GeV. For a full understanding of the contribution of
the various decay amplitudes to the �nal three-body state, one needs to perform a detailed
study of the Dalitz plot for the three-body decay.

6.5. Interaction of a pseudoscalar glueball with nucleons

In this section we compute the decay width of the pseudoscalar glueball into a nucleon and
an antinucleon and we present the result as a branching ratio to remove the e�ects of the
undetermined coupling constant.

A U(2)R × U(2)L Lagrangian of the interaction of a pseudoscalar glueball G̃ with the
baryon �elds Ψ1 and Ψ2 [126, 230] is

Lint
G̃−baryons = i c

G̃Ψ
G̃(Ψ2 Ψ1 −Ψ1 Ψ2) . (6.31)

This interaction Lagrangian (6.31) describes the fusion of a proton and an antiproton, which
is hermitian and invariant under SU(2)R × SU(2)L, parity (G̃ → −G̃), and charge con-
jugation as proved in Ref. [230]. Now let us write the interaction Lagrangian with the
physical �elds N and N∗ which refer to the nucleon and its partner [230] , respectively. By
substituting Eqs. (3.15-3.18) into Eq.(6.31), we obtain

Lint
G̃−nucleons =

c
G̃Ψ

2 cosh δ
G̃
(
− iNγ5N − iN

∗
Neδ − iNN∗e−δ − iN∗γ5N

∗

− iNγ5N + iNN∗eδ + iN
∗
Ne−δ − iN∗γ5N

∗)
=

c
G̃Ψ

2 cosh δ
G̃
(
− 2iNγ5N + iNN∗

[
eδ − e−δ

]
+ iN

∗
N
[
e−δ − eδ

]
− 2iN

∗
γ5N

∗)
=
−ic

G̃Ψ

cosh δ
G̃
(
Nγ5N + sinh δN

∗
N − sinh δNN∗ +N

∗
γ5N

∗
)
. (6.32)

We consider �rst the pseudoscalar �eld G̃ and the nucleon �elds N, N∗, N, and N
∗
as

con�ned in a cube of length L and volume V = L3. The four-momenta of G̃, N , and N
are denoted as p, k1, and k2, respectively: From Quantum Mechanics it is known that their
3-momenta are quantized as p = 2πnp/L, k1 = 2πnk1/L, and k2 = 2πnk2 . Using a Fourier
transformation the �eld operators [230] can be obtained as

G̃ (X) =
1√
V

∑
~p

1√
2Ep

(
ape
−iP ·X + ap

†eiP ·X
)
, (6.33)
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N (X) =
1√
V

∑
~k1,s

√
mN

Ek1

(
d ~k1,sv (~p, s) e−iK1·X + b†~k1,s

u
(
~k1, s

)
eiK1·X

)
, (6.34)

and

N (X) =
1√
V

∑
~k2,r

√
mN

Ek2

(
b ~k2,ru

(
~k2, r

)
e−iK2·X + d†~k2,r

v
(
~k2, r

)
eiK2·X

)
. (6.35)

where, as known from Quantum Field Theory, the glueball and the two fermionic �elds
were decomposed in terms of annihilation and creation operators, ap, b, d, and ap†, b†, d†,
respectively.
In Eq. (6.32) the coupling constant c

G̃Ψ
cannot be determined, but it is easy to calculate

the ratio of the decay of the pseudoscalar glueball G̃ into a nucleon and an antinucleon and
of the decay into N

∗
and N [230],

Q =
ΓG̃→NN

ΓG̃→N∗N+h.c.

=
ΓG̃→NN

2ΓG̃→N∗N
. (6.36)

6.5.1. Decay of a pseudoscalar glueball into two nucleons

Let us calculate the decay process of Γ
G̃→NN which is described by the �rst term in Eq.(6.32),

L1 =
−ig

cosh δ
G̃Nγ5N . (6.37)

The G̃ resonance represents the initial state |i〉

|i〉 = a†~p′ |0〉 , (6.38)

whereas the �nal state is

|f〉 = b†
~k1
′
,s′
d†
~k2
′
,r′
|0〉 , (6.39)

The corresponding matrix element of the scattering matrix reads

〈f |S|i〉 , (6.40)

We now calculate the expectation value Sfi in terms of the initial and �nal states:

Sfi = 〈f |S|i〉 = 〈f |i
∫
d4XL1|i〉 , (6.41)

Inserting Eqs. (6.33), (6.34), (6.35), and (6.37) into (6.41) and performing a time-ordered
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product of creation and annihilation operators [230] we obtain

〈f |S|i〉 =
−ig

√
mN

2

cosh δV
3
2

√
2Ek2EpEk1

〈0|b ~k1′,s′d ~k2′,r′
∫
d4X

×
∑
~p

(
a~pe
−iP ·X + a~p

†eiP ·X
)

×
∑
~k1,s

(
d ~k1,sv

(
~k1, s

)
e−iK1·X + b†~k1,s

u
(
~k1, s

)
eiK1·X

)
γ5

×
∑
~k2,r

(
b ~k2,ru

(
~k2, r

)
e−iK2·X + d†~k2,r

v
(
~k2, r

)
eiK2·X

)
a†~p′
|0〉

∝ 〈0|b ~k1′,s′d ~k2′,r′b
†
~k1,s
d†~k2,r

a~pa
†
~p′
e−i(P−K2−K1)Xuγ5v|0〉

∝ 〈0|b ~k1′,s′d ~k2′,r′b
†
~k1,s
d†~k2,r

(
δ~p~p′ + a†~p′a~p

)
|0〉e−i(P−K2−K1)Xuγ5v

= 〈0|
(
δ ~k1 ~k1

′δss′ − b†~k1,sb ~k1′,s′
)
d ~k2
′d†~k2

δ~p~p′ |0〉e−i(P−K2−K1)Xuγ5v

= 〈0|δ ~k1 ~k1′δss′δ~p~p′
(
δ ~k2 ~k2

′δrr′ − d†~k2′,r′
d ~k2,r

)
|0〉e−i(P−K2−K1)Xuγ5v

= δ ~k1 ~k1
′δss′δ~p~p′δ ~k2 ~k2

′δrr′ e
−i(P−K2−K1)Xuγ5v . (6.42)

We therefore obtain

〈f |S|i〉 =
mN

V
3
2

√
2Ek2EpEk1

∫
d4XiMe−i(P−K2−K1)X

=
mN

V
3
2

√
2Ek2EpEk1

iM (2π)4 δ4(K1 +K2 − p) , (6.43)

where V is the volume of the `box' which contains the �elds and iM is the invariant amplitude
which is given by

iM≡ g

cosh δ
u
(
~k1, s

)
γ5v

(
~k2, r

)
. (6.44)

To �nd the lifetime of G̃ we have to take the square of the amplitude, which is the probability
for the process,

〈f |S|i〉2 =
m2
N

V 3 2Ek2EpEk1
|iM|2 (2π)8 (δ4(K1 +K2 − p))2

=
m2
N

V 3 2EpEk1Ek2
|iM|2 (2π)4 (δ4(p−K1 −K2))2V t , (6.45)

where
(2π)8 (δ4(K1 +K2 − p))2 = (2π)4 (δ4(p−K1 −K2))2V t .

This is proved in Sec.5.3. The probability for the decay, when the two particles N, N have
momenta between (k1, k1 + d3k1) and (k2, k2 + d3k2), is given by

| < f |S|i > |2 V d3k1

(2π)3
V
d3k2

(2π)3
. (6.46)
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By integrating over all possible �nal momenta, summing over all �nal spin orientations and
division by t, one can calculate the decay rate as

Γ =
mN

2

(2π)2

∑
r,s

∫
d3k1

∫
d3k2

|iM|2

2EpEk1 Ek2
δ4 (P −K1 +K2) . (6.47)

In the rest frame of the decaying particle, p = (m
G̃
,0), one �nds

δ4 (P −K1 +K2) = δ3(k1 + k2)δ(m
G̃
− Ek1 − Ek2) . (6.48)

Solving the integral over d3k2 (by using the Dirac delta function) we are left with

Γ =
mN

2

(2π)2

∑
r,s

∫
d3k1

|iM|2

2E2
k1
m
G̃

δ
(
m
G̃
− 2Ek1

)
. (6.49)

We can write

δ
(
m
G̃
− 2Ek1

)
=
m
G̃

4kf
δ(|k1| − kf ) , (6.50)

where

kf =

√
m2
G̃

4
−mN

2 (6.51)

is the modulus of the momenta of the outgoing particles. Using the spherical coordinates,
d3k1 = dΩ|k1|2d|k1| and solving the integral over dk1, one obtains the decay rate as

Γ =
mN

2

2πm2
G̃

∑
r,s

|iM|2kf . (6.52)

For the computation of
∑

r,s |iM|2, one should use the following two identities [230] :

∑
s

uα(~k, s)uβ(~k, s) =

(
γµKµ +mN

2mN

)
αβ

, (6.53)

and

∑
s

vαβ(~k, s)vβ(~k, s) =

(
−γµKµ +mN

2mN

)
αβ

. (6.54)
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The averaged modulus squared amplitude will thus be∑
r,s

|iM|2 =
g2

cosh2 δ
×
∑
r,s

u
(
~k1, s

)
γ5v

(
~k2, r

) [
u
(
~k1, s

)
γ5v

(
~k2, r

)]†
=

g2

cosh2 δ
×−

∑
r

(γ5)αβvβ

(
~k2, r

)
vµ

(
~k2, r

)∑
s

(γ5)µνuν

(
~k1, s

)
uα

(
~k1, s

)
=

g2

cosh2 δ
× (γ5)αβ

(−γµK2µ +mN

2mN

)
βµ

(γ5)µν

(
γµK1µ +mN

2mN

)
να

=
g2

cosh2 δ
× Tr

[
γ5

(−γµK2µ +mN

2mN

)
γ5

(
γµK1µ +mN

2mN

)]
=

g2

cosh2 δ
× 1

4mN
2

(
4K1 ·K2 + 4mN

2
)

=
g2

cosh2 δ
×
m2
G̃
− 2mN

2 + 2m2
N

2m2
N

=
g2

cosh2 δ
×

(
m2
G̃

2mN
2

)
,

where

K1 ·K2 =
m2
G̃
− 2m2

N

2
.

Then we obtain the �nal result of the decay rate ΓG̃→NN as follows

ΓG̃→NN =
g2

4π cosh2 δ
kf . (6.55)

Similarly, we now proceed to calculate the rate for the decay process G̃→ N
∗
N , which is

described in Eq.(6.32) by the term

L2 =
−i sinh δ

cosh δ
g G̃N

∗
N = − tanh δ g G̃N

∗
N . (6.56)

The corresponding matrix element can be obtained by

Sfi = 〈f |S|i〉 = 〈f |i
∫
d4XL2|i〉

=
−ig tanh δ

√
mNmN∗

V
3
2

√
2Ek2EpEk1

〈0|b̃ ~k1′,s′d ~k2′,r′
∫
d4X

×
∑
~p

(
a~pe
−iP ·X + a~p

†eiP ·X
)

×
∑
~k1,s

(
d̃ ~k1,sṽ

(
~k1, s

)
e−iK1·X + b̃†~k1,s

ũ
(
~k1, s

)
eiK1·X

)
×
∑
~k2,r

(
b ~k2,ru

(
~k2, r

)
e−iK2·X + d†~k2,r

v
(
~k2, r

)
eiK2·X

)
a†~p′
|0〉

∝ δ ~k1 ~k1′δss′δ~p~p′δ ~k2 ~k2′δrr′uve
−i(P−K1−K2)X , (6.57)
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which can be written as:

〈f |S|i〉 =

√
mNmN∗

V
3
2

√
2Ek2EpEk1

∫
d4XiMe−i(P−K2−K1)X , (6.58)

where

iM≡ g tanh δ ũ
(
~k1, s

)
v
(
~k2, r

)
. (6.59)

The decay rate of the pseudoscalar glueball into N
∗
N is obtained as

ΓG̃→N∗N =
mN∗mN

2πM2

∑
r,s

|iM|2k′f , (6.60)

where

k′f = ±

√√√√mN∗
4 +mN

4 +m4
G̃
− 2mN

2mN∗
2 − 2mN∗

2m2
G̃
− 2mN

2m2
G̃

4m2
G̃

, (6.61)

which is proved in Ref. [230]. The averaged modulus squared decay amplitude is

∑
r,s

|iM|2 = g2 tanh2 δ
∑
r,s

ũ
(
~k1, s

)
v
(
~k2, r

) [
ũ
(
~k1, s

)
v
(
~k2, r

)]†
= −

(
γµK1µ +mN∗

2mN∗

)
βα

(−γµK2µ +mN

2mN

)
αβ

g2 tanh2 δ

= −Tr
[(

γµK1µ +mN∗

2mN∗

)(−γµK2µ +mN

2mN

)]
g2 tanh2 δ

=
1

4mNmN∗
(4K1 ·K2 − 4mNmN∗) g

2 tanh2 δ

=
1

2mNmN∗

[
m2
G̃
− (mN +mN∗)

2
]
g2 tanh2 δ .

(6.62)

We obtain the �nal result of the decay width ΓG̃→N∗N as

ΓG̃→N∗N =
g2 tanh2 δ

4πm2
G̃

[
m2
G̃
− (mN +mN∗)

2
]
k′f . (6.63)

The mass of the nucleon and its partner are mN = 938 MeV and mN∗ = 1535 MeV,
respectively [23], whereas the mass of the lightest pseudoscalar glueball is predicted from
lattice calculations to be about 2.6 GeV. The moduli of the momenta of the outgoing particles
are kf = 900 MeV and kf ′ = 390.6 MeV. From Eq.(6.55) and Eq.(6.63) we obtain the
branching ratio (6.36) of the pseudoscalar glueball decay processes G̃→ NN and G̃→ N

∗
N

[126, 230]:
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Q =
ΓG̃→NN

2ΓG̃→N∗N

=
kf m

2
G̃

2 sinh2 δ[m2
G̃
− (mN +mN∗)] k′f

= 1.94 , (6.64)

which can be tested by the upcoming PANDA experiment at the FAIR facility in Darm-
stadt.
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7. Decay of open charmed mesons

7.1. Introduction

Charm physics is an experimentally and theoretically active �eld of hadronic physics [231].
The study of strong decays of the heavy mesons into light pseudoscalar mesons is useful to
classify the charmed states. In this chapter, which is based in the paper [119], we study
the strong OZI-dominant decays of the open heavy charmed states into light mesons. In
this way, our model acts as a bridge between the high- and low-energy sector of the strong
interaction. It turns out that the OZI-dominant decays are in agreement with current exper-
imental results, although the theoretical uncertainties for some of them are still very large.
Nevertheless, since our decay amplitudes depend on the parameters of the low-energy sector
of the theory, there seems to be an important in�uence of chiral symmetry in the determina-
tion of the decay widths of charmed states. As a by-product of our analysis, we also obtain
the value of the charm-anticharm condensate and the values of the weak decay constants of
D mesons. Moreover, in the light of our results we shall discuss the interpretation of the
enigmatic scalar strange-charmed meson D∗S0(2317) and the axial-vector strange-charmed
mesons DS1(2460) and DS1(2536) [59, 189, 190, 191]. We show the explicit form of open-
charmed decay widths which were obtained from the Lagrangian (2.145) at tree level. The
formulas are organized according to the type of decaying particle. The precise description
of the decays of open charmed states is important for the CBM experiment at FAIR.

7.2. Decay widths of open-charmed scalar mesons

In this section we study the phenomenology of the open charmed mesons in the scalar sector.
The Lagrangian (2.145) contains two open charmed scalar mesons which are D∗0 and D∗S0.

The neutral scalar stateD∗00 and the chargedD∗0,±0 decay intoDπ, while the strange-charmed
state D∗±S0 decays into DK. The corresponding interaction Lagrangian from Eq.(2.145) for
the nonstrange-charmed meson D∗0 with Dπ and the strange-charmed meson with DK has
the same structure, as we shall see below. Then, we shall calculate the general decay width
of a scalar state in this case.
We consider a generic decay process of a scalar state S into two pseudoscalar states P̃ , i.e.,
S → P̃1P̃2. The interaction Lagrangian for the neutral scalar state will be given in the
following general simple form:

LSPP =ASPPS
0P̃ 0

1 P̃
0
2 +BSPPS

0∂µP̃
0
1 ∂

µP̃ 0
2

+ CSPP ∂µS
0 ∂µP̃ 0

1 P̃
0
2 + ESPP ∂µS

0 P̃ 0
1 ∂

µP̃ 0
2 . (7.1)

Firstly, to calculate the decay amplitude for this process we denote the momenta of
S, P̃1, and P̃2 as P, P1, andP2, respectively. Then, (upon substituting ∂µ → −iPµ for the
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decaying particles and ∂µ → iP̃µ1,2 for the decay products) we obtain the Lorentz-invariant

SP̃1P̃2 decay amplitude −iM
S→P̃1P̃2

as

− iM
S→P̃ 0

1 P̃
0
2

= i(ASPP −BSPPP1 · P2 + CSPPP · P1 + ESPPP · P2) . (7.2)

Using energy momentum conservation on the vertex, P = P1 + P2, we obtain

− iM
S→P̃ 0

1 P̃
0
2

= i[ASPP −BSPPP1 ·P2 +CSPP (P 2
1 +P1 ·P2) +ESPP (P 2

2 +P1 ·P2)] . (7.3)

In the decay process, the two pseudoscalar mesons P̃ 0
1 and P̃ 0

2 are on-shell; therefore
P 2

1 = m2
P̃ 0
1

and P 2
2 = m2

P̃ 0
2

. Moreover,

P1 · P2 =
P 2 − P 2

1 − P 2
2

2
≡
m2
S −m2

P̃1
−m2

P̃2

2
. (7.4)

Therefore, the decay amplitude (7.3) can be written as

−iM
S→P̃ 0

1 P̃
0
2

= i
[
ASPP + (CSPP + ESPP −BSPP )

m2
S −m2

P̃1
−m2

P̃2

2
+ CSPP m

2
P̃1

+ ESPP m
2
P̃2

]
. (7.5)

The decay width Γ
S→P̃ 0

1 P̃
0
2
then reads

Γ
S→P̃ 0

1 P̃
0
2

=
k(mS ,mP̃1

,m
P̃2

)

8πm2
S

| − iM
S→P̃ 0

1 P̃
0
2
|2 . (7.6)

A non-singlet scalar �eld will posses also charged decay channels. We then have to consider
the contribution of the charged modes from the process S → P̃±1 P̃

∓
2 to the full decay width.

