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Zusammenfassung

Die Quantenchromodynamik (QCD) ist die Theorie, welche die Wechselwirkung zwischen
Quarks und Gluonen beschreibt. Die fundamentale Symmetrie, die der QCD zugrunde liegt,
ist die lokale SU(3).-Farbsymmetrie. Aufgrund vom Confinement der Quarks und Gluonen
werden im niederenergetischen Bereich die physikalischen Freiheitsgrade durch Hadronen
(Mesonen und Baryonen) repréisentiert. In den letzten Jahren wurden zahlreiche effek-
tive niederenergetische Modelle fiir die starke Wechselwirkung entwickelt, denen eine chirale
Symmetrie zugrunde liegt. Die chirale Symmetrie ist eine weitere Symmetrie der QCD-
Lagrangedichte, die im Limes verschwindender Quarkmassen (dem sogenannten chiralen
Limes) realisiert ist. Diese Symmetrie wird durch nichtverschwindende Stromquarkmassen
explizit gebrochen. Im QCD-Vakuum ist die chirale Symmetrie spontan gebrochen. Als Kon-
sequenz entstehen pseudoskalare (Quasi-)Goldstone-Bosonen, die fiir Up- und Down-Quarks
(d.h. fiir Ny = 2 Quarkflavors) den Pionen entsprechen. Fiir Ny = 3, d.h. wenn auch das
Strange-Quark betrachtet wird, entsprechen die Goldstone-Bosonen den Pionen, Kaonen
und dem Eta-Meson. Das n’-Meson ist kein Goldstone-Boson wegen der chiralen Anomalie.
Die chirale Symmetrie kann in hadronischen Modellen in sogenannter linearer oder nichtlin-
earer Reprisentation realisiert werden. Im nichtlinearen Fall werden nur Goldstone-Bosonen
betrachtet. In neueren Modellen jedoch werden auch die Vektormesonen dazu addiert. Im
linearen Fall enthalten die Modelle auch die chiralen Partner der Goldstone-Bosonen. Wenn
man diese Modelle auf den Vektorsektor erweitert, enthalten Sie sowohl Vektor-als auch
Axialvektor-Mesonen. In diesem Zusammenhang haben aktuelle Bemiithungen zur Entwick-
lung des sogenannten erweiterten linearen Sigma-Modells (eLSM) fiir Ny = 2 und fiir Ny = 3
gefithrt. Zusétzlich zur chiralen Symmetrie wird im eLSM die Symmetrie unter Dilata-
tion (Skaleninvarianz) und die anomale Brechung dieser Symmetrie (Spuranomalie) bertick-
sichtigt. Fiir Ny = 2 war es im Rahmen des eLSM zum ersten Mal mdglich, (pseudo-)skalare
sowie (axial-)vektorielle Mesonen in einem chiralen Modell zu beschreiben: Die Massen und
Zerfallsbreiten stimmen gut mit den Resultaten der Particle Data Group (PDG) iiberein.
Als Folge der nicht-abelschen Natur der lokalen SU(3)-Farbsymmetrie tragen die Eichfelder
der QCD, die Gluonen, eine Farbladung. Daher wechselwirken sie stark miteinander. Wegen
des Confinements erwartet man, dass Gluonen auch farblose, bzw. “weiftie”, Objekte bilden
konnen. Diese werden als Gluebélle bezeichnet.

Die ersten Berechnungen der Glueball-Massen basierten auf dem Bag-Modell. Spéter er-
laubten numerische Gitterrechnungen die Bestimmung des vollen Glueballspektrums. In
voller QCD (d.h. Gluonen plus Quarks) findet eine Mischung zwischen den Gluebéllen und
Quark-Antiquark-Konfigurationen mit denselben Quantenzahlen statt, was die Identifika-
tion der Resonanzen, die von der PDG gelistet sind, zusétzlich erschwert. Die Suche nach
Zustdnden, die vorrangig Gluebélle sind, ist ein aktives aktuelles Forschungsgebiet. Dadurch
erhofft man sich ein besseres Verstdndnis fiir das nichtperturbative Verhalten der QCD. Ob-
wohl zurzeit einige Kandidaten fiir Gluebélle existieren, wurde noch kein Zustand eindeutig
identifiziert, der vorrangig ein Glueball ist. Im Allgemeinen sollten die Glueball-zustinde
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zwei Eigenschaften im Hinblick auf den Zerfall erfiillen. Erstens ist ein Glueball flavorblind,
da die Gluonen an alle Quarkflavors mit derselben Stérke koppeln. Zweitens besitzen Glue-
bille eine schmale Zerfallsbreite, die im Large-N.-Limes wie 1/N2 skaliert. Im Vergleich
dazu skaliert ein Quark-Antiquark-Zustand wie 1/N,. Der leichteste Glueballzu-stand, den
die Gitterrechnungen vorhersagen, ist ein skalar-isoskalarer Zustand (J©¢ = 0%+) mit einer
Masse von etwa 1.7 GeV. Die Zerfallsbreite der Resonanz fp(1500) ist flavorunabhéngig
und schmal. Aus diesem Grund ist diese Resonanz ein guter Kandidat fiir einen Zustand,
der vorrangig ein skalarer Glueball ist. Zusétzlich ist die Resonanz fy(1700) ein Glueball-
Kandidat, da ihre Masse in der Ndhe der Vorhersagen der Gitterrechnungen liegt, und da sie
in den gluonreichen Zerféllen des J/1-Mesons produziert wird. Beide Szenarien wurden in
vielen Arbeiten untersucht, in denen die Mischung zwischen f(1370), fo(1500) und fo(1710)
betrachtet wird. Der zweitleichteste Glueball, der von den Gitterrechnungen vorhergesagt
wird, ist ein Tensor-Zustand mit den Quantenzahlen 277 und einer Masse von etwa 2.2
GeV. Ein guter Kandidat dafiir kénnte die sehr schmale Resonanz f(2200) sein, falls sich
ihr Drehimpuls experimentell zu J = 2 bestimmen lisst. Der drittleichteste Glueball ist
ein pseudoskalarer Zustand (J©¢ = 0~F) mit einer Masse von etwa 2.6 GeV. Open-charm
Mesonen bestehen aus einem Charm-Quark und einem Up-, Down- oder Strange-Antiquark.
Sie wurden im Jahre 1976, zwei Jahre spéter als das J/¢-Meson (ce-Zustand), entdeckt.
Seit dieser Zeit gab es signifikante experimentelle und theoretische Fortschritte im Bereich
der Spektroskopie und bei der Bestimmung der Zerfille dieser Mesonen. In dieser Arbeit
zeigen wir, wie im Rahmen eines chiral-symmetrischen Modells, welches das Charm-Quark
als zusatzlichen Freiheitsgrad enthélt, die urspriingliche SU(3)-Flavor-Symmetrie der Hadro-
nen zu einer SU(4)-Symmetrie erweitert werden kann. Die chirale Symmetrie wird durch
die grofie Strommasse des Charm-Quarks stark explizit verletzt.

Zerfall von pseudoskalaren Gluebillen in skalare und pseudoskalare Mesonen

In dieser Arbeit untersuchen wir die Zerfille des pseudoskalaren Glueballs, dessen Masse
laut Gitterrechnungen zwischen 2 und 3 GeV liegt. Wir konstruieren eine effektive chirale
Lagrangedichte, die das pseudoskalare Glueballfeld G an skalare und pseudoskalare Meso-
nen mit Ny = 3 koppelt. Danach berechnen wir die Breiten fiir die Zerfdlle G — PPP und
G — PS, wobei P und S pseudoskalare und skalare Quark-Antiquark-Zusténde kennze-
ichnet. Die pseudoskalaren Zustidnde umfassen das Oktett der pseudo-Goldstone-Bosonen,
wahrend sich der skalare Zustand S auf das Quark-Antiquark-Nonet oberhalb von 1 GeV
bezieht. Der Grund dafiir besteht darin, dass die chiralen Partner der pseudoskalaren
Zusténde nicht mit Resonanzen unterhalb von 1 GeV identifiziert werden sollten. Die
konstruierte chirale Lagrangedichte enthilt eine unbekannte Kopplungskonstante, die nur
experimentell bestimmt werden kann. Aus diesem Grund présentieren wir die Resultate
in Form von Verzweigungsverhdltnissen fiir die Zerfille des pseudoskalaren Glueballs G
in drei pseudoskalare Mesonen oder ein skalares und ein pseudoskalares Meson. Diese
Verzweigungsverhéltnisse hdngen von keinen weiteren Parametern ab, sobald die Glueball-
masse fixiert wird. Wir betrachten zwei Moglichkeiten: i) In Ubereinstimmung mit Git-
terrechnungen wahlen wir die Masse des pseudoskalaren Glueballs zu etwa 2.6 GeV. Die
Existenz und die Zerfallseigenschaften hypothetischer pseudoskalarer Resonanzen kénnen
im zukiinftigen PANDA-Experiment getestet werden. (Das PANDA-Experiment mifst die
Proton-Antiproton-Streuung. Daher kann der pseudoskalare Glueball direkt als ein Zwi-
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schenzustand produziert werden.) ii) Wir nehmen an, dass die Resonanz X (2370) (gemessen
im Experiment BESIII) vorrangig ein pseudoskalarer Glueball-Zustand ist. Daher benutzen
wir dafiir die Masse 2.37 GeV. Unsere Ergebnisse sagen voraus, dass K K7 der dominante
Zerfallskanal ist, gefolgt von einem beinahe gleich grofem nrm-und n'ww-Zerfallskanal. Der
Zerfallskanal in drei Pionen verschwindet. Beim BESIII-Experiment wire es moglich, durch
die Messung des Verzweigungsverhéltnisses fiir 7w und anderer Zerfallskanéle zu bestim-
men, ob X (2370) vorrangig ein pseudoskalarer Glueball ist. Fiir das PANDA-Experiment
liefern unsere Resultate niitzliche Hinweise fiir die Suche nach pseudoskalaren Gluebéllen.

Phinomenologie der Charm-Mesonen

Wir vergrofern die globale Symmetrie des erweiterten linearen Sigma Modells (eLSM) zu
einer globalen SU(4)r x SU(4)r Symmetrie, indem wir das Charm-Quark einbauen. Das
eLSM enthélt zusédtzlich zu skalaren und pseudoskalaren Mesonen auch Axialvektor- und
Vektormesonen. Wir benutzen die Parameter aus dem niederenergetischen Sektor der Meso-
nen. Die verbleibenden drei freien Parameter (die von der Strommasse des Charm-Quarks
abhéngen) werden an Massen der Charmed Mesonen angepaft. Die Resultate fiir Open-
Charm-Mesonen stimmen gut mit den experimentellen Ergebnissen iiberein (die Abweichung
betrédgt etwa 150 MeV). Fiir Charmonia weichen unsere Resultate fir die Massen stédrker von
der experimentellen Daten ab. Unser Modell stellt dennoch ein niitzliches Werkzeug dar,
um einige Kigenschaften der Charm-Zusténde, wie zum Beispiel das chirale Kondensat, zu
untersuchen.

Zusammenfassend bedeutet die Tatsache, dass eine (obwohl in diesem Stadium nur grobe)
qualitative Beschreibung durch die Verwendung eines chiralen Modells und insbesondere
der ermittelten Parameter durch die Untersuchung von Ny = 3 Mesonen erzielt wurde,
dass auch im Sektor der Charm-Mesonen ein Uberrest der chiralen Symmetrie vorhanden
ist. Die chirale Symmetrie ist immer noch prisent, da sich die Parameter des eLSM als
Funktion der Energieskala kaum veréindern. Neben den Massentermen, die den Grofiteil der
gegenwéartigen Charm-Quarkmasse beschreiben, sind alle Wechselwirkungsterme dieselben
wie im niederenergetischen effektiven Modell, welches unter der Forderung nach chiraler
Symmetrie und Dilatationsinvarianz konstruiert wurde. Als Nebenprodukt unserer Arbeit
haben wir das Charm-Kondensat auf die gleiche Gréfenordnung wie die strange und non-
strange Quarkkondensate bestimmt. Dies stimmt ebenfalls mit der auf U(4)r x U(4)L,
erweiterten chiralen Dynamik iiberein.

Was die Zuweisung der skalaren und axial-vektoriellen Strange-Charm-Quarkonium-Zu-
stinde Dgo und Dg; betrifft, erhalten wir das folgende: falls ihre Masse iiber dem jew-
eiligen Schwellenwert liegt, ist ihre Zerfallsbreite zu grof. Dies wiederum bedeutet, dass
sich diese Zustdnde, auch wenn sie existieren, der Detektion entzogen haben. In diesem
Fall kann es sich bei den Resonanzen D¥;(2317) und Dg;(2460) um dynamisch generierte
Pole handeln (alternativ hierzu auch um Tetraquarks oder molekulare Zustande). Unsere
Ergebnisse implizieren auch, dass die Interpretation der Resonanz Dg1(2536) als Mitglied
des axial-vektoriellen Multiplets nicht favorisiert ist, da die experimentelle Breite zu schmal
im Vergleich zur theoretischen Breite eines Quarkonium-Zustands derselben Masse ist. Die
Untersuchung dieser Resonanzen erfordert die Berechnung von Quantenfluktuationen und
wird Thema zukiinftiger Studien sein.
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Zerfille von Open-Charm-Mesonen

Die Ergebnisse fiir die Konstanten aus den schwachen Zerfillen von pseudoskalaren Open-
Charm-D- und Ds-Mesonen sind in guter Ubereinstimmung mit den experimentellen Werten.
Wir berechnen die OZI-dominierten Zerfille der Charmed-Mesonen. Die Resultate fiir
Do (2400)F, Do(2400)°, Do (2007), D(2010), D(2420)°, und D(2420)7 sind vergleichbar mit
den Ergebnissen fiir die Ober- und Untergrenzen der PDG, obwohl die theoretischen Fehler
ziemlich grofs sind. In unserem Modell ist es dennoch mdglich, gleichzeitig die Zerfille
von Open-Charm-Vektormesonen und ihren chiralen Partnern, den Axialvektormesonen, zu
beschreiben.

Zerfille von Charmonium-Mesonen

Wir erweitern unser U(4) g x U (4) p-symmetrisches lineares Sigma Modell mit Axialvektor-
und Vektormesonen um ein Dilaton-Feld, welches ein skalarer Glueball ist. Zusétzlich bauen
wir Wechselwirkungen eines pseudoskalaren Glueballs mit (pseudo-)skalaren Mesonen ein,
um die Eigenschaften der OZI-unterdriickten Charmonia zu untersuchen. Wir berechnen
die OZI-unterdriickten Zerfille der skalaren und pseudoskalaren Charmonium-Zustinde,
Xc0(1P) und n.(1S). Wir machen Vorhersagen fiir einen pseudoskalaren Glueball mit einer
Masse von etwa 2.6 GeV, welcher im PANDA-Experiment bei FAIR gemessen werden kann.
Zusatzlich geben wir Vorhersagen fiir einen pseudoskalaren Glueball mit einer Masse von
etwa 2.37 GeV an. Dieser Glueball entspricht der im BESIII-Experiment gemessenen Reso-
nanz X (2370), die beim Zerfall vom Charmonium-Zustand 7. gemessen wird. Wir berechnen
auch den Mischungswinkel zwischen pseudoskalaren Gluebéllen mit einer Masse von 2.6 GeV
und dem Hidden-Charm-Meson 7.

Die Tatsache, dass eine qualitative Beschreibung dieser Zerfille im Rahmen eines chiralen
Modells, dessen Parameter fiir Ny = 3 bestimmt wurden, mdglich ist, ist ein Indiz dafiir,
dass ein Teil der chiralen SU(3)g x SU(3)-Symmetrie im Charm-Sektor weiterhin erhalten
ist. Ein weiterer Hinweis fiir eine teilweise erhaltene chirale SU(3)r x SU(3)r-Symmetrie
besteht darin, dass die Parameter des erweiterten linearen Sigma-Modells keine starke En-
ergieabhéngigkeit besitzen. Wir berechnen schlieflich das Charm-Kondensat, welches von
derselben Grofenordnung ist wie das Non-strange- und das Strange-Quarkkondensat. Das
ist auch in Ubereinstimmung mit der zu U(4)g x U(4)-vergréRerten chiralen Dynamik.

Dariiber hinaus haben wir ein Dilatonfeld, ein skalares Glueballfeld und die Wechsel-
wirkung eines pseudoskalaren Glueballfeldes mit (pseudo-)skalaren Mesonen unter U(4)g X
U(4)r-Symmetrie einbezogen. Anschliefend haben wir die Breite des Zerfalls des Charm-
onium-Mesons g in zwei oder drei Strange-oder Non-Strange-Mesonen und in einen skalaren
Glueball G berechnet. Letzterer ist eine Mischung der Resonanzen f,(1370) sowie fo(1500)
und fo(1700). Der Zerfall des Charmonium-Zustands in Open-Charm-Mesonen ist hingegen
innerhalb des eLSM verboten. Ferner haben wir die Breite des Zerfalls des pseudoskalaren
Charmonium-Zustands nc in leichte Mesonen und in einen pseudoskalaren Glueball G iiber
den Kanal no — 7mnG bestimmt. Dies wurde mittels des Wechselwirkungsterms des pseu-
doskalaren Glueballs fiir zwei Fille durchgefithrt. Zum einen fiir eine Masse von 2.6 GeV,
wie sie von Gitter-QQCD-Rechnungen in der Quenched-Naherung vorhergesagt wurde und im
bevorstehenden PANDA-Experiment an der FAIR-Anlage gemessen werden kann. Zum an-



deren fiir eine Glueballmasse von 2.37 GeV, die der Masse der Resonanz X (2370) entspricht
und im BESIII-Experiment ermittelt wurde. Der Mischungswinkel zwischen dem pseu-
doskalaren Glueball und nc wurde ausgewertet. Er ist sehr klein und betrigt lediglich
—1°. Wir haben begriindet, dass das eLSM keinerlei Zerfallskanal fiir (axial-)vektorielle
Charmonium-Zusténde aufweist, wobei I';,;, = 0 und I'y,, = 0. Die Ergebnisse der Zer-
fallsbreiten . und 7nc stimmen gut mit experimentellen Daten iiberein. Dies zeigt, wie
erfolgreich das eLSM im Bezug auf das Studium der Hidden-Charm- und Open-Charm-
mesonischen Phidnomenologie ist. Die vier bestimmten Parameter im Falle von Ny = 3, die
zur erfolgreichen Auswertung der Massen von Open- und Hidden-Charm-Mesonen und der
Zerfallsbreite des Open-Charm-Mesons dienten, sind: (i) A\; und hq, die gleich Null gesetzt
werden im Falle von Ny = 3, da sie so klein sind und die vorherigen Resultate nicht beein-
flussen. Dagegen hingt die Zerfallsbreite der Charmonium-Zustande x.o und nc von beiden
ab. Deshalb wurden diese beiden Parameter durch das Minimieren der Zerfallsbreite des o
festgelegt, siehe Tabelle 8.2.

(ii) Der Parameter ¢, der im axialen Term vorkommt, wird auch durch den Fit von

G1.(8.16) bestimmt.

(iii) ez, das durch die Beziehung CEo(N;=3) festgelegt wird.