By multiplying the neutral-mode decay width of Eq.(7.6) with an isospin factor I, we obtain

Γ
S→P̃1P̃2

= Γ
S→P̃ 0

1 P̃
0
2

+ Γ
S→P̃±1 P̃

∓
2
≡ I Γ

S→P̃ 0
1 P̃

0
2
. (7.7)

The full decay width can be written as

Γ
S→P̃1P̃2

= I
k(mS ,mP̃1

,m
P̃2

)

8πm2
S

| − iM
S→P̃ 0

1 P̃
0
2
|2 , (7.8)

where I is determined from isospin deliberations, or from the interaction Lagrangian of a
given decay process.
Note that usually the contribution of the charged modes, is twice the contribution of the
neutral modes, which, as we will see in the explicit interaction Lagrangian below, leads us
to write the general decay width of S into charged modes, P̃±1 P̃

∓
2 , as follows:

Γ
S→P̃±1 P̃

∓
2

= 2
k(mS ,mP̃1

,m
P̃2

)

8πm2
S

| − iM
S→P̃ 0

1 P̃
0
2
|2 . (7.9)

Using this general structures of the decay process of a scalar into two pseudoscalar states,
S → P̃1P̃2, in the following we compute the decay width of the nonstrange-charmed scalar
state D∗0,±0 into Dπ and the strange-charmed scalar state D∗±S0 into DK.
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7.2.1. Decay Width D∗0,±0 → Dπ

Firstly, we study the phenomenology of the scalar doublet charmed mesons D∗0,±0 which
are assigned to D∗0(2400)0,±. These open-charmed mesons are known to decay into Dπ
[119, 120, 122]. The corresponding interaction Lagrangian from Eq.(2.145), for only the

neutral and positively-charged components (the other ones like D∗0,−0 possess analogous
forms) reads

LD∗0Dπ = AD∗00 DπD
∗0
0 (D̄0π0 +

√
2D+π−) +BD∗00 DπD

∗0
0 (∂µD̄

0∂µπ0 +
√

2∂µD
+∂µπ−)

+ CD∗00 Dπ∂µD
∗0
0 (π0∂µD̄0 +

√
2π−∂µD

+) + ED∗00 Dπ∂µD
∗0
0 (D̄0∂µπ0 +

√
2D+∂µπ−)

+AD∗0DπD
∗+
0 (D−π0 −

√
2D0π−) +BD∗0DπD

∗+
0 (∂µD

−∂µπ0 −
√

2∂µD
0∂µπ−)

+ CD∗0Dπ∂µD
∗+
0 (π0∂µD− −

√
2π−∂µD

0) + ED∗0Dπ∂µD
∗+
0 (D−∂µπ0 −

√
2D0∂µπ−) ,

(7.10)

where the coe�cients read

AD∗00 Dπ = −
ZπZDZD∗00√

2
λ2φC , (7.11)

BD∗00 Dπ =
ZπZDZD∗00

4
wa1wD1

[
g2

1(3φN +
√

2φC)− 2g1
wa1 + wD1

wa1wD1

+ h2(φN +
√

2φC)− 2h3φN
]
, (7.12)

CD∗00 Dπ = −
ZπZDZD∗00

2
wD?0wD1

[√
2ig2

1φC − g1
wD1 + iwD?0

wD?0wD1

−
√

2ih3φC
]
, (7.13)

ED∗00 Dπ =
ZπZDZD∗00

4
wD?0wa1

[
ig2

1(3φN −
√

2φC) + 2g1
wa1 − iwD?0
wD?0wa1

+ ih2(φN −
√

2φC)− 2ih3φN
]
, (7.14)

AD∗0Dπ =
ZπZDZD∗0√

2
λ2φC , (7.15)

BD∗0Dπ = −
ZπZDZD∗0

4
wa1wD1

[
g2

1(3φN +
√

2φC)− 2g1
wa1 + wD1

wa1wD1

+ h2(φN +
√

2φC)− 2h3φN
]
, (7.16)

CD∗0Dπ =
ZπZDZD∗0

2
wD?wD1

[√
2ig2

1φC − g1
wD1 + iwD?

wD?wD1

−
√

2ih3φC

]
, (7.17)

ED∗0Dπ = −
ZπZDZD∗0

4
wD?wa1

[
ig2

1(3φN −
√

2φC) + 2g1
wa1 − iwD?
wD?wa1

+ ih2(φN −
√

2φC)− 2ih3φN
]
. (7.18)
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Note that the parameters wD∗ and wD∗0 are imaginary as shown in Eqs. (4.48) and (4.49),
respectively, which means that the coe�cients containing the imaginary unit are real. Fur-
thermore the wave-function renormalisation factors ZD∗00 and ZD∗0 are equal, as well as the
parameters wD∗0 and wD∗ (for isospin symmetry reasons), which leads to

AD∗0Dπ = A∗D∗00 Dπ, BD∗0Dπ = B∗D∗00 Dπ, CD∗0Dπ = C∗D∗00 Dπ, ED∗0Dπ = E∗D∗00 Dπ .

In the interaction Lagrangian (7.10), the considered decays are that of the neutral state
D∗00 and the positively charged state D∗+0 . Both have two relevant decay channels .
Firstly, let us focus on the decay ofD∗00 which decays into neutral modesD0π0 and charged

modes D+π−. The explicit expression for the decay process D∗00 → D0π0 is similar to
Eq.(7.1) as seen in Eq.(7.10); when using Eq.(7.6) upon identifying the mesons S, P̃1, and P̃2

with the scalar meson D∗00 , and the pseudoscalar mesons as D0 and π0, respectively. The
coe�cients ASPP , BSPP , CSPP , and DSPP refer to AD∗00 Dπ, BD∗00 Dπ, CD∗00 Dπ, and ED∗00 Dπ,
respectively. We then obtain ΓD∗00 →D0π0 as follows:

ΓD∗00 →D0π0 =
1

8πmD∗00

[
(m2

D∗00
−m2

D0 −m2
π0)2 − 4m2

π0m
2
D0

4m4
D∗00

]1/2

×
[
AD∗00 Dπ + (CD∗00 Dπ + ED∗00 Dπ −BD∗00 Dπ)

m2
D∗00
−m2

D0 −m2
π0

2

+ CD∗00 Dπm
2
D0 + ED∗00 Dπm

2
π0

]2
. (7.19)

The decay width for D∗00 → D+π− has the same expression as (7.19) but is multiplied by an
isospin factor 2, which can be seen in Eq.(7.9). All the parameters entering Eqs.(7.19) have
been �xed as presented in Tables 4.1, 4.2, and 4.3. The value of ΓD∗00 →Dπ is then determined
as follows:

ΓD∗0(2400)0→Dπ = ΓD∗00 →D0π0 + ΓD∗00 →D+π− (7.20)

= 139+243
−114 MeV . (7.21)

Now let us turn to the positively charged scalar state D∗+0 which decays into D+π0 and
D0π+. The explicit expression for the decay process D∗00 → D0π0 is also similar to Eq.(7.1)
as seen in Eq.(7.10), when using Eq.(7.6) (upon identifying the mesons S, P̃1, and P̃2 with
D∗+0 , D+, and π0, respectively). One may proceed in a similar manner for the decay width
of D∗+0 → D0π+, where an overall isospin factor 2 is also present. Then we obtain the value
for ΓD∗+0 →Dπ

:

ΓD∗0(2400)+→Dπ = ΓD+π0 + ΓD0π+ (7.22)

= 51+182
−51 MeV . (7.23)

7.2.2. Decay Width D∗±S0 → DK

We turn here to the phenomenology of the scalar state D∗±S0 which is assigned to D∗S0(2317)±.
This open strange-charmed meson decays into D+K0 and D0K+ [119] as known from [51].
The corresponding interaction Lagrangian from Eq.(2.145) reads
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LD∗S0DK = AD∗S0DK D
∗+
S0 (D−K̄0 +D0K−) +BD∗S0DK D

∗+
S0 (∂µD

−∂µK̄0 + ∂µD
0∂µK−)

+ CD∗S0DK ∂µD
∗+
S0 (K̄0∂µD− + ∂µD

0K−) + ED∗S0DK ∂µD
∗+
S0 (D−∂µK̄0 +D0∂µK−)

+AD∗S0DK D
∗−
S0 (D+K0 + D̄0K+) +BD∗S0DK D

∗−
S0 (∂µD

+∂µK0 + ∂µD̄
0∂µK+)

+ CD∗S0DK ∂µD
∗−
S0 (K0∂µD+ + ∂µD̄

0K+) + ED∗S0DK ∂µD
∗−
S0 (D+∂µK0 + D̄0∂µK+) ,

(7.24)

with the following coe�cients

AD∗S0DK =
ZKZDZD∗S0√

2
λ2

[
φN +

√
2(φS − φC)

]
, (7.25)

BD∗S0DK =
ZKZDZD∗S0

2
wK1wD1

[
−
√

2g1
wK1 + wD1

wK1wD1

+
√

2(g2
1 − h3)φN + (g2

1 + h2)(φS + φC)

]
, (7.26)

CD∗S0DK =
ZKZDZD∗S0

2
wD1wD∗S

[√
2g1

wD1 + iwD?S
wD1wD?S

− i√
2

(g2
1 + h2)φN

+ i(g2
1 + h2)φS + 2i(h3 − g2

1)φC

]
, (7.27)

ED∗S0DK =
ZKZDZD∗S0

2
wK1wD∗S

[√
2g1

wK1 − iwD?S
wK1wD?S

+
i√
2

(g2
1 + h2)φN

−+2i(g2
1 − h3)φSi(g

2
1 + h2)φC

]
. (7.28)

As seen in Eq.(7.24) the explicit expression of D∗−S0 has a form analogous to that of D∗+S0 for
isospin symmetry reasons. The decay width of the process D∗+S0 → D+K0 is obtained from
Eq.(7.8) when using Eq.(7.5) upon identifying S, P̃1, and P̃2 with D∗+S0 , D

+, and K0 and
upon replacing ASPP → AD∗S0DK , BSPP → BD∗S0DK , CSPP → CD∗S0DK , ESPP → ED∗S0DK .
The decay width for the process D∗+S0 → D0K+ has an analogous analytic expression. The
full decay width of D∗S0 with a mass of about 2467 MeV into DK [119], see Table 4.5, is
then

ΓD∗S0→DK ' 3 GeV .
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7.3. Decay widths of open-charmed vector mesons

In this section we describe the phenomenology of open-charmed vector mesons D∗0,+. The
neutral stateD∗0 is assigned toD∗(2007)0 while the positively charged stateD∗+ toD∗(2010)+.
These resonances decay into two pseudoscalar states Dπ [51]. Let us now consider the decay
of a vector state V into two pseudoscalar states P̃ , i.e., V → P̃1P̃2, in general. The general
simple form of the interaction Lagrangian, as obtained from Eq.(2.145), reads

LV PP = AV PPV
0
µ P̃

0
1 ∂

µP̃ 0
2 +BV PPV

0
µ ∂

µP̃ 0
1 P̃

0
2 + CV PP ∂νV

0
µ (∂νP̃ 0

1 ∂
µP̃ 0

2 − ∂µP̃ 0
1 ∂

νP̃ 0
2 ) .

(7.29)

V

εµ

(α)
(P)

P1(P1)

P2(P2)

Figure 7.1.: Decay process V → P̃1P̃2

We denote the momenta of V , P̃1, and P̃2 as P , P1, and P2, respectively, and compute the
decay amplitude for this process. We consider the polarization vector ε(α)

µ (P ) for the vector
state. Then, upon substituting ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for

the decay products, we obtain the following Lorentz-invariant V P̃1 P̃2 scattering amplitude
−iM

V→P̃1P̃2
from the Lagrangian (7.29):

−iM(α)

V→P̃1P̃2
= ε(α)

µ (P )hµV PP , (7.30)

with

hµV PP = −{AV PPPµ2 +BV PPP
µ
1 + CV PP [Pµ2 (P · P1)− Pµ1 (P · P2)]} , (7.31)

where hµV PP denotes the V P̃1 P̃2 vertex.

The calculation of the decay width requires the determination of the modulus square of
the scattering amplitude. The scattering amplitude in Eq. (7.30) depends on the polariza-

tion vector ε(α)
µ (P ).

For a general scattering amplitude, one has to calculate |−iM
V→P̃1P̃2

|2 of a process contain-
ing one vector state with mass mV . The calculation reads as follows:
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−iM(α)

V→P̃1P̃2
= ε(α)

µ (P )hµV PP ⇒ (7.32)

⇒ |−iM
V→P̃1P̃2

|2 =
1

3

3∑
α=1

| − iM(α)

V→P̃1P̃2
|2

=
1

3

3∑
α=1

ε(α)
µ (P )ε(α)

ν (P )hµV PPh
ν
V PP

=
1

3

(
− gµν +

PµPν
m2

)
hµV PPh

ν
V PP

=
1

3

[
− (hµV PP )2 +

(Pµh
µ
V PP )2

m2
V

]
, (7.33)

where
3∑

α=1

ε(α)
µ (P )ε(α)

ν (P ) = −gµ ν +
Pµ Pν
m2
V

. (7.34)

Eq.(7.33) contains the metric tensor gµν = diag(1,−1,−1,−1). Note that, if the vector
particle decays, then Pµ = (mV , 0) in the rest frame of the decaying particle and thus

(Pµ h
µ)2

m2
V

≡ (mV h
0)2

m2
V

= (h0)2 . (7.35)

Therefore, we have to calculate the squared vertex (hµV PP )2 using Eq.(7.31):

(hµV PP )2 = A2
V PPm

2
P̃2

+B2
V PPm

2
P̃1

+ C2
V PP [Pµ2 (P · P1)− Pµ1 (P · P2)]2

+ 2AV PPBV PPP1 · P2 + 2AV PPCV PP [(P · P1)m2
P̃2
− (P1 · P2)(P · P2)]

+ 2BV PPCV PP [(P1 · P2)(P · P1)− (P · P2)m2
P̃1

] . (7.36)

Now let us compute the squared vertex at rest (also using Eq. (7.31)):

(h0
V PP )2 = A2

V PPE
2
P̃2

+B2
V PPE

2
P̃1

+ C2
V PP [E

P̃2
(P · P1)− E

P̃1
(P · P2)]2

+ 2AV PPBV PPEP̃1
E
P̃2

+ 2AV PPCV PP [(P · P1)E2
P̃2
− E

P̃1
E
P̃2

(P · P2)]

+ 2BV PPCV PP [E
P̃1
E
P̃2

(P · P1)− (P · P2)E2
P̃1

] . (7.37)

From Eqs. (7.33), (7.36), and (7.37) we obtain
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|−iMV→PP |2 =
1

3
{(A2

V PP +B2
V PP )k2(mV ,mP̃2

,m
P̃1

)

+ C2
V PP {k2(mV ,mP̃1

,m
P̃1

)[(P · P1)2 + (P · P2)2]

− 2(P · P1)(P · P2)(E
P̃1
E
P̃2
− P1 · P2)}

+ 2AV PPBV PP (E
P̃1
E
P̃2
− P1 · P2)

+ 2AV PPCV PP [k2(mV ,mP̃2
,m

P̃2
)P · P1 − (P · P2)(E

P̃1
E
P̃2
− P1 · P2)]

+ 2BV PPCV PP [(P · P1)(E
P̃1
E
P̃2
− P1 · P2)− k2(mV ,mP̃2

,m
P̃1

)(P · P2)]}

=
1

3

{
{A2

V PP +B2
V PP + C2

V PP [(P · P1)2 + (P · P2)2]

+2CV PP [AV PP (P · P1)−BV PP (P · P2)]}k2(mV ,mP̃2
,m

P̃1
)

+2{AV PPBV PP − C2
V PP (P · P1)(P · P2) + CV PP (BV PPP · P1

−AV PPP · P2)}(E
P̃1
E
P̃2
− P1 · P2)

}
. (7.38)

The vertex hµV PP from Eq.(7.31) can be transformed as

hµV PP = −[AV PPP
µ
2 +BV PPP

µ
1 + CV PP (mVEP̃1

Pµ2 −mVEP̃2
Pµ1 )]

= −(BV PP − CV PPmVEP̃2
)Pµ1 − (AV PP + CV PPmVEP̃1

)Pµ2 , (7.39)

where
P1 · P = mV EP̃1

and P2 · P = mV EP̃2
. (7.40)

We can then write Eq.(7.38) in a slightly di�erent (but equivalent) form, by inserting
Eq.(7.39) into Eq. (7.33) as follows:

|−iMV→PP |2 =
1

3
{−[(BV PP − CV PPmVEP̃2

)Pµ1 + (AV PP + CV PPmP̃2
E
P̃1

)Pµ2 ]2

+
1

m2
V

[(BV PP − CV PPmVEP̃2
)P1µP

µ

+ (AV PP + CV PPmVEP̃1
)P2µP

µ]2} . (7.41)

Using Eq.(7.40), k2(mV ,mP̃2
,m

P̃1
) = E2

P̃2
−m2

P̃2
, and k2(mV ,mP̃2

,m
P̃1

) = E2
P̃1
−m2

P̃1
,

we obtain that Eq.(7.41) can be written as

|−iM
V→P̃1P̃2

|2 =
1

3
[(BV PP − CV PPmVEP̃2

)2 + (AV PP + CV PPmVEP̃1
)2

− 2(AV PP + CV PPmVEP̃1
)(BV PP − CV PPmVEP̃2

)]k2(mV ,mP̃2
,m

P̃1
)

=
1

3
[AV PP −BV PP + CV PPmV (E

P̃1
+ E

P̃2
)]2k2(mV ,mP̃2

,m
P̃1

)

=
1

3
(AV PP −BV PP + CV PPm

2
V )2k2(mV ,mP̃2

,m
P̃1

) . (7.42)



7.3. Decay widths of open-charmed vector mesons 117

The decay width for a vector meson decaying into two pseudoscalar mesons Γ
V→P̃1P̃2

(as
obtained from Eq. (7.29) can be computed with the following formula:

Γ
V→P̃1P̃2

= I
k(mV ,mP̃2

,m
P̃1

)

8πm2
V

|−iM
V→P̃1P̃2

|2 , (7.43)

where I is an isospin factor and the modulus square of the decay amplitude | − iM̄
V→P̃1P̃2

|2
is given in Eq. (7.42) or, equivalently, Eq. (7.38). Now let us apply this result to calculate
the decay width of the vector meson D∗0,+ into Dπ from the Lagrangian (2.145).

7.3.1. Decay Width D∗0,± → Dπ

The D∗Dπ interaction Lagrangian from Eq.(2.145) reads

LD∗Dπ = AD?DπD
?0
µ (π0∂µD̄0 +

√
2π−∂µD+) +BD?DπD

?0
µ (D̄0∂µπ0 +

√
2D+∂µπ−)

+ CD?Dπ∂νD
?0
µ (∂µD̄0∂νπ0 +

√
2∂µD+∂νπ−)

+ C∗D?Dπ∂νD
?0
µ (∂µπ0∂νD̄0 +

√
2∂µπ−∂νD+)

+A∗D?DπD̄
?0
µ (π0∂µD0 +

√
2π+∂µD−) +B∗D?DπD̄

?0
µ (D0∂µπ0 +

√
2D−∂µπ+)

+ C∗D?Dπ∂νD̄
?0
µ (∂µD0∂νπ0 +

√
2∂µD−∂νπ+)

+ CD?Dπ∂νD̄
?0
µ (∂µπ0∂νD0 +

√
2∂µπ+∂νD−)

+AD?DπD
?+
µ (π0∂µD− −

√
2π−∂µD0) +BD?DπD

?+
µ (D−∂µπ0 −

√
2D0∂µπ−)

+ CD?Dπ∂νD
?+
µ (∂µD−∂νπ0 −

√
2∂µD0∂νπ−)

+ C∗D?Dπ∂νD
?+
µ (∂µπ0∂νD− −

√
2∂µπ−∂νD0)

+A∗D?DπD
?−
µ (π0∂µD+ −

√
2π+∂µD̄0) +B∗D?DπD

?−
µ (D+∂µπ0 −

√
2D̄0∂µπ+)

+ C∗D?Dπ∂νD
?−
µ (∂µD+∂νπ0 −

√
2∂µD̄0∂νπ+)

+ CD?Dπ∂νD
?−
µ (∂µπ0∂νD+ −

√
2∂µπ+∂νD̄0) , (7.44)

with the following coe�cients

AD∗Dπ =
i

2
ZπZD

[
g1 +

√
2wD1(h3 − g2

1)φC

]
, (7.45)

BD∗Dπ = − i
4
ZπZD

[
2g1 − wa1(3g2

1 + h2 − 2h3)φN +
√

2wa1(g2
1 + h2)φC

]
, (7.46)

CD∗Dπ =
i

2
ZπZDwa1wD1g2 . (7.47)

Note that the Lagrangian in Eq. (7.44) contains the parameter combinations AD?Dπ, BD?Dπ,
and CD?Dπ and their complex conjugates. Thus, it is certain that the Lagrangian is hermi-
tian; so we obtain L†D?Dπ = LD?Dπ.
In the following we will focus only on the decays D?0 → Dπ and D?+ → Dπ, where the
corresponding decay of D̄?0 and D?− → Dπ yields the same result due to isospin symmetry.
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The interaction Lagrangian (7.44) has two decay channels for the neutral charmed-vector
meson D∗0, which are D∗0 → D0π0 and D∗0 → D+π−. We have to note that the decay of
D∗0 into D+π− is impossible because, in this situation, the sum of the decay product masses
is larger than the mass of the decay particle, so

ΓD∗0→D+π− = 0 .

This result shows very good agreement with the experiment result: experimentally it is
not seen, as listed by the Particle Data Group [51]. Then the decay of the neutral state
D∗0 into the neutral modes D0π0 is the only possible decay in the eLSM (2.145). To
compute ΓD∗0→D0π0 , we use Eqs. (7.42) and (7.43) upon identifying V, P̃1, and P̃2 with
D∗0, π0, andD0 and the coe�cients AV PP , BV PP , and, CV PP with AD∗Dπ, BD∗Dπ, and
CD∗Dπ, respectively. We then obtain the corresponding expression

ΓD∗0→D0π0 =
1

24π

[
(m2

D∗0 −m
2
π0 −m2

D0)2 − 4m2
π0m

2
D0

4m4
D∗0

]3/2

× (AD∗Dπ −BD∗Dπ + CD?Dπm
2
D∗0)2 . (7.48)

The parameters entering Eq.(7.44) have been determined uniquely from the �t (see Tables
4.1, 4.2, and 4.3). Therefore we can calculate the value of the decay width immediately:

ΓD∗(2007)0→D0π0 = (0.025± 0.003)MeV , (7.49)

where the experimental value reads Γexp
D∗(2007)0→D0π0 < 1.3 MeV as listed in Ref. [51].