Ausblick

In der modernen Hadronenphysik ist die Wiederherstellung der chiralen Symmetrie bei
endlicher Temperatur und Dichte eine der fundamentalsten Fragestellungen. Das eL.SM
hat es im Gegensatz zu alternativen Ansitzen geschafft, den zwei-Flavor Fall bei einen
chemischen Potential ungleich Null zu ergriinden. All dies fiihrt uns dazu, die Restauration
der chiralen Symmetrie bei nichtverschwindender Temperatur und Dichte fiir Ny = 3 und
Ny = 4 mithilfe des eLSM zu untersuchen. Dies bringt viele Herausforderungen mit vielen
unbekannten Parametern in sich. In zukunft werden wir die Vakuumphinomenologie des
leichten Tetraquark-Nonets und dessen Erweiterung auf Ny = 4 untersuchen.
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1. Introduction

1.1. Historical Remarks

“The most incomprehensible thing about the universe is that it’s comprehensible at all...”
Albert Einstein

Billions of years ago, all of space was contained in a single point which, exposed to an enor-
mous and incomprehensible explosion (the Big Bang), scattered the matter that constitutes
the Universe. At that time, it was hot and dense, but within the first three minutes after the
Big Bang the Universe became sufficiently cool to consist of subatomic particles, including
protons, neutrons, and electrons. More than ten billion years passed before the stars and
galaxies formed. After some time, planets surrounded some stars... life formed...finally, after
billions of years of changes, the human being was created with a complex brain which has a
deep and insatiable curiosity about the world. Humans found that understanding the world
is not easy and noticed that understanding the nature of matter is an important and comple-
mentary approach to understanding the nature of reality and answering the deep and pressing
questions in their minds. To answer these questions, they used the observational method
which creates a lot of ideas. The Greek philosopher Empedocles surmised that everything
was made from a suitable mix of four basic elements: air, fire, water, and earth. These four
elements were perceived as the fundamental elements in nature. Consequently, concentration
moved towards understanding the nature of the elements’ permanence. The ancient philoso-
phers Leucippus and well-known Democritus of Greece are the earliest philosophers who
conceived the idea that matter is composed entirely of various imperishable, indestructible,
indivisible elements, always in motion, having empty space between them; called atoms. The
name is derived from the Greek &ropos which means “indivisible”. In 1661, Robert Boyle
established the atomic idea (molecules). However, this knowledge about the existence of
atoms brings with it a lot of important questions: How do these atoms make molecules?...
How do the molecules make gases, liquids and solids?... It must be forces that act on these
atoms to keep them together in molecules, but what are these forces? They arrived at that
time at the idea that the inter-atomic forces are gravity, static electricity, and magnetism.
After that, there were a lot of efforts from philosophers and scientists directed towards the
fundamental building blocks of matter. At the close of the 19" century, it was known that
more than 100 elements exist and that all matter is composed of atoms which have an inter-
nal structure and are not indivisible, which is opposite of what Democritus foresaw of the
indivisible property of the atom.

At the beginning of the 20" century, Rutherford presented the subatomic structure as a
result of his experiments: an atom is composed of a dense nucleus surrounded by a cloud of
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electrons. Consequently, physicists found that the nucleus decomposed into smaller particles,
which they called protons and neutrons, and in turn that protons and neutrons themselves
contain even smaller particles called quarks. Moreover, there are other small ingredients
making up the atom, which are called leptons. These include the electron in the orbits of
the nucleus, situated at (relatively) large distance from the nucleus, but not inside it. We
conclude that quarks and leptons constitute all fundamental matter in the Universe [I]. This
information is the starting point for understanding the formation of the Universe.

1.2. Standard Model

“Daring ideas are like chessmen moved forward; they may be detected, but they start a win-
ning game” Goethe

Quarks and leptons are the basic types of fundamental matter particles. Fach group
consists of six types of flavour. The combinations of these form the hundreds of particles
discovered in the 1950s and 1960s. Two flavours each can be classified as a generation under
the weak interaction, in which the first generation consists of the lightest flavours which make
the most stable particles in the Universe, whereas the second and third generations contain
the heavier flavours which make the less stable particles which decay quickly to the next-most
stable state belonging to the previous generation. The quark generations are: the (u = up,
and the d = down) quark flavours (the first generation), followed by the (¢ = charm, and the
s = strange) quark flavours as a second generation, and the third consists of the (¢t = top,
and the b = bottom) quark flavours. Concerning the electric charges of quarks, quarks carry
colour charge which corresponds to the electric charge of electrons. They also carry a frac-
tional electric charge (the wu,c, and t quark flavours carry (2/3)e, whereas the d, s, and b
quark flavours carry (—1/3)e). Each quark has its corresponding antiparticle with opposite
charge. Similarly, there are three generations for the six lepton flavours: the e = electron,
and the v, = electron neutrino, the u = muon, and the v, = muonneutrino, and the
T = tau, and the v; = tauneutrino. The three lepton flavours (the electron, the muon and
the tau) have a sizable mass with charge —e, whereas the other three -the neutrinos- are
neutral and have a small mass. (See Table 1.1 for a compilation of quarks and leptons).

Particle Generation | Generation 11 Generation 111 charge
up (u) charm (c) top (%) +(2/3)e
(0.0015-0.0033) (1.5) (172)
Quarks (q)
down (d) strange (s) bottom (b) -(1/3)e
(0.0035-0.006) (0.1) (4.5)
electron (e) muon (/) tau (1) -1
(0.0005) (0.1) (1.7)
Leptons (1)
electron neutrino () | muon neutrino (v,) | tau neutrino (v,) 0
(<0.000000015) (<0.00017) (<0.024)

Table 1.1: Summary of quarks and leptons. The numbers in parentheses are
the masses in GeV.
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The central rule in creating the Universe depends on the four fundamental forces. Physi-
cists use these forces to describe quantitatively all the phenomena from the small scale of
quarks and leptons to the large scale of the whole Universe. Then, what are the four funda-
mental forces that govern the Universe? Let us list them as follows:

(i) The gravitational force: Attracts any two pieces of matter. It has an infinite range and
is the weakest force. It is responsible for keeping stars, galaxies, and planetary systems in
order, but it has no significance in the particle physics realm.

(ii) The electromagnetic force: causes electric and magnetic effects. It also has infinite range,
but is much stronger than gravity. This force acts only between electrically charged matter.
Therefore, it governs the motion of electrons around the nucleus. Note that the relations
between the spatial- and time-dependences of the electric and magnetic fields [2] were ex-
plained by James Maxwell in 1865 through his equations; the Maxwell Equations.

(iii) The nuclear force: As the name suggests, it acts only between nucleons. It is a result
of the strong force which has a very short range, acting only over of a range of 107!3 cm
It is the strongest force and has the responsibility of binding quarks together, keeping them
inside protons and neutrons, and also binds the protons and neutrons together. Therefore,
it is responsible for the stability of the nucleons.

(iv) The weak force: Dominates only at the level of subatomic particles. It is effective also
over a very short range (see Table 1.2), and it is stronger than gravity and weaker than
others.

The electromagnetic, strong, and weak forces arise from the exchange of force-carrier par-
ticles which are bosons called-gauge bosons. Each of these four fundamental forces has a
different type of carrier: the electromagnetic force is carried by the massless photon ()
which is chargeless and is known as the particle of light. The strong force has a corre-
sponding boson, the gluon (g), which is massless and is not charged electrically, just as the
photon, but which carries a different sort of charge, called colour which holds the quarks
confined within nucleons. The gluon is thus related to nucleon stability. The bosons W and
Z (W, Z% are the corresponding force-carrying particles of the weak force, these carriers
are massive, having a mass about 100 times that of the proton mass. The properties of the
interaction forces in the Standard Model are summarized in Table 1.2. Moreover, gravity
may be carried by the “graviton”, but it has not yet been found. Note that leptons carry elec-
tromagnetic charge and weak isospin as quantum numbers, but quarks may experience all
four fundamental interactions, and carry the strong charge which is also called colour charge.

Interaction Mediator | Spin Mass (GeV) Range (m) acts on
Electromagnetic ¥ 1 0 00 Quarks, Leptons,
W:t
Weak W 1 80.398 £ 0.025 < 107'® | Quarks, Leptons
Z° 1 | 91.1876 + 0.0021
Strong g 1 0 <10°P Quarks, Gluons

Table 1.2: The properties of the interactions in the Standard Model.

Concerning quarks, leptons, and all their fundamental interactions, theory and experi-
ment together produced a gauge theory called the Standard Model of elementary particles.
Recently the Higgs boson which is an essential component of the standard Model was dis-
covered by the ATLAS [3] and CMS [4] experiments at the Large Hadronic Collider (LHC)
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in 2012.

The Standard Model is based on a Lagrangian density with fields as degrees of freedom. The
strong and weak interactions are described by Quantum Chromodynamics (QCD) and the
Glashow-Weinberg-Salam Theory of the Weak Interaction (GWS) [5], respectively. Quarks
and gluons carry colour charge and have never been seen to exist as single-particle states.
They couple to themselves which leads to confinement and asymptotic freedom. These can
be further distinguished into baryons and mesons. Leptons do not interact by the strong
force. The production of hadrons as observed in the final state of high-energy collisions,
which arise due to how quarks and gluons arrange themselves, is described by the theory
called quantum chromodynamics (QCD), described in the following,.

1.3. Quantum Chromodynamics (QCD)

“In modern physics, there is no such thing as ‘nothing’. Even in a perfect vacuum, pairs
of virtual particle are constantly being created and destroyed. The existence of these par-
ticles is no mathematical fiction. Though they cannot be directly observed, the effects they
create are quite real. The assumption that they exist leads to predictions that have been con-
firmed by experiment to a high degree of accuracy” Richard Morris

The dynamics of baryons and mesons (hadrons) are described by the theory of the funda-
mental interactions of quarks and gluons, i.e., quantum chromodynamics (QCD) [6].

The fundamental symmetry underlying QCD is an exact local SU(3). colour symmetry.
The quarks are coloured objects: ¢ € 3.. As a consequence of the non-Abelian nature of
the SU(3). symmetry, the gauge fields of QCD - the gluons - are also coloured objects:
g € 8.. Therefore, quarks and gluons interact strongly with each other. The dynamics of
this interaction are described by the QCD Lagrangian, see Sec. 2.2, which implies asymp-
totic freedom and confinement. Perturbation theory works in the high-energy regime [7,, [§],
due to the asymptotically-free nature of QCD, such as for deep inelastic lepton-hadron scat-
tering (DIS). However, at low energy (energies comparable to the low-lying hadron masses
~ 1GeV), perturbation theory fails due to confinement and the dynamical breaking of chiral
symimetry.

The development of an effective low-energy approach to the strong interaction plays an
important role in the description of the masses and the interactions of low-lying hadron
resonances [9, [10], which is done by imposing chiral symmetry. One of the basic symmetries
of the QCD Lagrangian in the limit of vanishing mass (the so-called chiral limit) [I1], 12] is
the chiral symmetry which is explicitly broken by the nonzero current quark masses, but it
is also spontaneously broken by a nonzero quark condensate in the QCD vacuum [13], [14].
As a consequence, pseudoscalar (quasi-)Goldstone bosons emerge. In a world with only u
and d quarks (i.e., for Ny = 2 quark flavours), these are the pions, while for Ny = 3, i.e.,
when also the strange quark s is considered, these are the pions, kaons, and the n meson.
(The 1’ meson is not a Goldstone boson because of the chiral anomaly [I5, 16, 17, 18]). In
the present work we study the vacuum phenomenology of mesons in the framework of the
extended Linear Sigma Model (eLSM) which is an effective chiral model that emulates the
global symmetries of the QCD Lagrangian (see the details in Sec. 2.3). The fundamental
features of QCD are described in the following section.
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1.4. Features of QCD

1.4.1. Asymptotic freedom

This feature was observed by Gross, Wilczek, and Politzer in 1973 [19, 20]. (They won the
Nobel Prize in Physics in 2004). Quarks behave quasi-free at small distance or at high en-
ergies (high compared to the rest mass of the proton). That means the coupling/interaction
strength as = ¢?/41 between quarks becomes weaker or smaller with increasing energy,
increasing momentum, and decreasing interparticle distance. This prediction was confirmed
experimentally by deep-inelastic scattering of leptons by nucleons [I]. A quark-gluon plasma
was predicted for high temperature and/or baryonic chemical potential based on asymptotic
freedom. Perturbation theory confirmed the existence of a quark-gluon plasma phase [21].
Furthermore, at high temperature and high density, colour charged particles are liberated
from hadrons, they become deconfined.