Now let us turn to the phenomenology of the positively charged state D∗(2010)+, which
can decay into D0π+ and D+π0. The decay width of the channel D∗(2010)+ → D0π+ has
an analogous analytic expression as ΓD∗0→D0π0 , which is described in Eq.(7.48), whereas
concerning the decay D∗(2010)+ → D+π0 Eq. (7.48) holds upon multiplication with an
isospin factor 2. We then obtain the following results:

ΓD∗(2010)+→D+π0 = (0.018+0.002
−0.003) MeV , (7.50)

ΓD∗(2010)+→D0π+ = (0.038+0.005
−0.004) MeV . (7.51)

The experimental values [51] read

Γexp
D∗(2010)+→D+π0 = (0.029± 0.008)MeV

and
Γexp
D∗(2010)+→D0π+ = (0.065± 0.017)MeV .
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7.4. Decay widths of open charmed axial-vector mesons

In this section we turn to the study of the phenomenology of axial-vector charmed mesons,
i.e., the two- and three-body decays of D1 and the two-body decays of the strange DS1. The
nonstrange-charmed �eld D1 corresponds to the resonances D1(2420)0,± while the strange-
charmed doublet D±S1 is assigned to the resonance DS1(2536)±. Firstly let us focus on the
two-body decays of the axial-vector charmed mesons D1, DS1. The nonstrange-charmed D1

decays into vector-charmed and light pseudoscalar mesons, D1 → D∗π, while the strange-
charmed doublet DS1 decays into D∗K, which also contains a vector-charmed meson and
a light pseudoscalar meson. Therefore, both decays have the same structure of the corre-
sponding expression for the decay amplitude. This leads us to consider the general case of
the two-body decay process of an axial-vector meson A into a vector V and a pseudoscalar
state P̃ , i.e., A → V P̃ . The following interaction Lagrangian describes the decay of the
axial-vector state into neutral modes:

L
AV P̃

= A
AV P̃

Aµ0V 0
µ P̄

0

+B
AV P̃

[
Aµ0

(
∂νV

0
µ − ∂µV 0

ν

)
∂νP̄ 0 + ∂νAµ0

(
V 0
ν ∂µP̄

0 − V 0
µ ∂νP̄

0
)]

. (7.52)

A

εµ

(α)
(P)

εν

(α)
(P1)

V

P(P2)

Figure 7.2.: Decay process A→ V P̃ .

Let us study a generic decay process of the form A → V 0P̃ 0. The 4-momenta of A, V ,
and P̃ are denoted as P, P1, and P2, respectively. We have to consider the corresponding
polarization vectors because there are two vector states involved in the decay process A →
V 0P̃ 0, i.e., A and V . These we denote as ε(α)

µ (P ) for A and ε
(β)
ν (P1) for V . Using the

substitutions ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for the decay products,

we obtain the Lorentz-invariant AV P̃ scattering amplitude −iM(α,β)

A→V 0P̃ 0
as follows:

−iM(α,β)

A→V 0P̃ 0
= ε(α)

µ (P )ε(β)
ν (P1)hµν

AV P̃
, (7.53)

with

hµν
AV P̃

= i
{
AAV P̃ g

µν +BAV P̃ [Pµ1 P
ν
2 + Pµ2 P

ν − (P1 · P2)gµν − (P · P2)gµν ]
}
, (7.54)

where hµν
AV P̃

denotes the AV P̃ vertex.
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It will be necessary to determine the modulus square of the scattering amplitude in order
to calculate the decay width. We note that the scattering amplitude in Eq. (7.53) depends

on the polarization vectors ε(α)
µ (P ) and ε(β)

ν (P1). Therefore, it is necessary to calculate the
average of the modulus squared amplitude for all polarization values. Let us denote the
masses of the vectors states A and V as mA and mV , respectively. Then the averaged
modulus squared amplitude |−iM|2 is determined as follows:

∣∣−iMA→V 0P̃ 0

∣∣2 =
1

3

3∑
α,β=1

∣∣∣−iM(α,β)

A→V 0P̃ 0

∣∣∣2
=

1

3

3∑
α,β=1

ε(α)
µ (P )ε(β)

ν (P1)hµνAV P ε
(α)
κ (P )ε

(β)
λ (P1)h∗κλ

AV P̃
. (7.55)

Given that

3∑
α=1

ε(α)
µ (P )ε(α)

κ (P ) = −gµκ +
PµPκ
m2
A

, (7.56)

[an analogous equation holds for ε(β)], we obtain from Eq. (7.55):

|−iMA→V 0P̃ 0 |2 =
1

3

(
−gµκ +

PµPκ
m2
A

)(
−gνλ +

P1νP1λ

m2
V

)
hµν
AV P̃

h∗κλ
AV P̃

=
1

3

[
hµνAV P̃h

∗µν
AV P̃

−
hµν
AV P̃

Pµ h
∗κ
νAV P̃

Pκ

m2
A

−
hµν
AV P̃

P1ν h
∗λ
µAV P̃

Pλ

m2
V

+
hµν
AV P̃

PµP1ν h
∗xλ
AV P̃

PxP1λ

m2
Vm

2
A

]

=
1

3

∣∣∣hµν
AV P̃

∣∣∣2 −
∣∣∣hµν
AV P̃

Pµ

∣∣∣2
m2
A

−

∣∣∣hµν
AV P̃

P1ν

∣∣∣2
m2
V

+

∣∣∣hµν
AV P̃

PµP1ν

∣∣∣2
m2
Vm

2
A

 , (7.57)

which contains the metric tensor gµν = diag(1,−1 − 1,−1). The decay width for the
process A→ V 0P̃ 0 then reads

ΓA→V 0P̃ 0 =
k(mA,mV ,mP̃ )

8πm2
A

|−iMA→V 0P̃ 0 |2 . (7.58)

Note that a non-singlet axial-vector �eld will in general also possess charged decay channels.
Therefore, in addition to the decay process considered in Eq. (7.58), we must consider the
contribution of the charged modes from the process A → V ±P̃∓ to the full decay width.
Then the full decay width is obtained as

ΓA→V P̃ = ΓA→V 0P̃ 0 + ΓA→V ±P̃∓ ≡ IΓA→V 0P̃ 0 .
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Using Eq.(7.57) we obtain the two-body decay width of vector meson, Eq.(7.58), as follows:

ΓA→V P̃ =
K(mA,mV ,mP̃ )

12πm2
A

∣∣∣hµν
AV P̃

∣∣∣2 −
∣∣∣hµν
AV P̃

Pµ

∣∣∣2
m2
A

−

∣∣∣hµν
AV P̃

P1ν

∣∣∣2
m2
V

+

∣∣∣hµν
AV P̃

PµP1ν

∣∣∣2
m2
Vm

2
A

 ,

(7.59)
where the quantities Pµ = (mA,0), Pµ1 = (EV ,k), and Pµ2 = (EP̃ ,−k) are the four-momenta
of A, V , and P̃ in the rest frame of A, respectively. The following kinematic relations hold:

PV · PP̃ =
m2
A −m2

V −m2
P̃

2
,

PA · PV = mAEV =
m2
A +mV −m2

P̃

2
,

PA · PP̃ = mAEP̃ =
m2
A −mV +m2

P̃

2
.

The terms entering in Eq. (7.59) are given by

∣∣∣hµν
AV P̃

∣∣∣2 = 4A2
AV P̃

+B2
AV P̃

[
m2
Vm

2
P̃

+m2
Am

2
P̃

+ 2(P1 · P2)2 + 2(P · P2)2 + 6(P1 · P2)(P · P2)
]

− 6AAV P̃BAV P̃ (P1 · P2 + P · P2) , (7.60)

∣∣∣hµν
AV P̃

Pµ

∣∣∣2 = A2
AV P̃

m2
A +B2

AV P̃

[
(P · P1)2m2

P̃
+ (P1 · P2)2m2

A − 2(P · P1)(P · P2)(P1 · P2)
]

+ 2AAV P̃BAV P̃
[
(P · P1)(P · P2)− (P1 · P2)m2

A

]
, (7.61)

∣∣∣hµν
AV P̃

P1,ν

∣∣∣2 = A2
AV P̃

m2
V +B2

AV P̃

[
(P · P1)2m2

P̃
+ (P · P2)2m2

V − 2(P · P1)(P · P2)(P1 · P2)
]

+ 2AAV P̃BAV P̃
[
(P · P1)(P1 · P2)− (P · P2)m2

V

]
, (7.62)

∣∣∣hµν
AV P̃

PµP1,ν

∣∣∣2 = [AAV P̃ (P · P1)]2

with EV =
√
K2(mA,mV ,mP̃ ) +m2

V and EP̃ =
√
K2(mA,mV ,mP̃ ) +m2

P̃
.

7.4.1. Two-body decay of D1

We present the relevant interaction Lagrangian for the nonstrange axial-vector meson D1

which is a light-heavy quark Qq and is assigned to D1(2420)0,±. This Lagrangian describes
only the two-body decays of this state, and is given as:
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LD1D?π = AD1D?πD
µ0
1

(
D̄?0
µ π

0 +
√

2D?+
µ π−

)
+BD1D?π

{
Dµ0

1

[(
∂νD̄

?0
µ − ∂µD̄?0

ν

)
∂νπ0 +

√
2
(
∂νD

?+
µ − ∂µD?+

ν

)
∂νπ−

]
+∂νDµ0

1

[(
D̄?0
ν ∂µπ

0 − D̄?0
µ ∂νπ

0
)

+
√

2
(
D?+
ν ∂µπ

− −D?+
µ ∂νπ

−)]}
+A?D1D?πD̄

µ0
1

(
D?0
µ π

0 +
√

2D?−
µ π+

)
+B?

D1D?π

{
D̄µ0

1

[(
∂νD

?0
µ − ∂µD̄?0

ν

)
∂νπ0 +

√
2
(
∂νD

?−
µ − ∂µD?−

ν

)
∂νπ+

]
+∂νD̄µ0

1

[(
D?0
ν ∂µπ

0 −D?0
µ ∂νπ

0
)

+
√

2
(
D?−
ν ∂µπ

+ −D?−
µ ∂νπ

+
)]}

+AD1D?πD
µ+
1

(
D?−
µ π0 −

√
2D?0

µ π
−
)

+BD1D?π

{
Dµ+

1

[(
∂νD

?−
µ − ∂µD?−

ν

)
∂νπ0 −

√
2
(
∂νD

?0
µ − ∂µD?0

ν

)
∂νπ−

]
+∂νDµ+

1

[(
D?−
ν ∂µπ

0 −D?−
µ ∂νπ

0
)
−
√

2
(
D?0
ν ∂µπ

− −D?0
µ ∂νπ

−)]}
+A?D1D?πD

µ−
1

(
D?+
µ π0 −

√
2D̄?0

µ π
+
)

+B?
D1D?π

{
Dµ−

1

[(
∂νD

?+
µ − ∂µD?+

ν

)
∂νπ0 −

√
2
(
∂νD̄

?0
µ − ∂µD̄?0

ν

)
∂νπ+

]
+∂νDµ−

1

[(
D?+
ν ∂µπ

0 −D?+
µ ∂νπ

0
)
−
√

2
(
D̄?0
ν ∂µπ

+ − D̄?0
µ ∂νπ

+
)]}

, (7.63)

with the following coe�cients

AD1D?π =
i√
2
Zπ(g2

1 − h3)φC , (7.64)

BD1D?π =
i

2
Zπg2wa1 . (7.65)

From the interaction Lagrangian (7.63) we obtain that the neutral state of D1 decays
into D∗0π0, D∗+π− and that the positively charged state decays into D∗+π0, D∗0π+ (see
below). The interesting point is that the decays D0

1 → D+π− and D+
1 → D0π+ (although

kinematically allowed) do not occur in our model; because there is no respective tree-level
coupling. This is in agreement with the small experimental upper bound. Improvements in
the decay channels of D1(2420) could be made by taking into account also the multiplet of
pseudovector quark-antiquark states. In this way, one will be able to evaluate the mixing of
these con�gurations and describe at the same time the resonances D1(2420) and D1(2430).

Decay Width D0
1 → D?π

The decay width of D0
1 into D∗0π0 is given by Eq. (7.59) upon substituting the �elds A, V 0,

and P̃ 0 with D0
1, D

∗0, and π0 respectively. One may do likewise for the decay width of D0
1

into D∗+π−, but in this case it is necessary to multiply the expression by an isospin factor
2. Given that all parameters entering Eqs. (7.59, 7.64, 7.65) are known from Tables 4.1, 4.2,
and 4.3, we consequently obtain the following value of the decay width of D0

1 into D∗π

ΓD1(2420)0→D∗π = ΓD1(2420)0→D∗+π− + ΓD1(2420)0→D∗0π0 = 65+51
−37 MeV. (7.66)
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Experimentally the decay width of D1(2420)0 into D∗+π− has been observed.

Decay Width D+
1 → D?π

One can proceed in a similar manner for the D+
1 state, but in this case we set A ≡ D+

1 , V
0 ≡

D?, and P̄ 0 ≡π in Eq. (7.59). We obtain the following value of the decay width

ΓD+
1 →D?π

= ΓD1(2420)+→D∗+π0 + ΓD1(2420)+→D∗0π+ = 65+51
−36 MeV. (7.67)

7.4.2. Decay Width D1 → Dππ

Now we turn to the three-body decays of the open axial-vector nonstrange charmed meson
D1(2420)0,+ which decays into three pseudoscalar mesons, Dππ. The relevant interaction
Lagrangian can be written in a single equation as follows:

LD1Dππ = AD1DππD
µ0
1 ∂µD̄

0
(
π02

+ 2π−π+
)

+BD1DππD
µ0
1 D̄0∂µπ

0π0 + CD1DππD
µ0
1 D̄0∂µπ

−π+

+ ED1DππD
µ0
1 D̄0π−∂µπ

+ + FD1DππD
µ0
1 D+(π0∂µπ

− − ∂µπ0π−)

+AD1DππD̄
µ0
1 ∂µD

0
(
π02

+ 2π−π+
)

+BD1DππD̄
µ0
1 D0∂µπ

0π0 + CD1DππD̄
µ0
1 D0∂µπ

+π−

+ ED1DππD̄
µ0
1 D0π+∂µπ

− + FD1DππD̄
µ0
1 D−(π0∂µπ

+ − ∂µπ0π+)

+AD1DππD
µ+
1 ∂µD

−
(
π02

+ 2π−π+
)

+BD1DππD
µ+
1 D−∂µπ

0π0 + CD1DππD
µ+
1 D−∂µπ

−π+

+ ED1DππD
µ+
1 D−π−∂µπ

+ + FD1DππD
µ+
1 D0(π−∂µπ

0 − ∂µπ−π0)

+AD1DππD
µ−
1 ∂µD

+
(
π02

+ 2π−π+
)

+BD1DππD
µ−
1 D+∂µπ

0π0 + CD1DππD
µ−
1 D+∂µπ

+π−

+ ED1DππD
µ−
1 D+π+∂µπ

− + FD1DππD
µ−
1 D̄0(π+∂µπ

0 − ∂µπ+π0) , (7.68)

with the coe�cients

AD1Dππ =
1

4
Z2
π ZD wD1(g2

1 + 2h1 + h2) , (7.69)

BD1Dππ =
1

4
Z2
π ZD wa1(3g2

1 + h2 − 2h3) , (7.70)

CD1Dππ =
1

2
Z2
π ZD wa1(g2

1 + h2) , (7.71)

ED1Dππ = Z2
π ZD wa1(g2

1 − h3) , (7.72)

FD1Dππ =

√
2

4
Z2
π ZD wa1(g2

1 − h2 − 2h3) . (7.73)

(7.74)
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As seen in the Lagrangian (7.68) there are three relevant channels for the neutral state
D0

1 which are D0
1 → D0π0π0, D0

1 → D0π+π−, and D0
1 → D+π−π0. The positive state also

has three relevant channels due to D+
1 → D+π+π−, D+

1 → D+π0π0, and D+
1 → D0π0π+.

Decay Width D0,+
1 → D0,+ππ

The Lagrangian (7.68) allows us to calculate the decay width for the process D1 → Dππ.
Firstly let us focus on the three body-decay of the neutral state D0

1 into D0π0π0. We denote
the momenta of D0

1, D
0, π0 and π0 as P, P1, P2, and P3. A vector state D1 is involved in

this decay process. We then consider the corresponding polarization vector ε(α)
µ (P ) for D1,

and substitute ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2,3 for the decay products.

We straightforwardly obtain the following D0
1D

0π0π0 scattering amplitude −iM (α)

D0
1→D0π0π0

from the Lagrangian (7.68):

−iM (α)

D0
1→D0π0π0 = ε(α)

µ (P )hµD1Dππ
, (7.75)

where hµD1Dππ
is the vertex following from the relevant part of the Lagrangian,

hµD1Dππ
= − [AD1DππP

µ
1 +BD1DππP

µ
2 ] . (7.76)

In order to calculate the decay width of D0
1 we need to calculate the averaged modulus

squared decay amplitude |−iMD0
1→D0π0π00|2 from Eq.(7.75):

|−iMD0
1→D0π0π0 |2 =

1

3

3∑
α=1

| − iM (α)

D0
1→D0π0π0 |2

=
1

3

3∑
α=1

ε(α)
µ (P )ε(α)

ν (P )hµD1Dππ
h∗νD1Dππ

=
1

3

(
− gµν +

PµPν
M2

)
hµD1Dππ

h∗νD1Dππ

=
1

3

[
−|hµD1Dππ

|2 +
|Pµ hµD1Dππ

|2

M2

]
, (7.77)

where
|hµD1Dππ

|2 = A2
D1DππP

2
1 + 2AD1Dππ BD1Dππ(P1 · P2) +B2

D1Dππ P
2
2 , (7.78)

|Pµ hµD1Dππ
|2 = | − [AD1Dππ(P · P1) +BD1Dππ(P · P2)] |2 , (7.79)

where Pµ = (M,0), Pµ1 = (EP1 ,p), Pµ2 = (EP2 ,−p), and Pµ3 = (EP3 ,−p) are the four-
momenta of D0

1, D
0, π0, and π0 in the rest frame of D0

1, respectively. In this frame,

P1 · P2 =
m2

12 −m2
1 −m2

2

2
,

P · P1 = m2
1 +

m2
12 −m2

1 −m2
2

2
+
m2

13 −m2
1 −m2

3

2
,

P · P2 = m2
2 +

m2
12 −m2

1 −m2
2

2
+
m2

23 −m2
2 −m2

3

2
.
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The quantities M, m1, m2, m3 refer to the mass of D0
1, D

0, π0, π0, respectively. Using
Eq.(6.19) the decay width for the process D0

1 → D0π0π0 can be obtained as

ΓA→P1P2P3 =
2

96 (2π)3M3

∫ (M−m3)2

(m1+m2)2

∫ (m2
23)max

(m2
23)min

×

− ∣∣∣hµD1Dππ

∣∣∣2 +

∣∣∣hµD1Dππ
Pµ

∣∣∣2
M2

 dm2
23 dm

2
12 . (7.80)

The decay of the neutral states for the processes D0
1 → D0π+π− and D0

1 → D+π−π0 has
the same formula as in Eq. (7.80), only in this case it is multiplied by an isospin factor 2 as
given by the Lagrangian (7.68). We then get

ΓD0
1→D0ππ = ΓD1(2420)0→D0π0π0 + ΓD1(2420)0→D0π+π0 = (0.59± 0.02) MeV. (7.81)

For the positive state D1(2420)+ the decay process D+
1 → D+π0π0 has an analogous

analytic expression as for the process D0
1 → D0π0π0 (as presented in Eq. (7.80)), while

D+
1 → D+π+π− has the same formula, multiplied by an isospin factor 2 as given from the

Lagrangian (7.68).

ΓD0
1→D+ππ = ΓD1(2420)+→D+π0π0 + ΓD1(2420)+→D+π+π− = (0.56± 0.02) MeV. (7.82)

This has been observed experimentally.