The opposite effect occurs at low energies, which means the interaction/coupling strength
between quarks becomes stronger with increasing distance. This leads to the emergence of
confinement, which means that colour-charged particles are confined in colour-neutral states
(hadrons).

QCD seems like an expanded version of quantum electrodynamics (QED). Both have
charges: QED has electric charge and QCD has the colour charges (red, green, and blue).
Therefore, just as one considers the force between two electric charges to understand and
study electromagnetic physics, one can analogously consider the strong force between two
colour charges to understand the strong interaction. This leads us to explain asymptotic
freedom in a simple way by referring firstly to electromagnetic physics as follows [22]:

Coulomb’s law describes the force between two charges g1 and g2 in vacuum as

1 q1q2
= — . 1.1
A7 r? (L.1)

However, in a medium with dielectric constant € > 1, the force between them becomes

I q1q0
F=— 1.2
dme r2 (1.2)

which has the same form as in vacuum with the effective charge ¢; = q1,2/V/€.

In quantum field theory, the vacuum is the lowest energy state of a system. In QED, it is
not empty but filled with electrons of negative energies. When the photon travels through
the vacuum, an electron can be induced to jump from a negative to a positive energy state,
which creates a virtual pair of an electron and a positron (the hole in the negative-energy
continuum). That is known as a vacuum fluctuation. For this reason, the interaction force
between two electrons in the vacuum becomes

2
F= Cefs _ Qe (T)
A7 r2 r2

, (1.3)

where ., is an effective fine structure constant and depends on the distance r or the

momentum transfer ¢ ~ % The interaction strength of a low-energy photon at r — oo or

(= q — 0) is aem(q = 0) = 1/137.035 [23].
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In QED, the coupling as a function of the momentum scale p can be determined by the
following differential equation

Do)
o

— Blaln)). (L4)
From perturbation theory, the -function can be obtained at one-loop order as

B=2a?% /37>0.
Then the solution can be obtained as

Qem (o)
. aem(uo)lnu . (1.5)

Qe (1) = 2
37 “g
Now it is clear that when the distance between the two electrons becomes smaller, their
interaction strength gets stronger. Therefore, QED is a strong-coupling theory at very short
distance scales.

Now let us turn to QCD which has a classical scale symmetry (see the details in the next
chapter). At the quantum level, this symmetry is spontaneously broken due to the energy
scale which is introduced by the renormalization of quantum fluctuations. Therefore, the
strong coupling g depends on the energy scale p [24] 25], 26]:

g renormalization g(u)

The beta function B(g(u)) of the renormalization group describes the variation of the
strong coupling with energy scale u, called running coupling. It has the same differential
equation (1.4) as in QED

9g(1)
=pu—"=. 1.6
Blg(w) = p o (1.6)
At one-loop level in perturbation theory the beta function of QCD has the following form
[19, 20]
11N +2N;

1.
132 9>, (L.7)

Blg(w) =
where Ny is the number of active quark flavours and N, the number of colours. In nature,
there are six quark flavours and three colours. As seen in Eq., if the S—function is
negative (5(g(u)) < 0), then the QCD coupling decreases with increasing energy scale .
The coupling constant of QCD is obtained from the solution of the differential equation
as
24 72

11N, — 2Ny)In(p/Aqep)

9 () = ( (1.8)
which describes clearly that, when the energy scale is increasing (u — oo) or the distance
is decreasing (d — 0), the QCD coupling constant is decreasing (¢ — 0). This feature is
called asymptotic freedom.
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1.4.2. Quark Confinement

The fact that the strong coupling grows in the increasing distance leads to the confinement
of quarks, which means that no isolated elementary excitations of QCD, quarks, exist in na-
ture. Experimentally, no one has observed an isolated quark. Quarks usually clump together
to form hadrons, such as baryons and mesons. In QCD, the confinement hypothesis has not
been directly derived until now. Note that, at any finite order in perturbation theory, there
is no confinement. Therefore, it is a nonperturbative phenomenon. Confinement has a lot
of meanings. Four different meanings are considered [27]:

(1) ‘Quarks cannot leave a certain region in space’ |27|, which is called ‘Spatial Confine-
ment’. The MIT-bag model explores the consequences of spatial confinement, whereas the
Chromodielectric Soliton Model [28] attempts to understand the mechanisms producing this
confinement.

(i) ‘String confinement’: it is especially for mesons which are produced from scattering
processes. From the features of the meson spectrum, the attractive force between quark
and anti-quark increases linearly with the distance of the quarks. Moreover, quark and
antiquark are linked together by something which expands with increasing energy. For all
of that, free quarks never appear. Note that the string breaks and new particles are created
when the corresponding energy exceeds a certain critical value and the separation becomes
large enough.

(iii) ‘There are no poles in the quark propagator’. This definition is limited to the, a priori
unknown, quark propagator. Asymptotic quark states cannot appear when the full quark
propagator has no poles. This means no free quarks exist.

(iv) ‘Colour Confinement’ means any composite particle must be a colour singlet under
the strong interaction at zero temperature and density, and at distance scales larger than
1/Agcep. M. Gell-Mann is the first one who introduced this type of confinement to solve his
original quark-model problem.

Finally, we have to conclude from all of this that there are no isolated quarks and gluons
in nature.

1.4.3. Chiral Symmetry

Chiral symmetry and its dynamical breaking are very important features of QCD at low en-
ergy. From the dynamical breaking of chiral symmetry, an effective quark mass is generated.

What 1s the meaning of chirality?

Kelvin’s definition of chirality: “I call any geometrical figure, or group of points ‘chi-
ral’, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself” (Lord Kelvin, 1904, The Baltimore Lectures)

In general, chirality is the property of having for the same object a left-form and a right-
form which are mirror images of each other.
The property of chirality (or “handedness”) is well-known of many physical, chemical, and
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biological systems. In theoretical physics, it is demonstrated that a quantum field theory
cannot be chirally symmetric if its Lagrangian density has explicit mass terms. However,
comparing to the rest mass of the proton (about 1000 MeV), the current quark masses of the
relevant quarks are small (about 10 MeV) in the low-energy domain of QCD which leads to
an approximate realization of chiral symmetry. In the end, there is a chiral partner (with the
same mass, but opposite parity and G-parity) for every eigenstate of the interaction. This is
not seen in experimental data, from which are concludes that the chiral symmetry is broken.
Note that the confinement and dynamical chiral symmetry breaking cannot be obtained
in a simple perturbative analysis of QCD because they are low-energy phenomena, and
in this regime, perturbation theory breaks down (for more details of low-energy theorems
see [11, 12l 29]). For this reason, effective chiral models are widely used to study the
phenomenology of hadrons.

More details of the chiral symmetry and its spontaneous and explicit breaking are described
in the next chapter.

1.5. Evidence for colour

There is experimental and theoretical evidence for the existence of colour in nature.
Ezxperimentally:
(i) eTe annihilation experiments

In 1967, the results of high-energy electron and positron annihilation experiments at the
Stanford Linear Accelerator (SLAC) supported the colour charge of quarks.

The confirmation of the existence of the colour quantum number can be obtained from a
comparison of the cross section of the following two processes:

+ +

ete” — pp” and eTe” — hadrons. (1.9)

Note that hadron production occurs only when quarks are in the final state as a result of
confinement. Therefore, the production of hadrons occurs through

+

e"e” — v (or Z) — qq — hadrons.

Y, Z

et q

+

Figure 1.1.: Tree-level Feynman diagram for the e™e™ annihilation into hadrons.

In this comparison of the cross sections, the weak production factor involving the Z for the
previous process is neglected as well as for the eTe™ — ut ™ process as seen in Eq.(1.9),
because of the dominance of the cross section due to v exchange amplitude at the energies
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below the Z peak. The ratio of the cross sections for the processes described in Eq.(|1.9)
depends on the quark colour N, [30],

N §NC:%, for (Ny=2: u, d)
R= o(ete” — hadrons) _ N ! 5 sNe=2, for (Ny=3:u,d, s)
- o(etem — putpu) CZIQf N %ONC = %, for (N =4:u,d, s, c) ’
! %Nc—%, for (N =5:u,d, s, ¢, t)

(1.10)
where @)y denotes the electric charge of quark flavours f. The value of the ratio, which
corresponds to the experimental data of Fig. 1.2 [31] is obtained for N, = 3. Therefore,
there are three quark colours in the physical world.
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Figure 1.2.: World data on the ratio R,+,-. The solid curve is the 3-loop perturbative QCD
prediction. The broken lines show the naive quark model approximation with
Ng = 3.

(ii) Decay of ¥ into 2y

In 1967, Veltman tried to calculate the 7° decay rate and obtained that it is forbid-
den [32]. Following this study, Adler, Bell, and Jackiw (1968-1970) [33| B34], using the ‘fix’
field theory, which allowed 7° to decay, found that its decay rate is off by the factor of
9. During (1973-1974) many physicists, notably Gell-Mann and Fritzsch, used QCD with
three colours and arrived at the correct result of 7 decay. Let us explain this in more detail:

0

The neutral pion 7° is a meson composed of quarks, 7 = %(Eu —dd). The decay width

0

of the pion into two photons (7m° — 27) is determined by a triangular quark loop in the

Standard Model [30] as

a?m? N, 2 N, 2
]_—‘71.04)2,\/ = W (3> = <3> 773eV, (].].].)

which depends on the number of colours and the decay constant of the pion f; = 92.4 MeV.
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Experimental data give [23]

I = (7.83+0.37)eV. (1.12)

m0—2~

These experimental data is in very good agreement with the Standard Model calculation
(L.11) only when the number of colours N, = 3. This is further evidence for the existence
of quark colour in nature.