Decay Width D0,+
1 → Dπ+π0

The scattering amplitudes for the processes D0
1 → D−π+π0 and D+

1 → D0π+π0 di�er
markedly from the previous processes for the three-body decay of D0,+

1 , as can be seen
from the interaction Lagrangian (7.68). Thus, we study the decay widths for these channels
di�erently. Let us �rstly focus on the decay width of the neutral state D0

1 into D−π+π0,
which has the same expression as for the decay process D+

1 → D0π+π0. To write the
scattering amplitude for D0

1 → D−π+π0 we denote the momenta of D0
1, D

−, π+, and π0

as P, P1, P2, and P3. For the meson D0
1, we consider the polarization vector ε(α)

µ (P ) and
substitute ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2,3 for the outgoing particles.
We then obtain the following decay amplitude from the Lagrangian (7.68):

−iM (α)

D0
1→D0−π+π0 = ε(α)

µ (P )Xµ
D1Dππ

, (7.83)

where the vertex Xµ
D1Dππ

is

Xµ
D1Dππ

= −FD1Dππ(Pµ2 − P
µ
3 ) . (7.84)

The averaged modulus squared amplitude |−iMD0
1→D0−π+π0 |2 has the same general formula

as in Eq.(7.77), with substituting the vertices hµD1Dππ
→ Xµ

D1Dππ
,



126 7. Decay of open charmed mesons

|−iMD0
1→D0−π+π0 |2 =

1

3

[
−|Xµ

D1Dππ
|2 +

|PµXµ
D1Dππ

|2

M2

]

=
F 2
D1Dππ

3

[
1

M2
(P · P2 − P · P3)2 − (m2

2 +m2
3 + 2P2 · P3)

]
. (7.85)

The decay width D0
1 → D+π−π0 reads

ΓA→P1P2P3 =
F 2
D1Dππ

3× 32 (2π)3M3

∫ (M−m3)2

(m1+m2)2

∫ (m2
23)max

(m2
23)min

dm2
23 dm

2
12

×
[

1

M2
(P · P2 − P · P3)2 − (m2

2 +m2
3 + 2P2 · P3)

]
, (7.86)

where the quantities M, m1, m2, and m3 refer to the masses for the �elds D0
1, D

+, π−, and
π0, respectively, and the kinematic relations

P2 · P3 =
m2

23 −m2
2 −m2

3

2
,

P · P3 = m2
3 +

m2
13 −m2

1 −m2
3

2
+
m2

23 −m2
2 −m2

3

2
.

All the parameters entering Eq.(7.86) are �xed and listed in the Tables 4.1 and 4.3. Conse-
quently we obtain the decay width of D1(2420)0 into D+π−π0:

ΓD1(2420)0→D+π−π0 = 0.21+0.01
−0.015MeV. (7.87)

The decay of the charged state D+
1 into D0π0π+ has an analogous expression and is

ΓD1(2420)+→D0π0π+ = (0.22± 0.01) MeV. (7.88)

This decay is observed experimentally.

7.4.3. Decay Width DS1 → D∗K

As a last step we turn to the strange-charmed axial-vector state D+
S1 which is assigned

to DS1(2536). This resonance decays into D∗(2010)+K0 and D∗(2007)0K+ in the model
(2.145), whereas kinematically the decay to DK is not allowed. This is in agreement with
experimental data in which the decays DS1(2536)+ → D+K0 and DS1(2536)+ → D0K+

are not seen (as stated by the PDG [51]). The DS1D
?K interaction Lagrangian from Eq.

(2.145) reads

LDS1D?K = ADS1D∗KD
µ+
S1 (D?−

µ K̄0 +D?0
µ K

−)

+BDS1D∗K{D
µ+
S1 [(∂νD

?−
µ − ∂µD?−

ν )∂νK̄0 + (∂νD
?0
µ − ∂µD?0

ν )∂νK−]

+ ∂νDµ+
S1 [D?−

ν ∂µK̄
0 −D?−

µ ∂νK̄
0 +D?0

ν ∂µK
− −D?0

µ ∂νK
−]}

+A?DS1D∗KD
µ−
S1 (D?+

µ K0 + D̄?0
µ K

+)

+B?
DS1D∗K{D

µ−
S1 [(∂νD

?+
µ − ∂µD?+

ν )∂νK0 + (∂νD̄
?0
µ − ∂µD̄?0

ν )∂νK+]

+ ∂νDµ−
S1 [D?+

ν ∂µK
0 −D?+

µ ∂νK
0 + D̄?0

ν ∂µK
+ − D̄?0

µ ∂νK
+]} , (7.89)
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with the following coe�cients

ADS1D∗K =
i

4
ZK

[
g2

1(
√

2φN − 2φS − 4φC) + h2(
√

2φN − 2φS) + 4h3φC

]
, (7.90)

BDS1D∗K = − i√
2
ZK g2wK1 . (7.91)

According to the interaction Lagrangian,DS1 decays into the channelsD∗+K0 andD∗0K+.
The formula for the decay widths ΓD+

S1→D∗+K0 and ΓD+
S1→D∗0K0 is as in Eq. (7.59), when

setting A ≡ DS1, V ≡ D∗, P̄ ≡ K and replacing the vertex hµν
AV P̄

by the following vertex
hµνDS1D∗K :

hµνDS1D∗K = i {ADS1D∗Kg
µν +BDS1D∗K [Pµ1 P

ν
2 + Pµ2 P

ν − (P · P2)gµν − (P1 · P2)gµν ]} ,
(7.92)

The parameters are �xed and presented in Tables 4.1, 4.2, and 4.3. We then obtain the
decay width into D∗K as

ΓDS1(2536)+→D∗K = ΓD+
S1→D∗0K+ + ΓD+

S1→D∗+K0

= 25+22
−15 MeV. (7.93)

whereas Γexp
DS1(2536)+→D∗K = (0.92± 0.03± 0.04) MeV.

7.5. Weak decay constants of Charmed mesons

In this subsection we evaluate the weak decay constants of the pseudoscalar mesons D, DS ,
and ηC . Their analytic expressions read [see Appendix A and also Ref. [118, 119, 122]]

fD =
φN +

√
2φC√

2ZD
, (7.94)

fDS =
φS + φC
ZDS

, (7.95)

fηC =
2φC
ZηC

. (7.96)

Using the parameters of the �t we obtain

fD =(254± 17) MeV , (7.97)

fDS =(261± 17) MeV , (7.98)

fηC =(314± 39) MeV. (7.99)

The experimental values fD = (206.7± 8.9) MeV and fDs = (260.5± 5.4) MeV [51] show a
good agreement for fDs and a slightly too large theoretical result for fD. The quantity fηC
is in fair agreement with the experimental value fηC = (335± 75) MeV [232] as well as with
the theoretical result fηC = (300± 50) MeV obtained in Ref. [233]. These results show that
our determination of the condensate φC is reliable (even if the theoretical uncertainty is still
large).
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7.6. Summary

We summarize the results of the (OZI-dominant) strong decay widths of the resonances D0,
D∗, D1, and DS1, in Table 7.1. For the calculation of the decay widths we have used the
physical masses listed by the PDG [51]. This is necessary in order to have the correct phase
space. With the exception of DS1(2536)+ → D∗K, all values are in reasonable agreement
with the mean experimental values and upper bounds. Although the theoretical uncertainties
are still large and the experimental results are not yet well known, the qualitative agreement
is anyhow interesting if one considers that the decay amplitudes depend on the parameters
of the three-�avour version of the model determined in Ref. [110]. Note that the theoretical
errors have been calculated by taking into account the uncertainty in the charm condensate
φC = (176 ± 28) MeV. The lower theoretical value corresponds to φC = (176− 28) MeV,
while the upper one to φC = (176 + 28) MeV. The explicit expressions for the decay widths
are reported in the previous.
Here we do not study the decay of other (hidden and open) charmed states because we
restrict ourselves to OZI-dominant processes. The study of OZI-suppressed decays which
involve the large-Nc suppressed parameters λ1 and h1 is left for the next chapter. There, also
the decays of the well-known charmonium states (such as χc0 and ηc) will be investigated.

Decay Channel Theoretical result [MeV] Experimental result [MeV]
D∗0(2400)0 → Dπ 139+243

−114 D+π− seen; full width Γ = 267± 40

D∗0(2400)+ → Dπ 51+182
−51 D+π0 seen; full width: Γ = 283± 24± 34

D∗(2007)0 → D0π0 0.025± 0.003 seen; < 1.3

D∗(2007)0 → D+π− 0 not seen
D∗(2010)+ → D+π0 0.018+0.002

−0.003 0.029± 0.008

D∗(2010)+ → D0π+ 0.038+0.005
−0.004 0.065± 0.017

D1(2420)0 → D∗π 65+51
−37 D∗+π− seen; full width: Γ = 27.4± 2.5

D1(2420)0 → D0ππ 0.59± 0.02 seen
D1(2420)0 → D+π−π0 0.21+0.01

−0.015 seen
D1(2420)0 → D+π− 0 not seen; Γ(D+π−)/Γ(D∗+π−) < 0.24

D1(2420)+ → D∗π 65+51
−36 D∗0π+ seen; full width: Γ = 25± 6

D1(2420)+ → D+ππ 0.56± 0.02 seen
D1(2420)+ → D0π0π+ 0.22± 0.01 seen
D1(2420)+ → D0π+ 0 not seen; Γ(D0π+)/Γ(D∗0π+) < 0.18

DS1(2536)+ → D∗K 25+22
−15 seen; full width Γ = 0.92± 0.03± 0.04

DS1(2536)+ → D+K0 0 not seen
DS1(2536)+ → +D0K+ 0 not seen

Table 7.1: Decay widths of charmed mesons.

The following comments are in order:
(i) The decay of D∗0(2400)0 into Dπ has a very large theoretical error due to the imprecise

determination of φC . A qualitative statement is, however, possible: the decay channel
D∗0(2400)0 → Dπ is large and is the only OZI-dominant decay predicted by our model. This
decay channel is also the only one seen in experiment (although the branching ratio is not
yet known). A similar discussion holds for the charged counterpart D∗0(2400)+.
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(ii) The decay widths of the vector charmed states D∗(2007)0 and D∗(2010)+ are slightly
smaller than the experimental results, but close to the lower bounds of the latter.
(iii) The results for the axial-vector charmed states D1(2420)0 and D1(2420)+ are com-

patible with experiment. Note that the decay into D∗π is the only one which is experimen-
tally seen. Moreover, the decays D1(2420)0 → D+π− and D1(2420)+ → D0π+, although
kinematically allowed, do not occur in our model because there is no respective tree-level
coupling; this is in agreement with the small experimental upper bound. Improvements in
the decay channels of D1(2420) are possible by taking into account also the multiplet of
pseudovector quark-antiquark states. In this way, one will be able to evaluate the mixing of
these con�gurations and describe at the same time the resonances D1(2420) and D1(2430).
(iv) It is interesting that the decays of the vector states D∗(2007)0 and D∗(2010)± and of

the axial-vector states D1(2420)0 and D1(2420)+ can be simultaneously described with the
same set of (low-energy) parameters. Namely, in the low-energy language these states are
chiral partners and the results (even if the experimental knowledge is not yet conclusive and
the theoretical uncertainties are still large) show that chiral symmetry is still important in
the energy range relevant for charmed mesons.
(v) The decay of the axial-vector strange-charmed DS1(2536)+ → D∗K is too large in

our model when compared to the experimental data of about 1 MeV. This result is robust
upon variation of the parameters, as the error shows. We thus conclude that the resonance
DS1(2536)± is not favored to be (predominantly) a member of the axial-vector multiplet (it
can be, however, a member of the pseudovector multiplet). Then, we discuss two possible
solutions to the problem of identifying the axial-vector strange-charmed quarkonium:
Solution 1 : There is a `seed' quark-antiquark axial-vector state DS1 above the D∗K

threshold, which is, however, very broad and for this reason has not yet been detected.
Quantum corrections generate the state DS1(2460)± through pole doubling [223, 225, 226].
In this scenario, DS1(2460) is dynamically generated but is still related to a broad quark-
antiquark seed state. In this way, the low mass of DS1(2460) in comparison to the quark-
model prediction [47, 48] is due to quantum corrections [179, 200, 201, 202, 234, 235]. Then,
the state DS1(2460), being below threshold, has a very small decay width.
Solution 2 : Also in this case, there is still a broad and not yet detected quark-antiquark

�eld above threshold, but solution 1 is assumed not to apply (loops are not su�cient to gener-
ate DS1(2460)). The resonance DS1(2460)± is not a quark-antiquark �eld, but a tetraquark
or a loosely bound molecular state and its existence is not related to the quark-antiquark
state of the axial-vector multiplet.
(vi) For the state D∗S0(2317) similar arguments apply. If the mass of this state is above

the DK threshold, we predict a very large (& 1 GeV) decay width into DK (for example:
ΓD∗S0→DK ' 3 GeV for a D∗S0 mass of 2467 MeV as determined in Table 4.5). Then, the two
solutions mentioned above are applicable also here:
Solution 1 : A quark-antiquark state with a mass above the DK threshold exists, but it is

too broad to be seen in experiment. The state DS0(2317) arises through the pole-doubling
mechanism.
Solution 2 : Loops are not su�cient to dynamically generate D∗S0(2317). The latter is not

a quarkonium but either a tetraquark or a molecular state.
In conclusion, a detailed study of loops in the axial-vector and scalar strange-charm sector

needs to be performed. In the axial-vector strange-charm sector mixing with a pseudovector
quark-antiquark state should also be included. These tasks go beyond the tree-level analysis



130 7. Decay of open charmed mesons

of our work but are an interesting subject for the future.
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8. Decay of hidden charmed mesons

8.1. Introduction

Charmonia exhibit a spectrum of resonances and play the same role for understanding
hadronic dynamics as the hydrogen atom [236]. The properties of charmonia are deter-
mined by the strong interaction which is undoubtedly one of the most challenging tasks.
Since the discovery of the charmonium state (J/ψ) with quantum numbers JPC = 1−−

in November 1974 at BNL [42] and at SLAC [41], a signi�cant experimental progress has
been achieved in charmonium spectroscopy. As an example of this, the hadronic and elec-
tromagnetic transitions between charmonium states and their decays have been measured
with high precision with the BESIII spectrometer at the electron-positron collider at IHEP
Beijing. Moreover, unconventional narrow charmonium-rich states have been recently dis-
covered in an energy regime above the open-charm threshold by Belle [237, 238, 239, 240]
and BaBar [241], which potentially initiates a new area in charmonium spectroscopy. The
upcoming PANDA experiment at the research facility FAIR will exploit the annihilation of
cooled anti-protons with protons to perform charmonium spectroscopy with an incredible
precision.
Recent theoretical developments such as nonrelativistic QCD [242, 243, 244] and heavy-

quark e�ective theory [245], potential models [164, 163], lattice gauge theory [246, 247, 248],
and light front quantization have shown the direct connection of charmonium properties with
QCD. More details of the experimental and theoretical situation is given in the Ref. [59].
Therefore, we highlight the study of the decays of charmonium states and their mixing with
glueballs in the eLSM. The charm quark has been included in the eLSM by its extension from
the case Nf = 3 [110] to the case Nf = 4 [119]. The eLSM has four charmonium states,
which are the (pseudo-)scalar ground states ηc(1S) and χc0(1P ) with quantum numbers
JPC = 0−+ and JPC = 0++ as well as the ground-state (axial-)vector J/ψ(1S) and χc1(1P )
with quantum numbers JPC = 1−+ and JPC = 1++ [118, 119], respectively. It also includes
two glueballs: a scalar glueball (denoted as G) and a pseudoscalar glueball (denoted as G̃),
composed of two glouns. There are two candidates for the scalar glueball which are the
resonance f0(1500) (which shows a �avour-blind decay pattern) and the resonance f0(1710),
because its mass is very close to lattice-QCD predictions, and because it is produced in the
gluon-rich decay of the J/ψ, as seen in Refs. [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 217].
The latter is a mixing between three bare �elds: the nonstrange σN ≡ (uu + dd)/

√
2,

the hidden-strange σS ≡ ss, and the scalar glueball G ≡ gg. This three-body mixing in
the scalar-isoscalar channel was solved in Ref.[83] and generated the physical resonances
f0(1370), f0(1500), and f0(1710). The last �eld that was introduced in the eLSM is a pseu-
doscalar glueball via a term describing the interaction between the pseudoscalar glueball
with scalar and pseudoscalar mesons; as seen in chapter 6. The decay channels of the pseu-
doscalar glueball into scalar and pseudoscalar mesons [124, 125, 126, 127] could potentially
be measured in the upcoming PANDA experiment at the FAIR facility [218], which is based
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on proton-antiproton scattering and has the ability to produce the pseudoscalar glueball
in an intermediate state with mass above 2.5 GeV. The mass of a pseudoscalar glueball
predicted by lattice QCD (in the quenched approximation) is about 2.6 GeV [65, 66, 67, 71].
In the present chapter we study the decay properties of the charmonium states χc0 and

ηc within the eLSM. The charmonia region is a good one to look for exotics [249, 250]. As
seen in Ref. [251, 252, 253], lattice QCD predicts the existence of various glueball states
in the charmonium mass region, some of them with exotic quantum numbers which are
not possible in a qq state. We then obtain the scalar glueball (due to the decay of χc0)
and the pseudoscalar glueball (due to the decay of ηc). We calculate the decay width of
the charmonium state ηc into a pseudoscalar glueball (this decay is allowed in the channel
ηc → ππG̃), with a mass of 2.6 GeV predicted by lattice QCD and repeat it with a mass of
2.37 GeV, as observed in the BESIII experiment where pseudoscalar resonances have been
investigated in J/ψ decays [219, 220, 221]. Particularly, we consider the X(2370) resonance,
since its mass lies just below the lattice-QCD prediction. Mixing phenomena, although
believed to be smaller than in the light mesonic sector, can occur also between charmonia
and glueballs with the same quantum numbers [254, 255]. The parameters have been used
in the strange-nonstrange investigation [110] (which are discussed in chapter 3), whereas
the three parameters related to the charm sector have been �xed in chapter 4 through a �t
including the masses of charmed mesons. There are two parameters, λ1, h1, which had zero
values in the previous case (Nf = 4), but in the present chapter this should be re-evaluated,
as the decay widths of χc0 depend on their values. For instance, there is a mixing between a
scalar glueball G with the charmonium state χc0, but we neglect it in our evaluation because
it is expected to be small. We compute instead the mixing angle between the pseudoscalar
glueball (with a mass of 2.6 GeV) with ηc.

8.2. Decay of the scalar charmonium state χc0

In this section we study the decay properties of the scalar ground-state charmonium
χc0(1P ) in the eLSM, via computing the decay width of this charmonium state into (axial-
)vector and (pseudo)scalar mesons and a scalar glueball as well. As a result of the study
discussed in Ref.[83], the resonance f0(1710) is predominantly a scalar glueball.

The terms in the eLSM relevant for the decay of χC0 are

LχC0 =Ldil −m2
0

(
G

G0

)2

Tr(Φ†Φ) + Tr

[((
G

G0

)2 m2
1

2
+ ∆

)
(Lµ2 +Rµ2)

]

− λ1[Tr(Φ†Φ)]2 +
h1

2
Tr(Φ†Φ)Tr[(Lµ)2 + (Rµ)2] + c(detΦ− detΦ†)2, ... . (8.1)

These terms contain the decay channels of the charmonium state χc0 into (pseudo)scalar
and (axial-)vector mesons as well as a scalar glueball G. The full Lagrangian (2.145) is
presented in chapter 2. The term denoted as Ldil is the dilaton Lagrangian which describes
the scalar dilaton �eld which is represented by a scalar glueball G ≡ |gg〉 with quantum
numbers JPC = 0++, and emulates the trace anomaly of the pure Yang-Mills sector of QCD



8.2. Decay of the scalar charmonium state χc0 133

[110, 111, 112, 113, 151, 114, 115]:

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
. (8.2)

The energy scale of low-energy QCD is described by the dimensionful parameter Λ which
is identical to the minimum G0 of the dilaton potential, (G0 = Λ). The scalar glueball
mass mG has been evaluated by lattice QCD which gives a mass of about (1.5-1.7) GeV
[65, 66, 67, 71, 256]. The dilatation symmetry or scale invariance, xµ → λ−1xµ, is realized
at the classical level of the Yang-Mills sector of QCD and explicitly broken due to the
logarithmic term of the potential in Eq. (8.2). This breaking leads to a non-vanishing
divergence of the corresponding current:

∂µJ
µ
dil = Tµdil, µ = −1

4
m2
GΛ2 . (8.3)

The importance of including the scalar glueball in the eLSM is to incorporate dilatation
invariance meson mass terms. Note that the scalar glueball state was frozen in the previous
discussion but here it is elevated to be a dynamical degree of freedom. The details of the
terms and the �eld assignments are presented and discussed for the eLSM in the case Nf = 4
in chapter 4.
In our framework, Φ represents the 4 × 4 (pseudo)scalar multiplets, as seen in Sec.(4.2),

as follows:

Φ = (Sa+iP a)ta =
1√
2


(σN+a00)+i(ηN+π0)√

2
a+

0 + iπ+ K∗+0 + iK+ D∗00 + iD0

a−0 + iπ−
(σN−a00)+i(ηN−π0)√

2
K∗00 + iK0 D∗−0 + iD−

K∗−0 + iK− K
∗0
0 + iK

0
σS + iηS D∗−S0 + iD−S

D
∗0
0 + iD

0
D∗+0 + iD+ D∗+S0 + iD+

S χC0 + iηC

 ,

(8.4)
where ta are the generators of the group U(Nf ). The multiplet Φ transforms as Φ →

ULΦU †R under UL(4)×UR(4) chiral transformations, where UL(R) = e
−iθa

L(R)
ta is an element

of U(4)R(L). Under parity Φ(t,−→x ) → Φ†(t,−−→x ), and under charge conjugation Φ → Φ†.
The determinant of Φ is invariant under SU(4)L × SU(4)R, but not under U(1)A because

detΦ → detUAΦUA = e−iθ
0
A

√
2NfdetΦ 6= detΦ. Note that Eq. (6.1) is not invariant under

UA(1) which is in agreement with the so-called axial anomaly.
Now we present the left-handed and right-handed matrices containing the vector, V a

µ , and
axial-vector, Aaµ, degrees of freedom [119]:

Lµ = (V a+Aa)µ ta =
1√
2


ωN+ρ0√

2
+

f1N+a01√
2

ρ+ + a+
1 K∗+ +K+

1 D∗0 +D0
1

ρ− + a−1
ωN−ρ0√

2
+

f1N−a01√
2

K∗0 +K0
1 D∗− +D−1

K∗− +K−1 K
∗0

+K
0
1 ωS + f1S D∗−S +D−S1

D
∗0

+D
0
1 D∗+ +D+

1 D∗+S +D+
S1 J/ψ + χC1


µ

,

(8.5)
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Rµ = (V a−Aa)µ ta =
1√
2


ωN+ρ0√

2
− f1N+a01√

2
ρ+ − a+

1 K∗+ −K+
1 D∗0 −D0

1

ρ− − a−1
ωN−ρ0√

2
− f1N−a01√

2
K∗0 −K0

1 D∗− −D−1
K∗− −K−1 K

∗0 −K0
1 ωS − f1S D∗−S −D

−
S1

D
∗0 −D0

1 D∗+ −D+
1 D∗+S −D

+
S1 J/ψ − χC1


µ

,

(8.6)
which transform as Lµ → ULL

µU †L and Rµ → URL
µU †R under chiral transformations.

These transformation properties of Φ, Lµ, and Rµ have been used to build the chirally
invariant Lagrangian (8.1). The matrix ∆ is de�ned as

∆ =


0 0 0 0
0 0 0 0
0 0 δS 0
0 0 0 δC

 , (8.7)

where δS ∼ m2
S and δC ∼ m2

C .
If m2

0 < 0, the Lagrangian (8.1) features spontaneous symmetry breaking. To implement
this breaking we have to shift the scalar-isoscalar �elds G, σN , σS , and χC0 by their vacuum
expectation values G0, φN , φS , and φC [78, 119]

G→G+G0 ,

σN →σN + φN ,

σS →σS + φS ,

χC0 →χC0 + φC . (8.8)

The identi�cation of the scalar glueball G is still uncertain, the two most likely candidates
are f0(1500) and f0(1710) and/or admixtures of them. We assign the scalar glueball (G),
σN , and σS from the following mixing matrix which is constructed in Ref. [83]: f0(1370)

f0(1500)
f0(1710)

 =

 0.94 −0.17 0.29
0.21 0.97 −0.12
−0.26 0.18 0.95

 σN ≡ (uu+ dd)/
√

2
σS ≡ ss
G ≡ gg

 . (8.9)

Note that we used di�erent mixing matrices in the study of the decay of the pseudoscalar
glueball into scalar mesons as seen in chapter 5. From Eq.(8.9), one obtains

G = 0.29 f0(1370)− 0.12 f0(1500) + 0.95 f0(1710) , (8.10)

σN = 0.94 f0(1370) + 0.21 f0(1500)− 0.26 f0(1710) , (8.11)

σS = −0.17 f0(1370) + 0.97 f0(1500) + 0.18 f0(1710) . (8.12)

These relations are used in the calculation of the decay widths of χc0.

8.2.1. Parameters and results

All the parameters in the Lagrangian (8.1) have been �xed in the case of Nf = 3, see
Ref. [110] for more details, and the three additional parameters related to the charm sector
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(εC , δC , and φC), in the case of Nf = 4, have been determined in chapter 4. The values
of the parameters and the wave-function renormalization constants are summarized in the
following Table 8.1:

parameter value renormalization factor value
m2

1 0.413× 106 MeV2 Zπ = ZηN 1.70927
m2

0 −0.918× 106 MeV2 ZK 1.60406
δS 0.151× 106MeV2 ZηC 1.11892
δC 3.91× 106MeV2 ZDS 1.15716
εC 2.23× 106MeV2 ZD∗0 = ZD∗00 1.00649

g1 5.84 ZηS 1.53854
h2 9.88 ZKS 1.00105
λ2 68.3 ZD 1.15256
h3 3.87 ZD∗S0 1.00437

Table 8.1.: Parameters and wave-function renormalization constants.

The wave-function renormalization constants for π and ηN are equal because of isospin
symmetry, and for D∗0 and D∗0 as well. The gluon condensate G0 is equal to Λ ≈ 3.3 GeV
[83] in pure YM theory, which is used in the present discussion.

Furthermore, we set the values of the parameters λ1 and h1 to zero in eLSM in all cases
studied in this framework (as seen also in the previous chapters, in the case of Nf = 2
[108, 78, 78], Nf = 3 [110], and Nf = 4 for the masses of charmed mesons and the (OZI-
dominant) strong decays of open charmed mesons [118, 119, 120, 121, 122]), because they
are expected to be small, which is in agreement with large-Nc expectations. However, in
the OZI-suppressed decays of the charmonium state χc0, non-zero values of λ1 and h1 will
become important. To understand the reason for this let us explain in more detail.
Indeed, the decay of the charmonium state χc0 into hadrons is mediated by gluon annihila-
tion. This annihilation must proceed through a three-gluon exchange for the following two
reasons:
(i) Gluons carry colour, but mesons in the �nal state are colour singlets (colourless). This
leads to the fact that the annihilation must be mediated by more than one gluon.
(ii) The combination of gluons involved in the decay must be such that it conserves all strong-
interaction quantum numbers. Consequently, vector particles, with charge-conjugation quan-
tum number -1, cannot decay into two vectors through two-gluon exchange. The charge
conjugation quantum number for a two-gluon state is +1, but for a three-gluon state it is
-1. Therefore, vector mesons decays only through three-gluon annihilation.
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Figure 8.1.: Decay of charmonium state into two mesons. q refers to the up (u), down (d),
and strange (s) quark �avours.
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Figure 8.2.: Decay of charmonium state into three mesons.

In our case, gluons carry all the energy. Therefore, the interaction is relatively weak due
to asymptotic freedom, which leads to OZI-suppression. As a consequence, the decay of the
charmonium state χC0 into (axial-)vector and (pseudo)scalar mesons and a scalar glueball
is dynamically suppressed due to annihilation into three `hard' gluons (see Fig. 8.1 and Fig.
8.2). In the eLSM, this is incorporated by small non-zero values of the large-Nc suppressed
parameters λ1 and h1, as seen in Fig. 8.1 and Fig. 8.2. If we set them to zero, all the decay
channels of χC0 which have been found in the eLSM (8.1) are zero, which is an unacceptable
result. This is important evidence for these parameters being nonzero in the OZI-suppressed
case. For this reason we determine them using the experimental decay widths of χC0 listed
by the PDG [51] via a χ2 �t,

χ2(λ1, h1) ≡
6∑
i

(
Γthi − Γexpi

ξΓexpi

)2

, (8.13)

where ξ is a constant. We choose ξ = 1 which leads to χ2/d.o.f = 0.7. We then obtain

λ1 = −0.16 , (8.14)

and

h1 = 0.046. (8.15)

These values of the parameters λ1 and h1 are indeed very small, as mentioned before. So
a posteriori we justify the results of Refs. [119, 122]. The partial decay widths of various
decay channels which we used in the �t (8.13) are summarized in the Table 8.2
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Decay Channel theoretical result [MeV] Experimental result [MeV]
Γ
χc0→K

∗0
0 K∗00

0.01 0.01±0.0047
Γχc0→K−K+ 0.059 0.061±0.007

Γχc0→ππ 0.089 0.088±0.0092
Γ
χc0→K

∗0
K∗0

0.014 0.017±0.0072
Γχc0→w w 0.01 0.0099±0.0017
Γχc0→φφ 0.004 0.0081±0.0013

Table 8.2.: The partial decay widths of χc0.

Furthermore, we have to change the value of the parameter c, which is the coe�cient of
the axial anomaly term, to �t the results of the decay widths of χc0. Therefore, for the
determination of c, we use the decay widths of χc0 into ηη and η′η′, which are [51].

Γexpχc0→ηη = (0.031± 0.0039)MeV ,

and
Γexpχc0→η′η′ = (0.02± 0.0035)MeV .

We then perform a �t by minimizing the χ2-function,

χ2(c) ≡
(

Γthχc0→ηη(c)− Γexpχc0→ηη

ξΓexpχc0→ηη

)2

+

(
Γthχc0→η′η′(c)− Γexpχc0→η′η′

ξΓexpχc0→η′η′

)2

, (8.16)

which gives c = 7.178× 10−10 MeV−4 with χ2/d.o.f = 0.18 where ξ = 1.
The mixing between the hidden-charmed scalar meson χc0 and the scalar glueball G is ne-
glected because it is small.
The two- and three-body decays of the hidden-charmed meson χc0 into scalar glueballs and
scalar mesons are reported in Table 8.3.

Decay Channel theoretical result [MeV] Experimental result [MeV]
Γχc0→f0(1370)f0(1370) 5.10−3 <3.10−3

Γχc0→f0(1500)f0(1500) 4.10−3 <5.10−4

Γχc0→f0(1370)f0(1500) 2.10−6 <1.10−3

Γχc0→f0(1370)f0(1710) 1.10−4 0.0069±0.004
Γχc0→f0(1500)f0(1710) 2.10−5 <7.10−4

Γχc0→f0(1370)ηη 4.10−4 -
Γχc0→f0(1500)ηη 3.10−3 -
Γχc0→f0(1370)η′η′ 27.10−4 -
Γχc0→f0(1370)ηη′ 89.10−6 -
Γχc0→f0(1500)ηη′ 11.10−3 -
Γχc0→f0(1710)ηη 8.10−5 -
Γχc0→f0(1710)ηη′ 3.10−5 -

Table 8.3.: The partial decay widths of χc0.
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Additionally, the two- and three-body decays of the hidden-charmed meson χc0 into (axial-
)vector and (pseudo)scalar mesons are reported in Table 8.4.

Decay Channel theoretical result [MeV] Experimental result [MeV]
Γχc0→a0a0 0.004 -
Γχc0→K1K1

0.005 -
Γχc0→K+

1 K
− 0.005 0.063±0.0233

Γχc0→ηη 0.022 0.031±0.0039
Γχc0→η′η′ 0.02 0.02±0.0035
Γχc0→ηη′ 0.004 <0.0024

Γχc0→K∗K∗0 0.00007 -
Γχc0→ρρ 0.01 -

Γχc0→K∗0Kη 0.008 -
Γχc0→K∗0Kη′ 0.004 -

Table 8.4.: The partial decay widths of χc0.

The results are in good agreement with experimental data [51]. All the relevant expressions
for the two- and three-body decay processes of χc0 are presented in the Appendix along with
computational details.

8.3. Decay of the pseudoscalar charmonium state ηC

In this section we compute and discuss the decay widths of the pseudoscalar charmonium
state ηC(1P ) into (pseudo)scalar mesons and a pseudoscalar glueball (ηc → ππG̃) in the
eLSM.
Two terms in the eLSM are relevant for the decay of the pseudoscalar hidden-charmed

meson ηC into (pseudo-)scalar mesons and a pseudoscalar glueball G̃. The �rst has the form
c(detΦ − detΦ†)2, which describes the axial anomaly and represents a further breaking of
dilatation and chiral symmetry and is additionally responsible for the mass and decays of the
η's. The other term (see Eq. (6.1)) describes the interactions of the pseudoscalar glueball
G̃ ≡ |gg〉, with quantum numbers JPC = 0−+, with scalar and pseudoscalar mesons.

8.3.1. Decay of ηC into a pseudoscalar glueball

The e�ective Lagrangian which describes the interaction of the pseudoscalar glueball G̃ with
the (pseudo)scalar mesons (which is described in detail for the case of Nf = 3 (6.1) in
chapter 6) reads

Lint

G̃
= icG̃ΦG̃

(
detΦ− detΦ†

)
, (8.17)

where cG̃φ is a dimensionless coupling constant. The pseudoscalar glueball G̃ is invariant

under U(4)L×U(4)R chiral transformations, while under parity, G̃(t,−→x )→ −G̃(t,−−→x ), and
under charge conjugation G̃ → G̃. These considerations lead to the interaction Lagrangian
Lint
G̃

of Eq. (6.1) which is invariant under SU(4)L×SU(4)R, parity, and charge conjugation.
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To determine the value of the coupling constant cG̃φ, one can relate it to its counterpart
in the three-�avour case c

G̃Φ(Nf=3)
, which was computed in the study of the decay of a

pseudoscalar glueball G̃ into scalar and pseudoscalar mesons (as seen in chapter 6), with the
result c

G̃Φ(Nf=3)
= 4.48± 0.46 [124].

The Lagrangian which describes the coupling of the pseudoscalar glueball and (pseudo)scalar
mesons was given in Eq. (6.1) for the three-�avour case

Lint

G̃(Nf=3)
= icG̃Φ(Nf=3)G̃

(
detΦ(Nf=3) − detΦ†(Nf=3)

)
. (8.18)

By using the relation of the multiplet matrix of (pseudo)scalar mesons (Φ) for the four-�avour
case and for the three-�avour case (which is presented in Eq. (4.123)), we can transform the
interaction Lagrangian Lint

G̃
, for the case of Nf = 4 (8.17), to be as

Lint

G̃
= i

√
2

φC
c
G̃Φ(Nf=3)

G̃
(
detΦ− detΦ†

)
, (8.19)

Comparing Eq.(8.17) with Eq.(8.19), we get

c
G̃Φ

=

√
2 c

G̃Φ(Nf=3)

φC
. (8.20)

We then get c
G̃Φ

= 0.036 in the present case (Nf = 4).

The interaction Lagrangian (8.17) contains only one decay process which describes the
decay of the pseudoscalar charmonium ηc into a pseudoscalar glueball G̃ through the channel
ηC → G̃ππ. The tree-level vertices of this process have the form

L
ηCG̃ππ

= −1

4
c
G̃Φ
φS ZηCZ

2
π ηCG̃π

02 − 1

2
c
G̃Φ
φS ZηCZ

2
πηCG̃π

−π+ . (8.21)

One can compute the full decay width Γ
ηC→G̃ππ from

Γ
ηC→G̃ππ = Γ

ηC→G̃π0π0 + Γ
ηC→G̃π−π+

= Γ
ηC→G̃π0π0 + 2Γ

ηC→G̃π0π0

= 3Γ
ηC→G̃π0π0 . (8.22)

The decay amplitude is

− iM =
−i
4
c
G̃Φ
φS ZηCZ

2
π . (8.23)

one also uses the corresponding decay width for the three-body case, Eq. (5.61). The decay
width of the pseudoscalar charmonium state ηc into a pseudoscalar glueball with a mass of
2.6 GeV (as predicted by lattice QCD in the quenched approximation [65, 66, 67, 71, 256])
is

Γ
ηC→ππG̃(2600)

= 0.124 MeV, (8.24)

and for a mass of the charmonium state ηc which is about of 2.37 GeV (corresponding to
the mass of the resonance X(2370) measured in the BESIII experiment [219, 220, 221])

Γ
ηC→ππG̃(2370)

= 0.16 MeV . (8.25)

These results could be tested in the PANDA experiment at the upcoming FAIR facility.
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8.3.2. Decay of ηC into (pseudo)scalar mesons

The chiral Lagrangian contains the tree-level vertices for the decay processes of the pseu-
doscalar ηC into (pseudo)scalar mesons, through the chiral anomaly term

LU(1)A = c(detΦ− detΦ†)2 , (8.26)

where c is a dimensionful constant and has been determined in Sec. 8.2. After the �eld
transformations Eqs. (4.19 - 4.32) have been performed in Sec. 4.3, the terms in the
Lagrangian (8.26) which correspond to decay processes of ηC read

LηC =
c

8
φ2
NφC ZηCηC{

√
2φSφNZKZK∗0 (K∗00 K

0
+K

∗0
0 K

0 +K∗−0 K+ +K∗+0 K−)

+ 2Zπφ
2
S(a0

0π
0 + a+

0 π
− + a−0 π

+)− 4φNφS(ZηSηSσN + ZηN ηNσS)

− 6φ2
S ZηN ηN σN − φ

2
NηSσS ZηS + 2φN Z

2
ηS
ZηN η

2
SηN + 6φS ZηS Z

2
ηN
η2
NηS

−
√

2φN ZηS Z
2
K(K

0
K0 +K−K+) ηS − 3

√
2φS ZηNZ

2
K(K

0
K0 +K−K+)ηN

+
√

2φS Zπ Z
2
K

[√
2(K

0
K+π− +K0K−π+)− (K0K

0 −K−K+)π0

]
− 2φSηS ZηSZ

2
π(π02

+ 2π−π+)} . (8.27)

The decay widths of the pseudoscalar hidden charmed meson ηC into scalar and pseu-
doscalar charmed mesons are presented in Table 8.5. The relevant expressions for these
decay processes are presented in the Appendix.

Decay Channel theoretical result [MeV] Experimental result [MeV]
Γηc→K

∗
0K

0.01 -

Γηc→a0π 0.01 -
Γηc→f0(1370)η 0.00018 -
Γηc→f0(1500)η 0.006 -
Γηc→f0(1710)η 0.000032 -
Γηc→f0(1370)η′ 0.027 -
Γηc→f0(1500)η′ 0.024 -
Γηc→f0(1710)η′ 0.0006 -

Γηc→ηηη 0.052 -
Γηc→η′η′η′ 0.0023 -
Γηc→η′ηη 0.44 -
Γηc→η′η′η 0.0034
Γηc→ηKK 0.15 0.32±0.17
Γηc→η′KK 0.41
Γηc→ηππ 0.12 0.54±0.18
Γηc→η′ππ 0.08 1.3±0.6
Γηc→KKπ 0.095 -

Table 8.5.: The partial decay widths of ηc.
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There are experimental data for these decays �rm by the PDG with which we can compare.
The three measured decay widths are in reasonably good agreement with experimental data.

8.3.3. Mixing of a pseudoscalar glueball and ηC

The mixing between the pseudoscalar glueball G̃ with the pseudoscalar charm-anticharm
meson ηc is described by the non-interacting Lagrangian as follows:

L
G̃, ηC

=
1

2
(∂µG̃)2 +

1

2
(∂µηC)2 − 1

2
m2
G̃
G̃2 − 1

2
m2
ηcη

2
c + Z

G̃ηC
G̃ ηC , (8.28)

where

Z
G̃ηC

=
−1

4
c
G̃Φ
ZηC φ

2
N φS . (8.29)

The physical �elds ηC and G̃ can be obtained through an SO(2) rotation(
G̃′

η′C

)
=

(
cosφ sinφ
− sinφ cosφ

)
=

(
G̃
ηC

)
, (8.30)

with
m2
η′C

= m2
G̃

sin2 φ+m2
ηC

cos2 φ+ Z
G̃ηC

sin(2φ) , (8.31)

m2
G̃′

= m2
G̃

cos2 φ+m2
ηC

sin2 φ− Z
G̃ηC

sin(2φ) , (8.32)

where the mixing angle φ reads

φ =
1

2
arctan

[−c
G̃Φ

Zηcφ
2
NφS

2(m2
ηC
−m2

G̃
)

]
, (8.33)

where c
G̃Φ

is a dimensionless coupling constant between G̃Φ which was determined in

Eq.(8.20). We then obtain the mixing angle of the pseudoscalar glueball G̃ and the pseu-
doscalar charm-anticharm meson ηc to be −1◦, for a mass of the pseudoscalar glueball which
is 2.6 GeV, as predicted by lattice-QCD simulations [65, 66, 71, 67, 256].
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9. Conclusions and Outlook

In this work, we have developed a four-�avour extended linear sigma model with vector and
axial-vector degrees of freedom. Within this model, we have calculated masses and decay
widths of charmed mesons.
For the coupling constants of the model, we have used the values determined in the low-

energy study of mesons in Ref. [110] and listed in Table 4.1. The three remaining parameters
related to the current charm quark mass were determined in a �t to twelve masses of hidden
and open charmed mesons. The results are shown in Table 4.5: the open charmed mesons
agree within theoretical errors with the experimental values, while the masses of charmonia
are (with the exception of J/ψ) underestimated by about 10%. The precision of our approach
cannot compete with methods based on heavy-quark symmetry, but it admits a perspective
on charmed states from a low-energy approach based on chiral symmetry and dilatation
invariance. The level of agreement with experimental data proves that these symmetries
are, at least to some degree, still relevant for the charm sector. In this respect, our approach
is a useful tool to investigate the assignment of some charmed states (see below) and to obtain
an independent determination of quantities such as the chiral condensate of charm-anticharm
quarks. The latter turns out to be sizable, showing that the charm quark, although heavy,
is indeed still connected to nontrivial vacuum dynamics.
We have also presented a chirally invariant e�ective Lagrangian describing the interaction

of a pseudoscalar glueball with scalar and pseudoscalar mesons for the three-�avour case
Nf = 3. We have studied the decays of the pseudoscalar glueball into three pseudoscalar
and into a scalar and pseudoscalar quark-antiquark �elds.
The branching ratios are parameter-free once the mass of the glueball has been �xed.