Theoretically: solving the spin-statistics problem

In 1965, the A—baryon was discovered [35], 36], which is composed of three quarks. Con-
sidering the baryon’s charge ¢ = 2e, spin S = 3/2, and angular momentum [ = 0, there
emerged a spin-statistics problem. When describing this particle in terms of v and d quarks,
the spin-flavour wave function AT had to be expressed as

|ATT) = Jupupuy) (1.13)

which describes an overall symmetric state. This violated Fermi-Dirac statistics and the
Pauli principle [37] as well. This paradox can be avoided by assuming the existence of colour
as a degree of freedom for quarks: a quark can carry three different colours which are red
(r), blue (b), green (g). Consequently, in the AT* the three u quarks combine their colours
in an antisymmetric way as follows:

1
V6

which is in accordance with the Pauli principle.

‘A++>colour = |Tlggbg — g172b3 + birogs — b1gaors + g1bors — T1b293> , (1.14)

1.6. Baryons and Mesons

Baryons and mesons are hadronic particles composed of quarks and gluons bound together
strongly and confined in colour singlet states (colourless states). They bear evidence for the
existence of elementary (quark) constituents of matter because they come in many different
forms in nature.

Baryons: These are fermionic hadronic states with half-integer spin and composed of
three valence quark (qqq) or three antiquarks (Ggg). A proton and a neutron are the lightest
baryons, which consist of uud and ddu, respectively. Therefore, baryons are a central part
of nature and form the complex structure of the cores of atoms. The baryon number of a
quark is 1/3. Consequently, the baryon number for baryons is 1, while for antibaryons it is
—1.

The wave function of a baryon B = qqq is antisymmetric under colour exchange and can
thus be described as

1
| B) colour = %‘QLQQQQZ’% — q1,92,93, + 41,92,93, — 91,92,93, + 41,92,93, — 41,92,93,) , (1.15)
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which can also be written as

1
‘B>colour = %SQB’Y‘Q1(1Q2BQ37> ) (116)

where €277 is the totally antisymmetric tensor and v, (3, 7 refers to the three different colours
(r, g, b). Furthermore, there is a hypothetical “exotic” baryon with an extra quark-antiquark
pair additional to the original three quarks, which is called a pentaquark (gqqqq). The qqqg
states, bound states of three quark and a gluon, are hybrid states and called hermaphrodite
baryons. There is also a hypothetical dibaryon state which consist of six quarks and has
baryon number +2.

Mesons: These are bosonic hadronic states with integer spin. Many meson types are
known in nature. Most states consist of ¢g (a quark bound with its antiquark). The pion
is the lightest meson which has a mass of about 140 MeV /c? and is the first meson to have
been discovered [38|, [39, 40]. The colour wave function for the ¢g state is antisymmetrised
as

1 _
M) colour = —=|rT + gg + bb) , 1.17
|M)col \/§| 99 + bb) (1.17)

or,
1

V3

where 6*? denotes the antisymmetric tensor and «, 8 € {r, g, b}. A meson may decay into
electrons, neutrons, and photons as seen in the previous section with the decay of the pion 7
into two photons . According to the hypothesis of “exotic” mesons, there are tetraquarks,
consisting of a quark pair and an antiquark pair [¢q¢|[7g|, and also glueballs, bound states of
gluons (gg). The recently discovered XY Z states are candidates for tetraquarks. Moreover
there are hybrid states of mesons consisting of ¢gg, bound states of quark-antiquark and
gluon, called hermaphrodite mesons. In reality, there are many particles still not known in
nature and every day presents a possibility of discovery for experimental physicists. In the
recent past (2012), the Higgs boson was discovered.

The main goal of the present work is the study of the vacuum properties of the pseudoscalar
glueball and charmed mesons via the chirally symmetric eLSM.

‘M>colour - 5aﬁ|¢]oxqﬂ> ’ (1'18)

1.6.1. Charmed mesons

The charm quark (c) is a special one in the quark family, as it is heavier than the first
three light quarks and does not belong to the regular flavour SU(3), but stands in a weak
doublet with the light strange quark. Therefore, it can act as a bridge between the light
and heavy flavours. There are two types of charmed mesons: (i) The heavy-light Qg and
Qq mesons called open charmed mesons, where Q is a heavy quark (referring to the charm
quark c) and q is a light quark (referring to u, d, and s quarks). (ii) The heavy-heavy QQ
mesons, composite states of charm and anticharm quark, are called hidden charmed mesons
(charmonia). The current charm quark mass (m. ~ 1.3 GeV) is larger than the characteristic
energy scale for the strong interaction (Agcp ~ 300 MeV), by which enter, the perturbative
regime, mq >> Agcp.
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Since the discovery of the charmonium/hidden charmed state J/1 in November 1974 at
the Stanford Linear Accelerator Center (SLAC) [41] and Brookhaven National Laboratory
(BNL) [42], and two years later (in 1976) the discovery of open charmed states at SLAC,
the study of charmed meson spectroscopy and decays has made significant experimental
[43, [44, [45], 46] and theoretical process [47, 48], 49l [50]. Therefore, we are interested to study
the vacuum properties of open and hidden charmed mesons.

In present work, we show how the original SU(3) flavour symmetry of hadrons can be
extended to SU(4) in the framework of a chirally symmetric model with charm as an extra
quantum number. Twelve new charmed mesons are included in addition to the nonstrange-
strange sector. The new charmed mesons of lowest mass, the D, Dy, and the higher mass 7,
are quark-antiquark spin-singlet states with quantum number J©¢ = 0=, i.e., pseudoscalar
mesons. The scalar mesons Dy, Dy, and x¢o are spin-singlet states with .J PC — 0t The
vector mesons D*, Dg, and J/v are quark-antiquark spin triplets with JPC =17 The
axial-vector mesons Dy, Dgp, and yc1 are quark-antiquark spin triplets with JP¢ = 17+,
The additional charmed fields D*0, D*, DSO, Xc1, Xco, and J/1 are assigned to the physical
resonances D*(2007)°, D*(2010)*, D(2400)°, D (2400)*%, xc1(1P), xco(1P), and the well
known ground state J/1(1P), respectively. The isospin doublet DY is D;(2420). The D is
assigned to the well-established D resonance. The isospin singlet Dg; can be assigned to two
different physical resonances, Dg1(2460) and Dg1(2536) as listed by the Particle Data Group
PDG [51]. The first candidate can be interpreted as a molecular or a tetraquark state as
shown in Refs.[46], [52], 53], 64, 55, [56], 57], which leads us assign Dg; to Dg1(2536). Finally, the
strange-charmed meson DY, is assigned to the only existing candidate D§0(2317)i although
it is also interpreted as a molecular or a tetraquark [47, 48], 52 53| 58], 59] (For more details
of the charmed meson assignment, see Sec. 4.2). We compute charmed meson masses,
weak decay constants, and strong decay widths of (open and hidden) charmed mesons.
Moreover, we calculate the decay width of a pseudoscalar ground state charmonium 7, into
a pseudoscalar glueball and the decay widths of a scalar charmonium ygg into a scalar
glueball. The precise description of the decays of open charmed states is important for
the CBM experiment at FAIR, while the description of hidden charmed states and the
pseudoscalar glueball is vital for the PANDA experiment at the upcoming FAIR, facility.

1.6.2. Glueball

The bound states of gluons form colourless, or ‘white’; states which are called glueballs. The
first calculations of glueball masses were based on the bag-model approach [60} 61], 62] 63 [64].
Later on, the rapid improvement of lattice QCD allowed for precise simulations of Yang-Mills
theory, leading to a determination of the full glueball spectrum [65] [66], 67] (see Table 1.3).
However, in full QCD (i.e., gluons plus quarks) the mixing of glueball and quark-antiquark
configurations with the same quantum number occurs, rendering the identification of the
resonances listed by the Particle Data Group (PDG) [23] more difficult. The search for
states which are (predominantly) glueballs represents an active experimental and theoretical
area of research, see Refs. [10] [68], 69, [70] and refs. therein. The reason for these efforts is
that a better understanding of the glueball properties would represent an important step in
the comprehension of the non-perturbative behavior of QCD. However, although up to now
some glueball candidates exist (see below), no state which is (predominantly) glueball has
been unambiguously identified.
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Figure 1.3: The lightest six states in the spectrum of the SU(3) Yang-Mills theory [65].

In general, a glueball state should fulfill two properties regarding its decays: it exhibits
‘flavour blindness’, because the gluons couple with the same strength to all quark flavours,
and it is narrow, because QCD in the large-N, limit shows that all glueball decay widths
scale as N2, which should be compared to the N, ! scaling law for a quark-antiquark state.

In Fig. 1.3, one can obtained that the lightest glueball state predicted by lattice QCD
simulations is a scalar-isoscalar state (J¢ = 07) with a mass of about 1.7 GeV [65, 66,
67, [71]. The resonance fy(1500) shows a flavour-blind decay pattern and is narrow, thus
representing an optimal candidate to be (predominantly) a scalar glueball. Tt has been
investigated in a large variety of works, e.g. Refs. [72] [73] [74] [75] [76, [77, [78 [79] 80, &1, R2],
83] and refs. therein, in which mixing scenarios involving the scalar resonances f(1370),
fo(1500), and fo(1710) are considered. The second lightest lattice-predicted glueball state
has tensor quantum numbers (JP¢ = 2+%) and a mass of about 2.2 GéV; a good candidate
could be the very narrow resonance f;(2200) [84] [85], if the total spin of the latter will be
experimentally confirmed to be J = 2.

The third least massive glueball predicted by lattice QCD has pseudoscalar quantum
numbers (JP¢ = 07F) and a mass of about 2.6 GeV. Quite remarkably, most theoretical
works investigating the pseudoscalar glueball did not take into account this prediction of
Yang-Mills lattice studies, but concentrated their search around 1.5 GeV in connection with
the isoscalar-pseudoscalar resonances 7(1295),7(1405), and 7(1475). A candidate for a pre-
dominantly light pseudoscalar glueball is the middle-lying state 1(1405) due to the fact that
it is largely produced in (gluon-rich) J/v radiative decays and is missing in vy reactions
[86, 87, 88, 89), 90, @1]. In this framework the resonances 7(1295) and 7(1475) represent ra-
dial excitations of the resonances n and 7. Indeed, in relation to n and 7/, a lot of work has
been done in determining the gluonic amount of their wave functions. The KLOE Collabora-
tion found that the pseudoscalar glueball fraction in the mixing of the pseudoscalar-isoscalar
states n and 7’ can be large (~ 14%) [92]. However, the theoretical work of Ref. [93] found
that the glueball amount in 7 and 7’ is compatible with zero.
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In this work we study the decay properties of a pseudoscalar glueball state, (see chapter
6), whose mass lies, in agreement with lattice QCD, between 2 and 3 GeV.

1.7. Thesis Content

1.7.1. Second chapter

We construct the QCD Lagrangian and discuss the symmetries of QCD and their breaking.
We then construct also a chirally invariant Lagrangian for mesons, the so-called extended
Linear Sigma Model (eLSM) which satisfies two requirements: (i) global chiral symmetry,
and (ii) dilatation invariance. This model includes scalar and pseudoscalar mesons, as well
as vector and axial-vector mesons.

1.7.2. Third chapter

We present the extended linear sigma model (eLSM) for Ny = 2 which describes the inter-
action of a scalar glueball and a tetraquark with baryonic degrees of freedom which are the
nucleon N and its chiral partner N*. We present the outline of extension of the eLSM from
the two-flavour case (Ny = 2) to the three-flavour case (N = 3) which includes the strange
sector as a new degree of freedom. We discuss the fit parameters and present the results for
the light meson masses.

1.7.3. Fourth chapter

We enlarge the so-called extended linear Sigma model (eLSM) by including the charm quark
to a global U(4), x U(4); chiral symmetry. Most of the parameters of the model have been
determined in a previous work by fitting hadron properties involving three quark flavours.
Only three new parameters, all related to the current charm quark mass, appear when intro-
ducing charmed mesons. Surprisingly, within the accuracy expected from our approach, the
masses of open charmed mesons turn out to be in quantitative agreement with experimental
data. On the other hand, with the exception of J/v, the masses of charmonia are underpre-
dicted by about 10%. It is remarkable that our approach correctly predicts (within errors)
the mass splitting between spin-0 and spin-1 negative-parity open charm states. This indi-
cates that, although the charm quark mass breaks chiral symmetry quite strongly explicitly,
this symmetry still seems to have some influence on the properties of charmed mesons.

1.7.4. Fifth chapter

In our framework we study the decays of the pseudoscalar glueball and charmed mesons.
Therefore, we develop the two- and three-body decay formalisms which are used in this
study. Moreover, we present a simple method for the calculation of the decay constants by
using an axial transformation.

1.7.5. Sixth chapter

In this chapter we present a chirally invariant Lagrangian for Ny = 2 which describes the
interaction of a pseudoscalar glueball, G, with baryonic degrees of freedom which are the
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nucleon N and its chiral partner N*. Then we consider an Ny = 3 chiral Lagrangian which
describes the interaction between the pseudoscalar glueball, JP¢ = 0~F, and scalar and
pseudoscalar mesons. We calculate the mesonic and baryonic decays of the pseudoscalar
glueball, where we fixed its mass to 2.6 GeV, as predicted by lattice-QCD simulations,
and take a closer look at the scalar-isoscalar decay channel. We present our results as
branching ratios which are relevant for the future PANDA experiment at the FAIR facility.
For completeness, we also repeat the calculation for a glueball mass of 2.37 GeV which
corresponds to the mass of the resonance X (2370) measured in the BESIII experiment.

1.7.6. Seventh chapter

In this chapter we study the OZI-dominant decays of the heavy open charmed states into
light mesons within the chiral model at tree level. We also obtain the value of the charm-
anticharm condensate and the values of the weak decay constants of open charmed D and
Dg mesons and the charmonium state no. Most of the parameters in the model have been
determined in the case of Ny = 3 by fitting hadron properties for three flavours. Only
three new parameters, all related to the current charm quark mass, are fixed in the fourth
chapter. The results are compatible with the experimental data, although the theoretical
uncertainties are still large. The precise description of the decays of open charmed states is
important for the CBM experiment at FAIR and the upcoming PANDA experiment.

1.7.7. Eighth chapter

In this chapter we expand our work of a U(4), x U(4); symmetric linear sigma model with
(axial-)vector mesons by including a dilaton field, a scalar glueball, and the interaction of
a pseudoscalar glueball with (pseudo)scalar mesons to study the phenomenology of char-
monium states. We compute the decay channels of the scalar and pseudoscalar charmo-
nium states x.0(1P) and 7.(15), respectively. We calculate the decays of .o into the two
scalar-isoscalar resonances f(1370) and fp(1500). We also study the decay of n¢ into a
pseudoscalar glueball. We compute the mixing angle between a pseudoscalar glueball, with
a mass of 2.6 GeV, and the hidden charmed meson 7c¢.
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2. Construction of mesonic Lagrangians

2.1. Introduction

For many years, it has been known that chiral symmetry breaking in QCD is responsible
for the low mass of pions, which leads us to describe the low-energy limit of QCD by the
effective chiral Lagrangian as in Ref. [12] 29, 4]. We have to note that effective chiral
models are widely used to study such phenomena because perturbative QCD calculations
cannot reproduce low-energy hadronic properties due to confinement of colour charges.

Effective field theory (EFT) provides a fundamental framework to describe physical sys-
tems with quantum field theory. The chiral model is an effective field theory containing
hadrons as degrees of freedom, which are colour-neutral because of the confinement hypoth-
esis. Moreover, in effective hadronic theories the chiral symmetry of QCD can be realized
in the so-called nonlinear or in the linear representations. In the nonlinear case, only the
Goldstone bosons are considered [95], 96, 97, 98] [99] |in recent extensions vector mesons are
also added, see e.g. Refs. [100, 10T, 102], T03]]. On the contrary, in the linear case also the
chiral partners of the Goldstone bosons, the scalar mesons, are retained [104], 105, 106, [107].
When extending this approach to the vector sector, both vector and axial-vector mesons
are present [106], [107]. Along these lines, recent efforts have led to the construction of the
so-called extended linear sigma model (eLSM), first for Ny = 2 [78| 108, 109] and then
for Ny = 3 [110] (see the details in chapter 3). In the eL.SM, besides chiral symmetry, a
basic phenomenon of QCD in the chiral limit has been taken into account: the symmetry
under dilatation transformation and its anomalous breaking (trace anomaly), see e.g. Ref.
[111], 112, 113) 114, 115]. For these reasons, we have used the linear sigma model (LSM)
which has also other important motivations, summarized as follows:

(a) The LSM contains pseudoscalar states and their chiral partners from the outset.

(b) The LSM can be extended to include a large number of different fields, i.e., quark-
antiquarks with various flavours (two flavours [108), [106), [78, [116], three flavours [117, 10T
170], 116l 83], four flavours [I18], 119] 120} 121, 122]), the nucleon and its chiral partner
[109, 123], a pseudoscalar glueball [124] 125, [126], 127], tensor mesons, and tetraquarks
(G q g mesons) [12§].

(c) In the LSM the properties of fields at non-zero temperatures and densities (7' # 0 # )
can be studied. As seen in Refs. [129, 130} [131] the critical point of QCD at finite densities
is studied, as well as the chiral phase transition.

In this chapter we will construct the QCD Lagrangian and discuss its symmetries. We then
go further to construct an effective model, the extended Linear Sigma Model (eLSM), based
on the global chiral symmetry and dilatation symmetry and containing the (axial-)vector
mesons as well as the (pseudo-)scalar mesons. The spontaneous and explicit symmetry
breaking allows us to study the phenomenology of mesons and glueballs such as masses,
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decay widths, and scattering lengths, etc.

2.2. Construction of QCD Lagrangian

In this section we construct the QCD Lagrangian which is required to possess two kinds of
symmetries: (i) a global chiral symmetry. (ii) a local (gauge) SU(N, = 3) symmetry [132].
The QCD Lagrangian contains quarks ¢y with Ny flavours and gluons. It can be constructed
by gauging the colour degrees of freedom with an SU(3)—colour gauge transformation.
The full QCD Lagrangian density is the sum of quark and gluon terms

Locp =Ly+ Ly. (2.1)
Firstly, let us describe the quark term L,:

Quarks are spin—% fermions. The Dirac-conjugate spinor is denoted as ¢ = ¢fv9. Each
quark of a particular flavour gy is a triplet in colour space, which is given by the following
3-component quark vector

qfr
ar =1 49rg | > (2.2)
arp

where f represents the flavour index u, d, s,, etc. whereas r, g, and b refer to the three
different fundamental colour charges of quarks, red, green, and blue, respectively.

In the fundamental representation each quark flavour ¢y separately transforms under the
local colour SU(3). group as

qf(x) = qp(z) = U(O(x)) gs (), (2.3)

where U(6(z)) is a special unitary matrix, U(6(x)) € SU(3), acting on the colour index and
requires eight real parameters. It is usually written in the form

8
U(f(z)) = exp < = ?@%;:;)) ., Ulu=vU'=1, detU=1, (2.4)
a=1

where ©%(x) denotes the associated local parameters and % are hermitian 3 x 3 matrices;
the generators of the SU(3) gauge group, while A\, are the Gell-Mann matrices which can
be found in the Appendix.

In general, the quarks are represented by 4N.N;— dimensional Dirac spinors. The Dirac
Lagrangian for a free fermion ¢ takes the following form

ﬁDirac = T/J(W“au - mw)% (25)

which leads us to construct a Lagrangian involving the quark flavours, which is invariant
under arbitrary local SU(3) transformations (2.3) in colour space; with the same structure
as the Dirac Lagrangian (2.5
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Ny
Lo=) (" Dy~ My)ay, (2:6)
F=1

where # are the Dirac matrices and M} denotes the diagonal Ny x Ny quark mass matrix.
The SU(3) covariant derivative in Eq. (2.6)) is

.14
D, =0, —1ig 4 5 (2.7)

where Aj are the gauge fields (gluons), and g is the strong coupling constant.
Now let us turn to describe the gluon term Lg:

Gluons are massless gauge bosons with spin-one and form an octet under the global
colour SU(3) group, because the gluons are described by eight real-valued functions Al
They mediate the strong interaction between quarks and do not make a distinction between
different quark flavours. The gauge fields (gluons), Af, can be written as

Aulw) = 3 AL S (2.8)

where A, is the matrix-valued vector potential of the non-Abelian gauge group SU(3). It
is a 3 x 3 matrix. The gluon fields transform under local SU(3) transformations as follows:

Au(2) = AL () = U(O(x)) (A,Ax) - ;au)we(x)) | (2.9

The gluons carry colour charge, and their self-interactions are responsible for many of the
unique features of QCD. The self-interactions of the gauge fields are described by

Gl (2) = 0, AL () — 8, A () + g f ™ A}, (2) Af () (2.10)

representing the gauge-invariant gluon field strength tensor. Here, f%¢ denote the antisym-
metric structure constants of the SU(3) group.