To this end, we have considered two possibilities: (i) in agreement with lattice QCD, we
have chosen mG̃ = 2.6 GeV. The existence and the decay properties of such a hypothetical
pseudoscalar resonance can be tested in the upcoming PANDA experiment [218]. (ii) We
assumed that the resonanceX(2370),measured in the experiment BESIII, is (predominantly)
a pseudoscalar glueball state, and thus we have also used a mass of 2.37 GeV [219, 220, 221].
The results for both possibilities have been summarized in Tables 6.2 and 6.3: we predict
that KKπ is the dominant decay channel, followed by (almost equally large) ηππ and η′ππ
decay channels. In the case of BESIII, with a measurement of the branching ratio for other
decay channels than the measured η′ππ one could ascertain if X(2370) is (predominantly)
a pseudoscalar glueball. In the case of PANDA, our results may represent a useful guideline
for the search of the pseudoscalar glueball.
Then, we have calculated the weak-decay constants of the pseudoscalar states D, DS ,

and ηc, which are in fair agreement with the experimental values and, as a last step, we
have evaluated the OZI-dominant decays of charmed mesons (Table 7.1). The result for
D∗0(2400)0, D∗0(2400)+, D∗(2007)0, D∗(2010)+, D1(2420)0, and D1(2420)+ are compatible
with the results and the upper bounds listed by the PDG [51], although the theoretical
errors are still quite large. Nevertheless, we could simultaneously describe the decays of



144 9. Conclusions and Outlook

open-charmed vector and axial-vector states which are chiral partners within our theoretical
treatment.
Concerning the assignment of the scalar and axial-vector strange-charmed quarkonium

states DS0 and DS1, we obtain the following: If the masses of these quarkonia are above
the respective thresholds, we �nd that their decay widths are too large, which probably
means that these states, even if they exist, have escaped detection. In this case, the res-
onances D∗S0(2317) and DS1(2460) can emerge as dynamically generated companion poles
(alternatively, they can be tetraquark or molecular states). Our results imply also that the
interpretation of the resonance DS1(2536) as a member of the axial-vector multiplet is not
favored because the experimental width is too narrow when compared to the theoretical
width of a quarkonium state with the same mass. An investigation of these resonances ne-
cessitates the calculation of quantum �uctuations.
In summary, the fact that a (although at this stage only rough) qualitative description is

obtained by using a chiral model and, more remarkably, by using the parameters determined
by a study of Nf = 3 mesons, means that a remnant of chiral symmetry is present also in
the sector of charmed mesons. Chiral symmetry is (to a large extent) still valid because the
parameters of the eLSM do not vary too much as a function of the energy at which they
are probed. Besides mass terms which describe the large contribution of the current charm
quark mass, all interaction terms are the same as in the low-energy e�ective model of Refs.
[108, 78, 110] which was built under the requirements of chiral symmetry and dilatation
invariance. As a by-product of our work we also evaluate the charm condensate which is
of the same order as the nonstrange and strange quark condensates. This is also in accord
with chiral dynamics enlarged to the group U(4)R × U(4)L.

In the present work we have also represented a chirally invariant linear sigma model with
(axial-)vector mesons in the four-�avour case, Nf = 4, by including a dilaton �eld and a
scalar glueball �eld, and describing the interaction of the pseudoscalar glueball with (pseudo-
)scalar mesons. We have calculated the decay widths of the hidden-charmed meson χc0 into
two and three strange and nonstrange mesons (Tables 8.2 and 8.4) as well as into a scalar
glueball G, which is an admixture of two resonances f0(1370) and f0(1500) (Table 8.3).
Note here that the decay of charmonium states to open-charmed mesons is forbidden in the
eLSM, as discussed also in Ref.[257]. We have also computed the decay widths of the pseu-
doscalar charmonium state ηC into light mesons (Table 8.5) and into a pseudoscalar glueball
G̃, through the channel ηC → ππG̃. The latter is obtained from the interaction term of the
pseudoscalar glueball. We have also evaluated the mixing angle between the pseudoscalar
glueball and ηc, which is very small and equal to −1◦. We have additionally found that the
extended linear sigma model (2.145) o�ers no decay channels for the (axial-)vector charmo-
nium states where ΓJ/ψ = 0 and Γχc1 = 0. The results of the decay widths of χc0 are in
good agreement with experimental data [51] and of ηc are in reasonably good agreement with
experiment [51], which indicates to what extent the eLSM is a successful and appropriate
model to study the phenomenology of hidden-charmed mesons and open-charmed mesons
(chapter 7).
The parameters were determined in the case of Nf = 4 (see chapter 4). However, there are
four parameters that we need to �x: (i) λ1 and h1; which are assume to have zero values
in all the previous investigation for Nf = 3 case, (see chapter 3), and Nf = 4 case, (see
chapter 4), because their values are numerically small and do not a�ect the previous results.
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However, the decay widths of charmonium states χc0 and ηC depend on both, and for this
reason we determined them by a χ2 �t to the decay widths of χc0, see Table 8.2. (ii) The c
parameter; which is in the axial anomaly term. This parameter was determined by the �t
(8.16). (iii) c

G̃Φ
; which was �xed by the relation c

G̃Φ(Nf=3)
[124].

Note that the decay widths for the (axial-)vector charmonium states J/ψ and χc1 are zero
for kinematical reasons.

The restoration of chiral symmetry at nonzero temperature and density is one of the
fundamental questions of modern hadronic physics [258, 259, 260, 261]. The two-�avour
version of the eLSM has been successful in a study at nonzero density [153]. This leads us to
consider the restoration of chiral symmetry at nonzero temperature and density for Nf = 3
and Nf = 4 with the eLSM, which o�ers many challenges for future work.
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A. Determination of the weak decay

constants

We compute the decay constants of pion, kaon, the pseudoscalar open-charmed mesons D
and DS , and the pseudoscalar hidden-charmed meson ηC , which are denoted as fπ, fD, fDS ,
and fηC , by using the formula (5.15),

P → P + θa(ta S + S ta) , (A.1)

which is discussed in chapter 5 in details. In the case Nf = 4, the pseudoscalar mesons are
ordered in a 4× 4 matrix as follows:

P =
1√
2


1√
2
(ηN + π0) π+ K+ D0

π− 1√
2
(ηN − π0) K0 D−

K− K
0

ηS D−S
D

0
D+ D+

S ηc

 , (A.2)

where

π− =
π1 + iπ2

√
2

, π+ =
π1 − iπ2

√
2

, (A.3)

K− =
K1 + iK2

√
2

, K+ =
K1 − iK2

√
2

, (A.4)

D
0

=
D1 + iD2

√
2

, D0 =
D1 − iD2

√
2

. (A.5)

D+
S =

D1
S + iD2

S√
2

, D−S =
D1
S − iD2

S√
2

. (A.6)

The vacuum expectation values φN , φS , and φC are contained in the following diagonal
matrix:

〈Φ〉 =


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC

 . (A.7)

In Eq.(A.1), ta = λa
2 are the generators with a = 0, 1, ..., N2

f − 1, where λa are the Gell-
Mann matrices and chosen to satisfy Tr(λa λb) = 2 δa b. In the case Nf = 4, the Gell-Mann
matrices are rank-4 tensors and there are 16 generators (a = 0, ..., 15). For a = 0, λ0 is a
special unitary SU(4) matrix but it corresponds to a unitary U(1) matrix,

t0 =
1

2
√

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (A.8)
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The canonical form of the 4× 4 Gell-Mann matrices is

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,

λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , λ8 =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 , λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , (A.9)

λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , λ15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 .

Note that the rank-3 Gell-Mann matrices of the SU(3) group are described by the �rst
eight matrices [262], whereas transitions between SU(3) and SU(4) elements are generated
by the matrices λ9 − λ15 [263]. We now use Eq.(A.1) to determine the decay constants.

A.1. Pion decay constant

In order to determine the pion decay constant, it su�ces to take the corresponding direction
in a-space, for instance a = 1.

Firstly, for a = 1, the generator t1 = 1
2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, and Eq.(A.1) takes the following

form

P → P + θ1(t1 〈S〉+ 〈S〉 t1). (A.10)
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Explicitly,

1

2


0 π1 0 0
π1 0 0 0
0 0 0 0
0 0 0 0

 7→1

2


0 π1 0 0
π1 0 0 0
0 0 0 0
0 0 0 0



+
1

2
θ1

[
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

] ,

1

2


0 π1 0 0
π1 0 0 0
0 0 0 0
0 0 0 0

 7→ 1

2


0 π1 0 0
π1 0 0 0
0 0 0 0
0 0 0 0

+ θ1


0 φN√

2
0 0

φN√
2

0 0 0

0 0 0 0
0 0 0 0

 . (A.11)

We obtain
π1 7→ π1 +

√
2φNθ1 . (A.12)

Similarly, for a = 2, 3, we obtain

π2 7→ π2 +
√

2φNθ2, (A.13)

π0 7→ π0 +
√

2φNθ3. (A.14)

After introducing the wave-function renormalization for the pion, we get

Zπ π
0 7→ Zπ π

0 +
√

2φNθ3, (A.15)

Zπ π
1 7→ Zπ π

1 +
√

2φNθ1, (A.16)

Zπ π
2 7→ Zπ π

2 +
√

2φNθ2 , (A.17)

which can be written

π0 7→ π0 +

√
2φN
Zπ

θ3 , (A.18)

π1 7→ π1 +

√
2φN
Zπ

θ1 , (A.19)

π2 7→ π2 +

√
2φN
Zπ

θ2 . (A.20)

This gives the decay constant of the pion as

fπ =

√
2φN
Zπ

. (A.21)
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A.2. Kaon decay constant

Let us determine the decay constant fK of the kaon.

In the case of a = 4, the generator t4 = 1
2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

, then Eq.(A.1) takes the

following form

P → P + θ4(t4 〈S〉+ 〈S〉 t4). (A.22)

1√
2


0 0 K1

√
2

0

0 0 0 0
K1
√

2
0 0 0

0 0 0 0

 7→ 1√
2


0 0 K1

√
2

0

0 0 0 0
K1
√

2
0 0 0

0 0 0 0



+
1

2
θ4

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

] ,

1√
2


0 0 K1

√
2

0

0 0 0 0
K1
√

2
0 0 0

0 0 0 0

 7→ 1√
2


0 0 K1

√
2

0

0 0 0 0
K1
√

2
0 0 0

0 0 0 0

+
1

2
θ4


0 0 φS + φN√

2
0

0 0 0 0

φS + φN√
2

0 0 0

0 0 0 0

 ,

(A.23)
1

2
K1 7→ 1

2
K1 +

1

2
(φS +

φN√
2

)θ4 , (A.24)

K1 7→ K1 +

√
2φS + φN√

2
θ4 . (A.25)

After introducing the wave-function renormalization of the kaons,

ZK K
1 7→ ZK K

1 +
(
√

2φS + φN )√
2

θ4

⇒ K1 7→ K1 +
(
√

2φS + φN )√
2ZK

θ4 . (A.26)
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Similarly for a = 5, 6, 7, 8, which can be written in general as

K 7→ K +

√
2φS + φN√

2ZK
θ4,5,6,8 , (A.27)

Then we can obtain the kaon decay constant as

fK =

√
2φS + φN√

2ZK
. (A.28)

Note that, in the case Nf = 3, we used the formulas for the weak decay constants of pion
and kaon divided by

√
2 as follows:

fπ =
φN
Zπ

, (A.29)

and

fK =

√
2φS + φN

2ZK
, (A.30)

because these theoretical formulas of the weak decay constants have been used in the �t
[110], which are compared to the experimental data as listed by the PDG [51], where they
are divided by

√
2.

A.3. Decay constant of D and DS

Now let us turn to determine the weak decay constants of the open charmed mesons D and
DS :

For a = 9, the generator t9 = 1
2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

, and Eq.(5.15) reads

P → P + θ9(t9 〈S〉+ 〈S〉 t9). (A.31)

Then,
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1

2


0 0 0 D1

0 0 0 0
0 0 0 0
D1 0 0 0

 7→1

2


0 0 0 D1

0 0 0 0
0 0 0 0
D1 0 0 0



+
1

2
θ9

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

] ,


0 0 0 D1

0 0 0 0
0 0 0 0
D1 0 0 0

 7→


0 0 0 D1

0 0 0 0
0 0 0 0
D1 0 0 0

+ θ9


0 0 0 (φN√

2
+ φC)

0 0 0 0
0 0 0 0

(φN√
2

+ φC) 0 0 0

 ,

(A.32)

D1 7→ D1 + (
φN√

2
+ φC)θ9 . (A.33)

After introducing the wave-function renormalization of the D mesons

ZDD
1 7→ ZDD

1 + (
φN√

2
+ φC)θ9 ,

⇒ D1 7→ D1 +
φN +

√
2φC√

2
θ9 . (A.34)

Similarly for a = 10, 11, 12, which can be written in general as

D 7→ D +
φN +

√
2φC√

2ZD
θ9, 10, 11, 12 . (A.35)

Then we can obtain the decay constant of D as

fD =
φN +

√
2φC√

2ZD
. (A.36)

For a = 13, the generator t13 = 1
2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

, and Eq.(5.15) is
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P → P + θ13(t13 〈S〉+ 〈S〉 t13) . (A.37)

1

2


0 0 0 0
0 0 0 0
0 0 0 D1

S

0 0 D1
S 0

 7→1

2


0 0 0 0
0 0 0 0
0 0 0 D1

S

0 0 D1
S 0



+
1

2
θ13

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

] ,
(A.38)


0 0 0 0
0 0 0 0
0 0 0 D1

S

0 0 D1
S 0

 7→


0 0 0 0
0 0 0 0
0 0 0 D1

S

0 0 D1
S 0

+ θ13


0 0 0 0
0 0 0 0
0 0 0 φS + φC
0 0 φS + φC 0

 ,

(A.39)

D1
S 7→ D1

S + (φS + φC)θ13 , (A.40)

we get

ZDS D
1
S 7→ ZDS D

1
S + (φS + φC)θ13

⇒ D1
S 7→ D1

S +
φS + φC
ZDS

θ13 . (A.41)

Similarly for a = 14, which can be written in general as

DS 7→ DS +
φS + φC
ZDS

θ13,14 , (A.42)

Then we obtain the decay constant of DS as

fDS =
φN + φC
ZDS

, (A.43)
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A.4. Decay constant of ηC

Finally, the decay constant of the charmonium state ηC can be determined from the combi-
nation of two generators, a = 0 and a = 15, as follows:

For a = 0, the generator t0 = λ0
2 = 1

2
√

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, and Eq.(5.15) reads

P → P + θ0(t0 〈S〉+ 〈S〉 t0) . (A.44)

1√
2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→ 1√
2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC



+
1

2
√

2
θ0

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] ,


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→


ηN√
2

0 0 0

0 ηN√
2

0 0

0 0 φS 0
0 0 0 φC

+ θ0


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC

 . (A.45)

For a = 15, the generator t15 = 1
2
√

6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

, and Eq.(A.1) reads

P → P + θ15(t15 〈S〉+ 〈S〉 t15) . (A.46)
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Then,

1√
2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→ 1√
2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC



+
1

2
√

6
θ15

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3




φN√
2

0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC



+


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 φC




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

] ,


ηN√
2

0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→


ηN√
2

0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

+
θ15√

3


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 −3φC

 .

(A.47)
To �nd a combination of diagonal Lambdas which has only a nonzero entry in the fourth

column and in the fourth row, we consider the relation between the singlet angle of trans-
formation θ0 and the multiplet angle transformation θ15 as follows:

θ15 = −
√

3θ0 .

Therefore, Eq.(A.47), can be written as


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→


ηN√
2

0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

− θ0


φN√

2
0 0 0

0 φN√
2

0 0

0 0 φS 0
0 0 0 −3φC

 .

(A.48)
Adding Eq.(A.45) and Eq.(A.48), we obtain

2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

 7→ 2


ηN√

2
0 0 0

0 ηN√
2

0 0

0 0 ηS 0
0 0 0 ηC

+ θ0


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4φC

 . (A.49)

Then,
2ηC 7→ 2ηC + 4φCθ0 , (A.50)

After introducing the wave-function renormalization of the ηC meson
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ZηC ηC 7→ ZηC ηC + 2φCθ0 . (A.51)

Therefore, the weak decay constant of ηC is

fηC =
2φC
ZηC

. (A.52)
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B. Decay rates for χc0

We show the explicit expressions for the two- and three-body decay rates for the scalar
hidden-charmed meson χc0, which are extracted from the Lagrangian (8.1) at tree level.
The results are listed in Tables 8.2, 8.3, and Table 8.4 in Sec.8.2.

B.1. Two-body decay rates for χC0

The explicit expression for the two-body decay rates of χc0 are extracted from the Lagrangian
(8.1), and are presented in the following.

Decay channel χC0 → K
∗0
0 K

∗0
0

The corresponding interaction Lagrangian from the Lagrangian (8.1) reads

LχC0K
∗
0K
∗
0

=− 2λ1 Z
2
K∗0

φC χC0(K
∗0
0 K

∗0
0 +K∗−0 K∗+0 )

− h1 φC Z
2
K∗0
ω2
K∗χC0(∂µK

∗0
0 ∂µK

∗0
0 + ∂µK

∗−
0 ∂µK∗+0 ) . (B.1)

Consider only the χC0 → K
∗0
0 K

∗0
0 decay channel, the χC0 → K∗−0 K∗+0 will give the same

contribution due to isospin symmetry,

L
χC0K

∗0
0 K∗00

=− 2λ1 Z
2
K∗0

φC χC0K
∗0
0 K

∗0
0 − h1 φC Z

2
K∗0
ω2
K∗χC0∂µK

∗0
0 ∂µK

∗0
0 . (B.2)

Let us denote the momenta of K∗00 and K
∗0
0 as P1 and P2, respectively. The energy-

momentum conservation on the vertex implies P = P1 + P2, where P denotes the momenta
of the decaying particle χC0. Given that our particles are on-shell, we obtain

P1 · P2 =
P 2 − P 2

1 − P 2
2

2
=
m2
χC0
− 2mK∗00

2
. (B.3)

Upon substituting ∂µ → −iPµ for the decay particle and ∂µ → +iPµ1,2 for the outgoing
particles, one obtains

L
χC0K

∗0
0 K∗00

= φC Z
2
K∗0

[
− 2λ1 + h1ω

2
K∗

m2
χc0 − 2m2

K∗0

2

]
χC0K

∗0
0 K

∗0
0 . (B.4)

Consequently, the decay amplitude is given by

− iM
χC0→K

∗0
0 K∗00

= iφC Z
2
K∗0

[
2λ1 − h1ω

2
K∗

m2
χc0 − 2m2

K∗0

2

]
. (B.5)
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The decay width is obtained as

Γ
χC0→K

∗0
0 K∗00

=
|
−→
k 1|

8πm2
χC0

| − iM
χC0→K

∗0
0 K∗00

|2 . (B.6)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0

+ (m2

K
∗0
0

−m2
K∗00

)2 − 2(m2

K
∗0
0

+m2
K∗00

)m2
χC0

]1/2

. (B.7)

Decay channel χC0 → K−K+

The corresponding interaction Lagrangian from the Lagrangian (8.1) has the following
form

LχC0KK =− 2λ1 Z
2
K φC χC0(K

0
K0 +K−K+

0 )

+ h1 φC Z
2
Kω

2
K1
χC0(∂µK

0∂µK
0

+ ∂µK
−∂µK+) . (B.8)

In a similar way as the previous case, one can obtain the decay width for the channel
χC0 → K−K+ as

ΓχC0→K−K+ =
|
−→
k 1|

8πm2
χC0

φ2
C Z

4
K

[
2λ1 + h1ω

2
K1

(
m2
χc0 − 2m2

K

2

)]2

, (B.9)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0
− 4m2

K m
2
χC0

]1/2

. (B.10)

Decay channel χC0 → ππ

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1) as

LχC0ππ = −λ1 φC Z
2
π χC0(π02

+ 2π−π+) +
1

2
h1 φC Z

2
πω

2
a1χC0[(∂µπ

0)2 + 2∂µπ
−∂µπ+] .