[t t°] =i f%t°, a,b,c=1,...,8. (2.11)
The field strength tensor (2.10) transform as follows under local SU(N,) transformation

Aa

Gy~ (G

Aa

o Aa Ut(6(x)). (2.12)

) —vEncy

We can then construct an additional gauge-invariant term involving only gluons [133],
which is identical to the Yang-Mills Lagrangian Ly s

L, - —% G, (x) G (z). (2.13)

Therefore, we construct the SU(3).-invariant Lagrangian of Quantum Chromodynamics

(QCD) from the sum of Eq.(2.6) and Eq.(2.13])
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Ny
Z, . 1
=1

QCD has unique features, such as asymptotic freedom, quark confinement, and chiral
symmetry breaking, which are mentioned in detail in the introduction. Beside these features
there are other symmetry features of the Lagrangian , which will be discussed in the
following section.

2.3. Symmetry features of QCD

In the previous section, the QCD Lagrangian has been constructed, which is the basis for
all hadronic models. Therefore, all models must implement the features of the QCD La-
grangian, such as symmetries and their spontaneous and explicit breaking. For this reason
let us study these features before constructing the so-called extended Linear Sigma Model
(eLSM) with vector and axial-vector mesons [116].

The features of the QCD Lagrangian are as follows:

2.3.1. Z(N.) Symmetry

The Abelian group Z(N,) is the center of the SU(N.) gauge group. The special unitary
Ny x Ny matrix, containing the center elements Z,,, has the following general form

UO(x)) = Zy, exp ( - ié"@“(@), a=1,.,Nj -1, (2.15)
where
2
Zn:exp<—i]7\;nto>, n=0,1,2.,N,—1, (2.16)

where t° = A\°/2. Quarks and gluon fields transform under the Z(N,) group as

q — 4y = Zn 4y, (2.17)
Ay = Al =Z, A, Z) = Ay (2.18)

Consequently, these transformations leave the QCD Lagrangian Lgocp invariant. At
large temperature, this symmetry is spontaneously broken in the gauge sector of QCD (with-
out quarks). The spontaneous breaking of this symmetry indicates deconfinement of gluons.
At nonzero temperature, the Z(N,) symmetry is explicitly broken in the presence of quarks,
since the necessary antisymmetric boundary conditions are not fulfilled for the fermion field.
This symmetry is important for much modern research in hadronic physics at nonzero tem-
perature and density. The order parameter of the spontaneous symmetry breaking of the
center group Z(N.) at high T is the Polyakov loop.
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2.3.2. Local SU(3). colour symmetry

The colour group SU(3) corresponds to a local symmetry. As seen in Eq.(2.9), the QCD
Lagrangian Lgcp is invariant under local SU(3). symmetry transformations. In hadronic
models, this local symmetry is satisfied automatically. Hadrons are colour singlets. The
SU(N, = 3) group involves also the transformation under the center elements Z,,, while the
gauge fields (i.e., gluons) transform under the Z(N.) group as seen in Eq. (2.18).

2.3.3. Scale invariance and trace anomaly

Scale invariance (the so-called dilatation symmetry) is one of the most important features
of QCD because the classical scale invariance is a profound phenomenon for the QCD La-
grangian. The classical QCD Lagrangian is invariant under space-time dilatations in
the limit of vanishing quark masses (M; — 0). That is clear, since no dimensionful param-
eters appear in the QCD Lagrangian density, which has a dimensionless coupling constant
g (discussed in chapter 1).

Note that the dilatation symmetry is broken by quantum fluctuations. Let us consider the
gauge sector (no quarks), which is described by the Yang-Mills (YM) Lagrangian (2.13)

1
Lym=—7 () G () . (2.19)

The scalar (or dilatation) transformation is defined as
ot — = Nk (2.20)
The gauge fields transform as
Al (x) — A (2') = XA (2) (2.21)

The action Syy = f d*zLy s is dimensionless and invariant under the scale transforma-
tions,

1 a 4
Sy = /d4X/£/YM = _4/d4X/Gu/uGé ,

1 —4 74 2va 2 v
:—4/A A XN, NG

1 4 a v
- —4/d XG;U/GZ
:/#X@M:&M. (2.22)

Then, the scale invariance (dilatation symmetry) is fulfilled in the limit My = 0. Dilatation
symmetry is continuous and leads to the conserved Noether current

J‘LL

scale —

z, TH (2.23)
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where the energy-momentum tensor for the gauge field T*" reads

0Ly m
T = —/———— 8”14& - gwjﬁ}/M . (224)
90, A¢)
On the classical level, the current is conserved because the action is invariant under a con-
tinuous scale transformation (as discussed above)

0,.J"

scale

=0. (2.25)
Then, the divergence

O legre = O, TH () = Ou(gup 2 T ()
= Gup gﬁ T’W(x) 4 Gup :UpauT‘“j(x)

= G T (x) = T} (), (2.26)

where the energy-momentum tensor is conserved for a time-translation invariant and homo-

geneous system
8, T" (z) = 0. (2.27)

A conserved scaling current leads to a vanishing trace of the energy-momentum tensor,
TH(z)=0. (2.28)

Note that if all particles are massive, the scaling current would be not conserved, having a
nonvanishing trace of the energy-momentum tensor.

At the quantum level, the scale current .J ;LC e 15 anomalous and the classical scale invariance
is broken. This breaking is generate by a gluon condensate, i.e., a nonvanishing vacuum
expectation value of (GY, G4"). From the renormalization techniques [19} 24] 25, 26] and
perturbative QCD, one knows

= [’IQ)GG Gl 40, (2.29)

8# ‘]u g nv

scale

=1

where (g) is the f—function of QCD ((1.8).

For massive quark flavours (M # 0), the quark fields transform unbder dilatation as
a — dy =gy (2.30)

The result of explicit breaking of the scale invariance by nonvanishing quark masses gives

Ny
TH(x) = G Myqy. (2.31)
=1

Therefore, the divergence of the quantum current becomes
Ny
5

OuTgse = Tf = S0y G+ Dy Myay (2:52)
f=1
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2.3.4. CP- symmetry

The charge-conjugation and parity symmetry (CP-symmetry) is one of the fundamental
properties of QCD, which describes the symmetry between matter and antimatter.

CP-symmetry is the combination of a C-symmetry (charge-conjugation symmetry) and P-
symmetry (parity symmetry). The strong interaction as described by the QCD Lagrangian
is invariant under the combination of CP transformations, as is the electromagnetic
interaction, while CP-symmetry is violated by the weak interaction. Now, let us prove the
CP-symmetry of the QCD Lagrangian (2.14)):

i) C-symmetry: is the transformation of a particle into an antiparticle, without a change
in the physical law. The charge conjugation transformation C' maps matter into antimatter.

This symmetry is between positive and negative charge.

The charge conjugation of quarks is

¢ = =i?"7T = =i’ " (") ", (2.33)
where the superscript t is the transposition. Using the Dirac notation, § = —iy?7?, the
previous equation becomes

¢ 5 g =6(")'q", (2.34)
and then,
¢ S 00 T =)t (2:35)

Note that the properties of the Dirac notation are:

671 = 6" (unitary transformation) ,
5 yte = 61416 = (—4™)f, and 6Ty = (—y#)' ot
Moreover, useful properties for Dirac matrices are
PO =1, ()R =R =1 =1,

All of these properties are used to prove the C-symmetry of Locp (2.14) (see below).
Furthermore, the gluon fields in the term (D, = 0, — igA,) transforms odd under C and
the commutation of the quark fields which are fermions leads to an additional minus sign.

The QCD Lagrangian is invariant under charge-conjugation transformations.

The quark part of the QCD Lagrangian (2.14) transforms under charge conjugation as
proven in Ref. [116]:
Lq = ayin" Duay — arMyqy
c. . * . * 3 * *
= iq5(7°) 6T 9" (8 + ig. A (1) af — a5 (1)1 M%) g}
= iq;y"Dugy — GrMyqy - (2.36)
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i) P-symmetry: is the symmetry under reflection of spatial coordinates. The parity
transformation creates the reflection of spatial coordinates (mirror image) of a physical
system.

The parity transformation for quark fields (fermions) reads

q(t,7) > 7%q(t, ~T) , (2.37)
and thus
- P R
qT(t7$) — qT(t¢ _J;)'yo . (238)

The anticommutation formula of the Dirac matrices

{’Y,u,, 'Yy} = 2g/w7 Juv = diag(L -1,-1, _1> s (239)

is used below.

The QCD Lagrangian is invariant under parity transformations.

Ly = qs(t, Z)iv' Digs(t, &) — qp(t, T)Myqy(t, 7)
P _ N e _ — e
— g (t, —2)iv' Diqs(t, —Z) — @ (t, —T)Myqy(t, =), (2.40)

where ¢ = 1,2,3 and it is invariant when g = 0 [I16]. The gauge part of the QCD La-
grangian ([2.14) is also conserved under parity transformations.

From Eq.(2.36) and Eq.(2.40), we conclude that the QCD Lagrangian (2.14) has a CP-

symmetry (it is invariant under the combined set of transformations CP and also separately
under C and P).