(B.11)

The decay width for the channel χC0 → ππ can be obtained in complete analogous as the
previous cases

ΓχC0→ππ =
3

2

|
−→
k 1|

8πm2
χC0

φ2
C Z

4
π

[
2λ1 + h1ω

2
a1

(
m2
χc0 − 2m2

π

2

)]2

, (B.12)

where

|
−→
k 1| =

(m4
χC0
− 4m2

πm
2
χC0

)1/2

2mχC0

. (B.13)
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Decay channel χC0 → K
∗0
K∗0

The corresponding interaction Lagrangian is extracted as

L
χC0K

∗0
K∗0

= h1 φC χC0(K∗−µ K∗+µ +K∗0µ K
∗0µ

) . (B.14)

Consider only the K∗0µ K
∗0µ

decay channel, then

L
χC0K

∗0
K∗0

= h1 φC χC0K
∗0
µ K

∗0µ
. (B.15)

Put
A
χC0K

∗0
K∗0

= h1 φC . (B.16)

Let us denote the momenta of χC0, K
∗0
, and K∗0 as P , P1, and P2, respectively, while

the polarisation vectors are denoted as ε(α)
µ (P1) and ε

(β)
ν (P2). Then, upon substituting

∂µ → iPµ1,2 for the outgoing particles, we obtain the following Lorentz-invariant χC0K
∗0
K∗0

scattering amplitude −iM(α,β)

χC0→K
∗0
K∗0

:

− iM(α,β)

χC0→K
∗0
K∗0

= ε(α)
µ (P1)ε(β)

ν (P2)hµν
χC0K

∗0
K∗0

, (B.17)

with

hµν
χC0K

∗0
K∗0

= iA
χC0K

∗0
K∗0

gµν , (B.18)

where hµν
χC0K

∗0
K∗0

denotes the χC0K
∗0
K∗0 vertex.

The averaged squared amplitude |−iM|2 is determined as follows:

∣∣∣−iM
χC0→K

∗0
K∗0

∣∣∣2 =
1

3

3∑
α,β=1

∣∣∣−iM(α,β)

χC0→K
∗0
K∗0

∣∣∣2
=

1

3

3∑
α,β=1

ε(α)
µ (P1)ε(β)

ν (P2)hµν
χC0K

∗0
K∗0

ε(α)
κ (P1)

× ε(β)
λ (P2)h∗κλ

χC0K
∗0
K∗0

. (B.19)

Equation (B.19) then yields the same expression as the one presented in Eq. (7.57):

|−iM
χC0→K

∗0
K∗0
|2 =

1

3

[ ∣∣∣hµν
χC0K

∗0
K∗0

∣∣∣2 −
∣∣∣hµν
χC0K

∗0
K∗0

P1µ

∣∣∣2
m2
V1

−

∣∣∣hµν
χC0K

∗0
K∗0

P2ν

∣∣∣2
m2
V2

+

∣∣∣hµν
χC0K

∗0
K∗0

P1µP2ν

∣∣∣2
m2
V1
m2
V2

]
. (B.20)



162 B. Decay rates for χc0

From Eq. (B.18) we obtain

hµν
χC0K

∗0
K∗0

P1µ = iA
χC0K

∗0
K∗0

P ν1 ,

hµν
χC0K

∗0
K∗0

P2ν = iA
χC0K

∗0
K∗0

Pµ2 ,

and

hµν
χC0K

∗0
K∗0

P1µP2ν = iA
χC0K

∗0
K∗0

P1 · P2 ,

and consequently

|−iM
χC0→K

∗0
K∗0
|2 =

1

3

[
4− P 2

1

m2
K∗0
− P 2

2

m2

K
∗0

+
(P1 · P2)2

m2
K∗0

m2

K
∗0

]
A2

χC0K
∗0
K∗0

. (B.21)

For on-shell states, P 2
1,2 = m2

K
∗0
,K∗0

and Eq. (B.21) reduces to

|−iM
χC0→K

∗0
K∗0
|2 =

1

3

[
2 +

(P1 · P2)2

m2

K
∗0m

2
K∗0

]
A2

χC0K
∗0
K∗0

=
1

3

[
2 +

(m2
χC0
−m2

K
∗0 −m2

K∗0)2

4m2

K
∗0m

2
K∗0

]
A2

χC0K
∗0
K∗0

. (B.22)

Consequently, the decay width is

Γ
χC0→K

∗0
K∗0

=
|
−→
k 1|

8πm2
χC0

|−iM
χC0→K

∗0
K∗0
|2 , (B.23)

where

|
−→
k 1| =

1

2mχC0

[m4
χC0

+ (m2

K
∗0 −m2

K∗0)2 − 2(m2

K
∗0 +m2

K∗0)2m2
χC0

]1/2 . (B.24)

Decay channel χC0 → K1K1

The corresponding interaction Lagrangian is extracted as

LχC0K1K1
= h1 φC χC0(K+µ

1 K−1µ +K0µ
1 K

0
1µ) . (B.25)

Consider only the χC0 → K0
1K

0
1 decay channel, which gives the same contribution as the

χC0 → K+µ
1 K−1µ decay channel due to the isospin symmetry

L
χC0K

0
1K

0
1

= h1 φC χC0K
0µ
1 K

0
1µ , (B.26)
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which has the same form of the interaction Lagrangian L
χC0K

∗0
K∗0

. Therefore, in a similar

way as was discussed in the previous case for the decay width of χC0 into K
∗0
K∗0, one can

obviously obtain the decay width of the channel χC0 → K0
1K

0
1 as

Γ
χC0→K0

1K
0
1

=
|
−→
k 1|

8πm2
χC0

1

3
h2

1 φ
2
C

[
2 +

(m2
χC0
−m2

K0
1
−m2

K
0
1

)2

4m2
K0

1
m2

K
0
1

]
, (B.27)

where

|
−→
k 1| =

1

2mχC0

[m4
χC0

+ (m2
K0

1
−m2

K
0
1

)2 − 2(m2
K0

1
+m2

K
0
1

)2m2
χC0

]1/2 . (B.28)

Decay channel χC0 → ωω

The corresponding interaction Lagrangian is extracted as

LχC0ωω =
1

2
h1 φC χC0ω

µ
NωNµ , (B.29)

which also has the same form as the interaction Lagrangian L
χC0→K

∗0
K∗0

. Thus one can
obtain the decay width of χC0 → ωω as

ΓχC0→ωω = 2
[m4

χC0
− 4m2

ωm
2
χC0

]1/2

16πm3
χC0

1

12
h2

1 φ
2
C

[
2 +

(m2
χC0
− 2m2

ω)2

4m4
ω

]
. (B.30)

Decay channel χC0 → φφ

The corresponding interaction Lagrangian is extracted as

LχC0ωω =
1

2
h1 φC χC0ω

µ
SωSµ . (B.31)

Similar to the decay width for χC0 → ωω, the decay width for χC0 → φφ is

ΓχC0→φφ = 2
[m4

χC0
− 4m2

φm
2
χC0

]1/2

16πm3
χC0

1

12
h2

1 φ
2
C

[
2 +

(m2
χC0
− 2m2

φ)2

4m4
φ

]
. (B.32)

Decay channel χC0 → ρρ

The corresponding interaction Lagrangian is extracted as

LχC0ρρ =
1

2
h1 φC χC0(ρ0µρ0

µ + 2ρ−µρ+
µ ) , (B.33)
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which also has the same form as LχC0ωω. We thus obtain the decay width as

ΓχC0→ρρ = 3ΓχC0→ρ0ρ0

= 3
[m4

χC0
− 4m2

ρ0m
2
χC0

]1/2

16πm3
χC0

× 1

12
h2

1 φ
2
C

[
2 +

(m2
χC0
− 2m2

ρ0)2

4m4
ρ0

]
. (B.34)

Decay channel χC0 → a0a0

The corresponding interaction Lagrangian has the form

LχC0a0a0 =− λ1 φC χC0(a0
0

2
+ 2a−0 a

+
0 ) . (B.35)

The decay width of χC0 into a0a0 can be obtained as

ΓχC0→a0 a0 = 3ΓχC0→a00 a00

= 3
λ2

1 φ
2
C

8πm2
χC0

[m4
χC0
− 4m2

a00
m2
χC0

]1/2

2mχC0

. (B.36)

Decay channel χC0 → K+
1 K

−

The corresponding interaction Lagrangian from the Lagrangian (8.1) reads

LχC0K1K = ZK wK1 h1 φC χC0(K0µ
1 ∂µK

0
+ ∂µK

+Kµ
1 +K+µ

1 ∂µK
− +K

0µ
1 ∂µK

0) . (B.37)

Let us consider only the decay channel χC0 → K+
1 K

−; the decay channels χC0 → K0
1K

0
,

K
0
1K

0, K−1 K
+ will give the same contribution as a result of the isospin symmetry, so consider

only

LχC0K
+
1 K
− = ZK wK1 h1 φC χC0K

+µ
1 ∂µK

− . (B.38)

We denote the momenta of K− and K+
1 as P1 and P2, respectively. The energy-momentum

conservation on the vertex implies P = P1 + P2, where P denotes the momentum of the
decaying particle χC0. Given that our particles are on-shell, we obtain

P1 · P2 =
P 2 − P 2

1 − P 2
2

2
=
m2
χC0
−mK− −mK+

1

2
. (B.39)

Note that the scattering amplitude depends on the polarisation vector ε(α)
µ (P2), Upon

substituting ∂µ → +iPµ for the outgoing particles, one obtains

− iM(α)

χC0→K+
1 K
− = iAχc0K1K iP

µ
1 ε

(α)
µ (P2) , (B.40)

The average modulus squared amplitude reads∣∣∣−iMχC0→K+
1 K
−

∣∣∣2 =
1

3
A2
χc0K1K

[
− P 2

1 +
(P1 · P2)2

m2
K+

1

]
, (B.41)
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where
Aχc0K1K = ZK wK1 h1 φC , (B.42)

and
P 2

1 = m2
K− .

Then, the decay width ΓχC0→K+
1 K
− is

ΓχC0→K+
1 K
− =

|
−→
k 1|

8πm2
χC0

∣∣∣−iMχC0→K+
1 K
−

∣∣∣2 , (B.43)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0

+ (m2
K− −m

2
K+

1
)2 − 2(m2

K− +m2
K+

1
)m2

χC0

]1/2

. (B.44)

Similarly, one can obtain the decay width of χC0 → K∗K∗0 as follows.

Decay channel χC0 → K∗K
∗
0

From the interaction Lagrangian

L
χC0K∗0K

∗0
0

= ZK∗0 wK∗ h1 φC χC0K
∗0µ
0 ∂µK

∗0
0 , (B.45)

which obtain from the corresponding interaction Lagrangian

LχC0K∗K
∗
0

= ZK∗0 wK∗ h1 φC χC0(K
∗0µ
0 ∂µK

∗0
0 − ∂µK∗−0 K∗+µ + ∂µK

∗+
0 K∗−µ − ∂µK

∗0µ
0 K∗0µ) .

(B.46)

We compute the decay width as

Γ
χC0→K∗0K

∗0
0

=
|
−→
k 1|

8πm2
χC0

w2
K∗ ZK∗h

2
1φ

2
C

∣∣∣∣∣∣−m2
K∗0 +

(m2
χC0
−m2

K∗0 −m
2

K
∗0
0

)2

4m2

K
∗0
0

∣∣∣∣∣∣ , (B.47)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0

+ (m2
K∗0 −m

2

K
∗0
0

)2 − 2(m2
K∗0 +m2

K
∗0
0

)m2
χC0

]1/2

. (B.48)

Note that we considered only the decay channel χC0K
∗0K

∗0
0 because the other decay

channels contribute the same of isospin symmetry reasons. Thus,

ΓχC0→K∗K
∗
0

= Γ
χC0→K∗0K

∗0
0

+ ΓχC0→K∗+K∗−0
+ ΓχC0→K∗−K∗+0

+ Γ
χC0→K∗00 K

∗0 . (B.49)

Decay channels χC0 → η, η′

The corresponding interaction Lagrangian of χC0 with the η′ and the η resonances reads
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LχC0ηNηN ,ηSηS ,ηNηS =(−λ1 −
1

2
cφ2

Nφ
2
S)Z2

ηN
φC χC0η

2
N +

1

2
h1w

2
f1N

Z2
ηN
χC0 ∂µηN∂

µηN

+ (−λ1 −
1

8
cφ4

N )Z2
ηS
φC χC0η

2
S +

1

2
h1w

2
f1S
Z2
ηS
χC0∂µηS∂

µηS

− 1

2
φ3
NφCφS ZηN ZηS ηNηS . (B.50)

Using Eq.(4.101) and Eq.(4.102), the interaction Lagrangian (B.50) will transform to a
Lagrangian which describes the interaction of χC0 with η and η′,

LχC0η2,η′2,ηη′ = [−λ1(Z2
ηN

cos2 ϕη + Z2
ηS

sin2 ϕη)−
1

2
cφ2

N (φ2
S Z

2
ηN

cos2 ϕη

+
1

4
φ2
NZ

2
ηS

sin2 ϕη + φNφS ZηNZηS sinϕη cosϕη)]φCχC0η
2

+

[
1

2
h1φC(w2

f1N
Z2
ηN

cos2 ϕη + w2
f1S
Z2
ηS

sin2 ϕη)

]
χC0∂µη∂

µη

[−λ1(Z2
ηN

sin2 ϕη + Z2
ηS

cos2 ϕη)−
1

2
cφ2

N (φ2
S Z

2
ηN

sin2 ϕη

+
1

4
φ2
NZ

2
ηS

cos2 ϕη − φNφS ZηNZηS sinϕη cosϕη)]φCχC0η
′2

+

[
1

2
h1φC(w2

f1N
Z2
ηN

sin2 ϕη + w2
f1S
Z2
ηS

cos2 ϕη)

]
χC0∂µη

′∂µη′

+ [−2λ1(−Z2
ηN

+ Z2
ηS

) sinϕη cosϕη)

+
1

2
cφ2

N (2φ2
S Z

2
ηN
− 1

2
φ2
N Z

2
ηS

) cosϕη sinϕη)

− 1

2
cφ3

NφS ZηNZηS (cos2 ϕη − sin2 ϕη cosϕη)]φCχC0ηη
′

+ h1φC cosϕη sinϕη(w
2
f1S
Z2
ηS
− w2

f1N
Z2
ηN

)χC0∂µη∂
µη′ , (B.51)

which contains three di�erent decay channels, χC0 → ηη, χC0 → η′η′, and χC0 → ηη′, with
the following vertices

AχC0ηη =− λ1φC(Z2
ηN

cos2 ϕη + Z2
ηS

sin2 ϕη)

− 1

2
cφ2

NφC(φ2
S Z

2
ηN

cos2 ϕη +
1

4
φ2
NZ

2
ηS

sin2 ϕη + φNφS ZηNZηS sinϕη cosϕη) ,

(B.52)

BχC0ηη =
1

2
h1φC(w2

f1N
Z2
ηN

cos2 ϕη + w2
f1S
Z2
ηS

sin2 ϕη) , (B.53)

AχC0η′η′ =− λ1φC(Z2
ηN

sin2 ϕη + Z2
ηS

cos2 ϕη)

− 1

2
cφ2

NφC(φ2
S Z

2
ηN

sin2 ϕη +
1

4
φ2
NZ

2
ηS

cos2 ϕη − φNφS ZηNZηS sinϕη cosϕη) ,

(B.54)

BχC0η′η′ =
1

2
h1φC(w2

f1N
Z2
ηN

sin2 ϕη + w2
f1S
Z2
ηS

cos2 ϕη) , (B.55)



B.1. Two-body decay rates for χC0 167

AχC0ηη′ =− 2λ1φC(−Z2
ηN

+ Z2
ηS

) sinϕη cosϕη +
1

2
cφ2

NφC(2φ2
S Z

2
ηN
− 1

2
φ2
N Z

2
ηS

) cosϕη sinϕη

− 1

2
cφ3

NφSφC ZηNZηS (cos2 ϕη − sin2 ϕη cosϕη) , (B.56)

BχC0ηη′ = h1φC cosϕη sinϕη(w
2
f1S
Z2
ηS
− w2

f1N
Z2
ηN

) . (B.57)

Let us �rstly consider the channel χC0 → ηη. We denote the momenta of the two outgoing
η particles as P1 and P2, and P denotes the momentum of the decaying χC0 particle. Given
that our particles are on shell, we obtain

P1 · P2 =
P 2 − P 2

1 − P 2
2

2
=
m2
χC0
− 2m2

η

2
. (B.58)

After replacing ∂µ → +iPµ for the outgoing particles, one obtains the decay amplitude as

− iMχC0→ηη = i

[
AχC0ηη −BχC0ηη

m2
χC0
− 2m2

η

2

]
. (B.59)

Then the decay width is

ΓχC0→ηη = 2
|
−→
k 1|

8πm2
χC0

∣∣−iMχC0→ηη
∣∣2 , (B.60)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0
− 4m2

ηm
2
χC0

]1/2

. (B.61)

Similarly, the decay width of χC0 into η′η′ is obtained as

ΓχC0→η′η′ = 2
|
−→
k 1|

8πm2
χC0

∣∣∣∣∣AχC0η′η′ −BχC0η′η′
m2
χC0
− 2m2

η′

2

∣∣∣∣∣
2

, (B.62)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0
− 4m2

η′m
2
χC0

]1/2

. (B.63)

In a similar way, the decay width of χC0 into ηη′ can be obtained as

ΓχC0→ηη′ =
|
−→
k 1|

8πm2
χC0

∣∣∣∣∣AχC0ηη′ −BχC0ηη′
m2
χC0
−m2

η −m2
η′

2

∣∣∣∣∣
2

, (B.64)

where

|
−→
k 1| =

1

2mχC0

[
m4
χC0

+ (m2
η +m2

η′)
2 − 2(m2

η +m2
η′)m

2
χC0

]1/2

. (B.65)

Decay channels χC0 → f0f0

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1)
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LχC0f
′
0

= −λ1 φC χC0(σ2
N + σ2

S)− m2
0

G2
0

φCχC0G
2 . (B.66)

Using the mixing matrix (8.9), the interaction Lagrangian becomes

LχC0f0f0 =−
[
0.9125λ1 + 0.0841

m2
0

G2
0

]
φCχC0f0(1370)2

−
[
0.985λ1 + 0.0144

m2
0

G2
0

]
φCχC0f0(1500)2

−
[
0.065λ1 − 0.0696

m2
0

G2
0

]
φCχC0f0(1370)f0(1500)

−
[
0.55λ1 − 0.551

m2
0

G2
0

]
φCχC0f0(1370)f0(1710)

−
[
0.24λ1 − 0.228

m2
0

G2
0

]
φCχC0f0(1500)f0(1710) . (B.67)

Therefore, we obtain the decay widths for all channels represented in the interaction
Lagrangian (B.67) as follows:

Decay channels χC0 → f0(1370)f0(1370)

ΓχC0→f0(1370)2 = 2
[m2

χC0
− 4m2

f0(1370)m
2
χC0

]1/2

2× 8πm3
χC0

∣∣∣∣− 0.9125λ1φC − 0.0841
m2

0

G2
0

φC

∣∣∣∣2 , (B.68)

Decay channels χC0 → f0(1500)f0(1500)

ΓχC0→f0(1500)2 = 2
[m2

χC0
− 4m2

f0(1500)m
2
χC0

]1/2

2× 8πm3
χC0

∣∣∣∣− 0.985λ1φC − 0.0144
m2

0

G2
0

φC

∣∣∣∣2 , (B.69)

Decay channels χC0 → f0(1370)f0(1500)

ΓχC0→f0(1370)f0(1500) =
1

8πm2
χC0

∣∣∣∣− 0.065λ1φC + 0.0696
m2

0

G2
0

φC

∣∣∣∣2
×

[m2
χC0

+ (m2
f0(1370) −m

2
f0(1500))

2 − 2(m2
f0(1370) +m2

f0(1500))m
2
χC0

]1/2

2mχC0

,

(B.70)



B.2. Three-body decay rates for χC0 169

Decay channels χC0 → f0(1370)f0(1710)

ΓχC0→f0(1370)f0(1710) =
1

8πm2
χC0

∣∣∣∣− 0.55λ1φC + 0.551
m2

0

G2
0

φC

∣∣∣∣2
×

[m2
χC0

+ (m2
f0(1370) −m

2
f0(1710))

2 − 2(m2
f0(1370) +m2

f0(1710))m
2
χC0

]1/2

2mχC0

,

(B.71)

Decay channels χC0 → f0(1500)f0(1710)

ΓχC0→f0(1500)f0(1710) =
1

8πm2
χC0

∣∣∣∣− 0.228λ1φC − 0.24
m2

0

G2
0

φC

∣∣∣∣2
×

[m2
χC0

+ (m2
f0(1500) −m

2
f0(1710))

2 − 2(m2
f0(1500) +m2

f0(1710))m
2
χC0

]1/2

2mχC0

.

(B.72)

B.2. Three-body decay rates for χC0

The general formula for the three-body decay width for χC0, which is proved in chapter 5,
takes the following form

ΓχC0→B1B2B3 =
S

32(2π)3m3
χC0

∫ (mχC0
−m3)2

(m1+m2)2
| − iMA→B1B2B3 |2dm2

12√
(−m1 +m12 −m2)(m1 +m12 −m2)(−m1 +m12 +m2)(m1 +m12 +m2)

m2
12√

(−mηC +m12 −m3)(mχC0 +m12 −m3)(−mχC0 +m12 +m3)(mχC0 +m12 +m3)

m2
12

,

(B.73)

The quantities m1, m2, m3 refer to the masses of the three outgoing particles (P1, P2, and
P3), which are (pseudo)scalar mesons in the present case,MηC→P1P2P3 is the corresponding
tree-level decay amplitude, and S is a symmetrization factor (it equals 1 if all P1, P2, and
P3 are di�erent, it equals 2 for two identical particles in the �nal state, and it equals 6 for
three identical particles in the �nal state)
Now let us list the corresponding tree-level decay amplitudes for χC0 which are presented

in Tables 8.3 and 8.4 as follows:
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Decay channel χC0 → K∗0Kη, η
′

The corresponding interaction Lagrangian can be obtained from the Lagrangian (8.1) as

LχC0K
∗
0KηN ,ηS

=
1√
2
cZK ZK∗0 ZηNφ

2
NφSφCχC0ηN (K∗00 K

0
+K

∗0
0 K

0 +K∗−0 K+ +K∗+0 K−)

+

√
2

4
cZK ZK∗0 ZηSφ

3
NφCχC0ηS(K∗00 K

0
+K

∗0
0 K

0 +K∗−0 K+ +K∗+0 K−) .

(B.74)

Using Eqs. (4.101, 4.102), the interaction Lagrangian (B.74) can be written as

LχC0K
∗
0Kη,η

′ =
1√
2
cφCφ

2
NZKZK∗0χco

[
(φSZηN cosϕη +

1

2
φNZηS sinϕη)η

− (φSZηN sinϕη −
1

2
φNZηS cosϕη)η

′
]

×
[
K∗00 K

0
+K

∗0
0 K

0 +K∗−0 K+ +K∗+0 K−
]
. (B.75)

Consequently, the amplitude decay for the decay channels χC0 → K∗0Kη and χC0 → K∗0Kη
′

can be obtain as

− iMχC0→K∗0Kη = −i 1√
2
cφCφ

2
NZKZK∗0 (φSZηN cosϕη +

1

2
φNZηS sinϕη) , (B.76)

and

− iMχC0→K∗0Kη′ =
1√
2
cφCφ

2
NZKZK∗0 (−φSZηN sinϕη +

1

2
φNZηS cosϕη) , (B.77)

which are used to compute ΓχC0→K∗0Kη and ΓχC0→K∗0Kη′ by Eq.(B.73).

Decay channel χC0 → f0η, η
′

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1) and
given by

LχC0σN,SηNS =− 3

2
cZηNZηSφ

2
NφSφCχC0σNηNηS − cZ2

ηN
φ2
NφSφCχC0σSη

2
N

− cZ2
ηN
φ2
Nφ

2
SφCχC0σNη

2
N −

1

2
cZ2

ηS
φ3
NφCχC0σNη

2
S

− 1

2
cZηN , ZηSφ

3
NφCχC0σSηSηN . (B.78)

Substituting Eqs.(4.101, 4.102, 4.113, 4.114) and the relations (8.11) and (8.12), we get the
decay amplitudes for several channels, which are used in Eq.(B.73) to compute the decay
widths, as follows:
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Decay channel χC0 → f0(1370)ηη

LχC0f0(1370)ηη =cφNφC
[
(0.085φN − 1.41φS) cosϕη sinϕηZηNZηSφN

− 0.47 sin2 ϕηZ
2
ηS
φ2
N + (0.17φN − 0.94φS)φS cos2 ϕηZ

2
ηN

]
χC0η

2f0(1370) .

(B.79)

Thus, the decay amplitude for the decay width ΓχC0→f0(1370)ηη reads

−iMχC0→f0(1370)ηη =cφNφC
[
(0.085φN − 1.41φS) cosϕη sinϕηZηNZηSφN

− 0.47 sin2 ϕηZ
2
ηS
φ2
N + (0.17φN − 0.94φS)φS cos2 ϕηZ

2
ηN

]
. (B.80)

Decay channel χC0 → f0(1370)η′η′

LχC0f0(1370)η′η′ =cφNφC
[
(−0.085φN + 1.41φS) cosϕη sinϕηZηNZηSφN

− 0.47 cos2 ϕηZ
2
ηS
φ2
N + (0.17φN − 0.94φS)φS sin2 ϕηZ

2
ηN

]
χC0 η

′2f0(1370) .

(B.81)

Thus, the decay amplitude for the decay width ΓχC0→f0(1370)η′η′ reads

−iMχC0→f0(1370)η′η′ =cφNφC
[
(−0.085φN + 1.41φS)cosϕη sinϕηZηNZηSφN

− 0.47 cos2 ϕηZ
2
ηS
φ2
N + (0.17φN − 0.94φS)φS sin2 ϕηZ

2
ηN

]
. (B.82)

Decay channel χC0 → f0(1370)ηη′

LχC0f0(1370)ηη′ =cφNφC
[
(0.085φN − 1.41φS) cos2 ϕηZηNZηSφN

+ (−0.085φN + 1.41φS) sin2 ϕηZηNZηSφN

+−0.94Z2
ηS
φ2
N + (−0.34φN + 1.88φS)φSZ

2
ηN

sinϕη cosϕη
]
χC0ηη

′f0(1370) .

(B.83)

Thus, the decay amplitude for the decay width ΓχC0→f0(1370)ηη′ reads

−iMχC0→f0(1370)ηη′ =cφNφC
[
(0.085φN − 1.41φS) cos2 ϕηZηNZηSφN

+ (−0.085φN + 1.41φS) sin2 ϕηZηNZηSφN

+−0.94Z2
ηS
φ2
N + (−0.34φN + 1.88φS)φSZ

2
ηN

sinϕη cosϕη
]
. (B.84)
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Decay channel χC0 → f0(1500)ηη

LχC0f0(1500)ηη =cφNφC
[
(−0.485φN − 0.3151φS) cosϕη sinϕηZηNZηSφN

− 0.105 sin2 ϕηZ
2
ηS
φ2
N + (−0.97φN − 0.21φS)φS cos2 ϕηZ

2
ηN

]
χC0η

2f0(1500) .

(B.85)

Thus, the decay amplitude for the decay width ΓχC0→f0(1500)ηη reads

−iMχC0→f0(1500)ηη =cφNφC
[
(−0.485φN − 0.3151.41φS) cosϕη sinϕηZηNZηSφN

− 0.105 sin2 ϕηZ
2
ηS
φ2
N + (−0.97φN − 0.21φS)φS cos2 ϕηZ

2
ηN

]
. (B.86)

Decay channel χC0 → f0(1500)ηη′

LχC0f0(1500)ηη′ =cφNφC
[
(−0.485φN − 0.3151φS) cos2 ϕηZηNZηSφN

+ (0.48φN + 0.315φS) sin2 ϕηZηNZηSφN

+−0.21Z2
ηS
φ2
N + (1.94φN + 0.42φS)φSZ

2
ηN

sinϕη cosϕη
]
χC0ηη

′f0(1500) .

(B.87)

Thus, the decay amplitude for the decay width ΓχC0→f0(1500)ηη′ reads

−iMχC0→f0(1500)ηη′ =cφNφC
[
(−0.485φN − 0.3151.41φS) cos2 ϕηZηNZηSφN

+ (0.48φN + 0.315φS) sin2 ϕηZηNZηSφN

+−0.21Z2
ηS
φ2
N + (1.94φN + 0.42φS)φSZ

2
ηN

sinϕη cosϕη
]
. (B.88)

Decay channel χC0 → f0(1710)ηη

LχC0f0(1710)ηη =cφNφC
[
(−0.09φN − 0.39φS) cosϕη sinϕηZηNZηSφN

+ 0.13 sin2 ϕηZ
2
ηS
φ2
N + (−0.18φN + 0.26φS)φS cos2 ϕηZ

2
ηN

]
χC0η

2f0(1710) .

(B.89)

Thus, the decay amplitude for the decay width ΓχC0→f0(1710)ηη reads

−iMχC0→f0(1710)ηη =cφNφC
[
(−0.09φN − 0.39φS) cosϕη sinϕηZηNZηSφN

+ 0.13 sin2 ϕηZ
2
ηS
φ2
N + (−0.18φN + 0.26φS)φS cos2 ϕηZ

2
ηN

]
. (B.90)
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Decay channel χC0 → f0(1710)ηη′

LχC0f0(1710)ηη′ =cφNφC
[
(−0.09φN − 0.39φS) sin2 ϕηZηNZηSφN

+ (−0.09φN + 0.39φS) cos2 ϕηZηNZηSφN

+−0.26Z2
ηS
φ2
N + (0.36φN − 0.52φS)φSZ

2
ηN

sinϕη cosϕη
]
χC0ηη

′f0(1710) .

(B.91)

Thus, the decay amplitude for the decay width ΓχC0→f0(1710)ηη′ reads

−iMχC0→f0(1710)ηη′ =cφNφC cφNφC
[
(−0.09φN − 0.39φS) sin2 ϕηZηNZηSφN

+ (−0.09φN + 0.39φS) cos2 ϕηZηNZηSφN

+−0.26Z2
ηS
φ2
N + (0.36φN − 0.52φS)φSZ

2
ηN

sinϕη cosϕη
]
. (B.92)





175

C. Decay rates for ηC

We present the explicit expressions for the two- and three-body decay rates for the pseu-
doscalar hidden-charmed meson ηC , which are listed in Table 8.5 in Sec.8.3.

C.1. Two-body decay expressions for ηC

The explicit expressions for the two-body decay widths of ηC are given by

Decay channel ηC → K
∗
0K

The corresponding interaction Lagrangian can be obtained from the Lagrangian ( 8.27)
as

LηC =
c
√

2

8
φ3
NφSφC ZKZK∗0 ZηCηC(K∗00 K

0
+K

∗0
0 K

0 +K∗−0 K+ +K∗+0 K−) . (C.1)

The decay width is obtained as

ΓηC→K
∗
0K

=
|
−→
k 1|

68πm2
ηC

c2 φ6
N φ

2
S φ

2
C Z

2
K Z

2
K∗0

Z2
ηC
, (C.2)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
K −m2

K∗0
)2 − 2(m2

K∗0
+m2

K)m2
ηC

]1/2

. (C.3)

Decay channel ηC → a0 π

The corresponding interaction Lagrangian is extracted as

LηC =
c

4
φ2
Nφ

2
SφC Zπ ZηCηC (a0

0π
0 + a+

0 π
− + a−0 π

+) . (C.4)

The decay width is obtained as

ΓηC→a0 π = 3
|
−→
k 1|

128πm2
ηC

c2 φ4
N φ

4
S φ

2
C Z

2
π Z

2
ηC
, (C.5)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
π −m2

a0)2 − 2(m2
π +m2

a0)m2
ηC

]1/2

. (C.6)
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Decay channel ηC → f0η, η
′

The corresponding interaction Lagrangian can be obtained from the Lagrangian ( 8.27)
as

LηCησ =
c

8
φ2
NφC ZηCηC{−4φNφS(ZηSηSσN + ZηN ηNσS)

− 6φ2
S ZηN ηN σN − φ

2
NηSσS ZηS} . (C.7)

Substituting Eqs.(4.102, 4.103) and the relations (8.11) and (8.12), the interaction La-
grangian (C.7) can be written as

LηCf0η,η′ =
c

8
φ2
NφC ZηC

[
{(3.76φS − 0.17φN )φN ZηS sinϕη

+ (5.64φS − 0.68φN )φS ZηN cosϕη}ηC f0(1370) η

+ {(0.84φS + 0.97φN )φN ZηS sinϕη

+ (1.26φS + 3.88φN )φS ZηN cosϕη}ηC f0(1500)η

+ {(0.18φN − 1.04φS)φN ZηS sinϕη

+ (0.72φN − 1.56φS)φS ZηN cosϕη}ηCf0(1710)η

+ {(3.76φS − 0.17φN )φN ZηS cosϕη

− (5.64φS + 0.68φN )φS ZηN sinϕη}ηCf0(1370)η′

+ {(0.84φS + 0.97φN )φN ZηS cosϕη

− (1.26φS + 3.88φN )φS ZηN sinϕη}ηCf0(1500)η′

+ {(0.18φN − 1.04φS)φN ZηS cosϕη

− (1.56φS − 0.72φN )φS ZηN sinϕη}ηCf0(1710)η′
]
. (C.8)

We then obtain the following decay amplitudes:

Decay channel ηC → f0(1370)η

ΓηC→f0(1370)η =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(3.76φS − 0.17φN )φN ZηS sinϕη

+ (5.64φS − 0.68φN )φS ZηN cosϕη

]2

, (C.9)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1370) −m

2
η)

2 − 2(m2
f0(1370) +m2

η)m
2
ηC

]1/2

. (C.10)
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Decay channel ηC → f0(1500)η

ΓηC→f0(1500)η =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(0.84φS + 0.97φN )φN ZηS sinϕη

+ (1.26φS + 3.88φN )φS ZηN cosϕη

]2

, (C.11)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1500) −m

2
η)

2 − 2(m2
f0(1500) +m2

η)m
2
ηC

]1/2

. (C.12)

Decay channel ηC → f0(1710)η

ΓηC→f0(1710)η =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(0.18φN − 1.04φS)φN ZηS sinϕη

+ (0.72φN − 1.56φS)φS ZηN cosϕη

]2

, (C.13)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1710) −m

2
η)

2 − 2(m2
f0(1710) +m2

η)m
2
ηC

]1/2

. (C.14)

Decay channel ηC → f0(1370)η′

ΓηC→f0(1370)η′ =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(3.76φS − 0.17φN )φN ZηS cosϕη

− (5.64φS + 0.68φN )φS ZηN sinϕη

]2

, (C.15)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1370) −m

2
η′)

2 − 2(m2
f0(1370) +m2

η′)m
2
ηC

]1/2

. (C.16)

Decay channel ηC → f0(1500)η′

ΓηC→f0(1500)η′ =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(0.84φS + 0.97φN )φN ZηS cosϕη

− (1.26φS + 3.88φN )φS ZηN sinϕη

]2

, (C.17)
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with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1500) −m

2
η′)

2 − 2(m2
f0(1500) +m2

η′)m
2
ηC

]1/2

. (C.18)

Decay channel ηC → f0(1710)η′

ΓηC→f0(1710)η′ =
|
−→
k 1|

512πm2
ηC

c2 φ4
N φ

2
C Z

2
ηC

[
(0.18φN − 1.04φS)φN ZηS cosϕη

− (1.56φS − 0.72φN )φS ZηN sinϕη

]2

, (C.19)

with

|
−→
k 1| =

1

2mηC

[
m4
ηC

+ (m2
f0(1710) −m

2
η′)

2 − 2(m2
f0(1710) +m2

η′)m
2
ηC

]1/2

. (C.20)

C.2. Three-body decay expressions for ηC

The corresponding interaction Lagrangian, contains the three-body decay rates for the ηC
meson, is extracted as

LηC =
c

8
φ2
NφC ZηCηC{2φN Z

2
ηS
ZηN η

2
SηN + 6φS ZηS Z

2
ηN
η2
NηS

−
√

2φN ZηS Z
2
K(K

0
K0 +K−K+) ηS − 3

√
2φS ZηNZ

2
K(K

0
K0 +K−K+)ηN

+
√

2φS Zπ Z
2
K

[√
2(K

0
K+π− +K0K−π+)− (K0K

0 −K−K+)π0

]
− 2φSηS ZηSZ

2
π(π02

+ 2π−π+)} . (C.21)

The general formula for the three-body decay width for ηC , which is proved in chapter 5,
takes the following form

ΓA→B1B2B3 =
S

32(2π)3m3
ηC

∫ (mηC−m3)2

(m1+m2)2
| − iMA→B1B2B3 |2√

(−m1 +m12 −m2)(m1 +m12 −m2)(−m1 +m12 +m2)(m1 +m12 +m2)

m2
12√

(−mηC +m12 −m3)(mηC +m12 −m3)(−mηC +m12 +m3)(mηC +m12 +m3)

m2
12

dm2
12 .

Now let us list the corresponding tree-level decay amplitudes for ηC which are obtained
from the Lagrangian (C.21) and are presented in Table 8.5 as follows:
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Decay channel ηC → η3: m1 = m2 = m3 = mη and S = 6

|−iMηC→η3 |
2 =

[
1

4
cφ2

NφC sinϕη cosϕη(ZηSφN sinϕη + 3ZηNφS cosϕη)ZηCZηNZηS

]2

.

(C.22)

Decay channel ηC → η′3: m1 = m2 = m3 = mη′ and S = 6

|−iMηC→η′3 |
2 =

[
1

4
cφ2

NφC sinϕη cosϕη(ZηSφN cosϕη − 3ZηNφS sinϕη)ZηCZηNZηS

]2

.

(C.23)

Decay channel ηC → η′η2: m1 = mη′ , m2 = m3 = mη and S = 2

|−iMηC→η′η2 |
2 =

1

16
c2φ4

Nφ
2
C

[
φN ZηS sinϕη(2 cos2 ϕη − sin2 ϕη)

+ 3ZηNφS cosϕη(cos2 ϕη − 2 sin2 ϕη)

]2

. (C.24)

Decay channel ηC → η′2η: m1 = m2 = mη′ , m3 = mη and S = 2

|−iMηC→η′2η|
2 =

1

16
c2φ4

Nφ
2
C Z

2
ηC
Z2
ηN
Z2
ηS

[
ZηSφN cosϕη(cos2 ϕη − 2 sin2 ϕη)

+ 3ZηNφS sinϕη(cos2 ϕη − 2 cos2 ϕη)

]2

.

(C.25)

Decay channel ηKK: m1 = K0, m2 = m
K

0 , m3 = mη

ΓηC→ηKK = ΓηC→ηK+K− + Γ
ηC→ηK0K

0

= 2Γ
ηC→ηK0K

0 . (C.26)

with the average modulus squared decay amplitude

|−iMηC→ηKK |
2 =

1

32
c2φ4

Nφ
2
C Z

2
ηC
Z4
K (φN ZηS sinϕη + 3φS ZηN cosϕη)

2 . (C.27)

Decay channel ηC → η′KK: m1 = K0, m2 = m
K

0 , m3 = mη′

ΓηC→η′KK = 2Γ
ηC→η′K0K

0 . (C.28)

The average modulus squared decay amplitude for this process reads

|−iMηC→η′KK |
2 =

1

32
c2φ4

Nφ
2
C Z

2
ηC
Z4
K (φN ZηS cosϕη − 3φS ZηN sinϕη)

2 . (C.29)
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Decay channel ηC → ηππ: m1 = η, m2 = m3 = mπ0 and S = 2

ΓηC→ηππ = 3ΓηC→ηπ0π0 , (C.30)

where the average modulus squared decay amplitude for this process is obtained from the
Lagrangian (C.21) as

|−iMηC→ηππ|
2 =

1

16
c2φ4

Nφ
2
S φ

2
C Z

2
ηC
Z2
ηS
Z4
π sin2 ϕη . (C.31)

Decay channel ηC → η′ππ: m1 = η′, m2 = m3 = mπ0 and S = 2

ΓηC→η′ππ = 3ΓηC→η′π0π0 , (C.32)

where the average modulus squared decay amplitude for this process is

|−iMηC→η′ππ|
2 =

1

16
c2φ4

Nφ
2
S φ

2
C Z

2
ηC
Z2
ηS
Z4
π cos2 ϕη . (C.33)

Decay channel ηC → KKπ: m1 = K+, m2 = K−, m3 = mπ0 and S = 2

ΓηC→KKπ = ΓηC→K+K−π0 + Γ
ηC→K0K

0
π0 + Γ

ηC→K
0
K+π−

+ ΓηC→K0K−π+

= 4ΓηC→K+K−π0 . (C.34)

with the average modulus squared decay amplitude

|−iMηC→K+K−π0 |2 =
1

32
c2φ4

Nφ
2
S φ

2
C Z

2
ηC
Z4
ηK
Z2
π . (C.35)
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