2.3.5. Chiral symmetry and U(1)4 anomaly

The QCD Lagrangian for Ny flavours of massless quarks possesses a large global
symmetry, namely a global chiral U(Ny)g x U(Ny)r, symmetry [134, 135]. The notion of
chirality allows us to decompose a quark spinor into two-component spinors corresponding
to left- and right-handed components as

ar = (Pr+Pr)ar =af,r+ 4,1 ; (2.41)

and for the Dirac-conjugate spinors :

dr=4r PrR+Pr) =0qr, 1 + 45, R, (2.42)

where Pr 1, are the left- and right-handed projection operators which are defined as

_ 1+ PLzl—%

Pr 5 5 (2.43)
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including a Dirac matrix
: 1 0
1,23
75_17077,7 (0 _1)
The QCD Lagrangian (2.14) can be written in terms of “right-handed quarks”, qr = Pr q,

and the “left-handed quarks”, qr = Pr q, by using decomposed quark fields (2.41)) and (2.42)
as

Ny
Loop =Y i@ Dudyr + 57" Dty r)
=1
Ny 8
_ _ 1 a v
= (@rMsas.L +T5 Mragr) — 1 > Ge,Gh, (2.44)
f=1 a=1

which is invariant under the following global chiral U(Ny¢)g x U(Ny)r transformations of
right- and left-handed quark spinors in the chiral limit (without the terms containing M)

2_
Nf 1

45,0 — qfp =ULgs, =expq —i ¥ O%* b qp L, (2.45)
a=0
Nﬁfl
/ . a 4a
a4, R — qf g = Urqs r =e€xp{ —1 Z O%t" >4 R - (2.46)

a=0

This is the so-called chiral symmetry which is exact only when My — 0, because the terms
which contain masses (My) break the chiral symmetry explicitly. Note that chiral symmetry
is not exact in nature. However, on the hadronic mass scale ~ 1 GeV, the current masses of
up, down, and strange quarks are very small, which leads one to approximate their masses
as nearly massless (m, = mg = ms ~ 0). Then, chiral symmetry approximately holds.
Moreover, the current mass of the charm quark is already of the order of the typical hadronic
mass scale, and the masses of bottom and top quark exceed the hadronic mass scale. In the
chiral limit m, = mgq = ms ~ 0, the QCD Lagrangian reads

Ny 8
o _ 1
Lo = D i@y Dudsr +Tpry" Dudrr) = 7 Y GGl (2.47)
f:l a=1

where the superscript 0 denotes the chiral limit. As mentioned above this Lagrangian is
invariant under the chiral symmetry group U(N¢)r x U(Ny)r. Note that if the Lagrangian
contains non-vanishing quark mass terms, some of the QN? chiral currents are not conserved,
which reveals the pattern of explicit chiral symmetry breaking, see below.
In addition, the transformation of the left- and right-handed quarks under the symmetry
group U(N¢)axU(Ny)y whereby the subscript A stands for “ azial vector” and V for “vector”
is defined as

qrL = dpp = UVULqLL = exp(2i0°t") exp(—2i0t")q; 1., (2.48)
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qf,rR — q%R = UvUaqy,r = exp(2i0°t") exp(2iéata)qf,3, (2.49)

where Uy € U(Ny)y and Uy € U(Ny)a. This transformation is equivalent to the transfor-
mation under U(Ny)r, x U(Ny)rg, if one sets

09 =2(0* — 0%, 0% =2(0"+6%). (2.50)
Therefore,
U(Ng)L x UNy)r = U(Ng)a x U(Ny)v (2.51)

Then, in the chiral limit, the QCD Lagrangian (2.14) is invariant also under the symmetry
group U(Ny)a x U(Ny¢)yv. Note that, for all V' € U(n) with n € N there exists U € SU(n),
so that
1
V =det(V)nU, (2.52)

and for all n € N = det(V)» € U(1), yields
U(n) =U(1) x SU(n) . (2.53)

Therefore, the unitary group can be represented as a product of a special unitary group and
a complex phase as

U(Nf)A X U(Nf)v = [U(l)A X SU(Nf)A] X [U(l)v X SU(Nf)V]
= SU(Nf)ax SUNys)y x U(1)a x U(1)y . (2.54)

Similarly,
U(Ng)r x U(Ng)r = SU(Ng)r x SU(Nf)L x U)r x U(1)L - (2.55)

Using Eq.([2:51), we obtain
SU(Nf)r x SUN{)L x U(L)r x U(1)1 = SU(N;)r x SUNp)L x U(L)y x U(L)4, (2.56)
which gives
UNg)r x U(Ng)L = SU(Ng)r x SUNp)L x U(L)y x U(1)a. (2.57)

In the quantized theory [94], QCD is not invariant under U(1) 4 anymore, as a result of the
explicit breaking of axial U(1)4 symmetry, which is known as the U(1)4 anomaly of QCD
[15, 16, 17]. Therefore the chiral symmetry is reduced to SU(Ny¢)g x SU(Nyg)r, x U(1)y.
However, in classical field theory, Locp is invariant under U(1) 4. Therefore, one has to take
this symmetry breaking into account when constructing the effective chiral model. More-
over, this symmetry is broken at the classical level for massive quark.

According to the Noether theorem [136], the conserved Noether current is:

IL(p(x), Oup(x))
(Oup(x))
where the Lagrangian L(p(x), dup(x)) is invariant under the transformation of the form

z — 2/(z) = z+0x and p(x) = ¢'(z) = p(x)+0p(x). This symmetry leads to the conserved
left-handed and right-handed currents denoted as LY and RY, respectively,

do(x) + 0zt L(p(z), Oup(x)) . (2.58)



2.3. Symmetry features of QCD 27

RE =qpy'taar = RF=VF— AP, (2.59)
LY =Gy teqn, = LH=VH 4 AF, (2.60)

e The vector U(1)y symmetry of the full Lagrangian (2.14]) coincides with quark number
conservation. According to the Noether theorem [137], the conserved U(1)y current reads

oL
Vo' = 52— 0qr = q7"todqy (2.61)
0 6<8MCIf> f f f

and its divergence is
8,Vy' = iqy[to, Mylgs = 0. (2.62)

th

The integration over the zero™ component of V{J' yields the conserved baryon-number charge

Q= /d3xqf 70 qs. (2.63)

e The SU(Ny)y symmetry: the Lagrangian is symmetric under SU(Ny)y transformations
only when the quark masses of all flavours are degenerate m; = mg = ... = my,. According
to the Noether theorem [138], the conserved vector current is

VHe = quf‘t“qf . (2.64)
Its divergence reads
G#V’ua = ’L'Gf[ta, Mf]qf , (2.65)
which vanishes only for degenerate quark masses.

e The SU(Ny)4 symmetry: This symmetry is broken spontaneously. The axial-vector
current and its divergence (according to the Noether theorem), respectively, read

AR =gyt (2.66)

and
aﬂAua = ZQf {ta7 Mf} ar, (267)

which is conserved only if all quarks are massless.

From the linear combination of the left- and right-handed currents, described in Eq. (2.59)
and Eq. (2.60), one can obtain the vector and axial vector currents as follows:

LM + R¥
VH = % : (2.68)
and b — Ro
AP = % . (2.69)

Using the definition of the transformation under parity

P
q(t,x) — v0q(t,x),
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the vector and axial-vector transform under parity transformations into + or — themselves:

VEO(t,x) 5 PVRO(t,x) P! = +VO(t, —x) (2.70)

Vet x) 25 PVt x) P~ = VA (t, —x), (2.71)
and

AMO(t,x) L PAMO(t,x) P~ = —A%(t, —x), (2.72)

ARt x) L PVRO(E x)P™" = 4+ A%(1, —x) (2.73)

where a denotes the spatial index.

2.4. Chiral symmetry breaking

2.4.1. Explicit symmetry breaking

The chiral symmetry of QCD is completely broken in the case of non-vanishing quark masses
My # 0, which enters the QCD Lagrangian via the mass term (combining the left- and right-
handed components) as

Ny Ny
Emass - quMfo = Z(qf,LMfQﬁR +af,LMfo7R) . (274)
f=1 f=1

The mass term breaks the SU(Ny) 4 symmetry. The axial U(Ny)4 symmetry of the QCD is
explicitly broken even when all quark masses are equal and non-vanishing m; = mg = ... =
My # 0. This breaking leaves only the SU(Ny)y symmetry. Consequently, the SU(Ny)y
of QCD is preserved, but only if the quark masses of all flavours are degenerate. In nature
m,, ~ mgq which leads to the so-called isospin symmetry. The SU(3)y flavour symmetry is
also approximately preserved although it is explicitly broken due to a sizable mass of the s
quark.

2.4.2. Spontaneous symmetry breaking

The central phenomenon in the low-energy hadronic realm is the spontaneous chiral symme-
try breaking. This mechanism is the reason for the almost massless pions, and their weak
interaction [139]. It has profound consequences for the hadron masses, especially the mass
splitting of chiral partners (see below), and causes mass differences between multiplets and
influences many strong decay modes.

As discussed previously, the QCD Lagrangian for massless quarks is invariant under chiral
transformations. Consequently, one should expect that the approximate chiral symmetry
should be evident in the mass spectrum of the lightest mesons. For Ny = 2, the current
masses of the up and down quark flavours are small compared to the typical hadronic scale
which is about 1 GeV, m, ~ 0.002 GeV and mg ~ 0.005 GeV. Therefore, these two lightest
quark flavours can be considered to be approximately massless. As a consequence, the QCD
Lagrangian is invariant under a global SU(2)g x SU(2)p transformation. One may write
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the lightest mesonic states composed of up and down quarks, ¢ = (u,d), (o, 7, p, a1) [116]
as

scalar singlet state : o=4qq,
pseudoscalar triplet state : T =1qT75q ,
vector triplet state : P = qryty,
axial — vector triplet state : @) = g7y*7s5q.
(2.75)
The quark flavour transforms under an axial-vector transformation as
L 7 .
UR)a:q=q —e 2% = (1 —iv5-0)q, (2.76)

2

where 7; are the Pauli matrices. Consequently, the states (2.75)) transform under an axial-
vector transformation as

U2)s:0 50 =0-6-7,

Up: "> 7 =7+6-7,

U@R)a: g — g™ =" +0 xa,

U@2)a:dl —»al=a"+6xp, (2.77)

which gives that the scalar state o is rotated to the pseudoscalar state = and vice versa,
i.e., they are chiral partners. Likewise, the vector state g is rotated to its partner, the
axial-vector a1, and vice versa. The axial symmetry SU(Ny)4 is still exact within the QCD
Lagrangian. The explicit breaking of axial symmetry does not occur in the limit of small
u, d quark masses. The chiral partners have the same masses. In this case, the vector state
p is assigned to the p(770) meson with a mass of m, = 775.49 MeV and the axial-vector
state a; to the a;(1260) meson with a mass of mg, ~ 1230 MeV [23]. The mass difference of
the chiral partners p and a; is of the order of the p mass itself and cannot be explained by
the explicit symmetry breaking even if the nonvanishing masses of the up and down quark
flavours are taken into account. However, the spontaneous symmetry breaking explains this
phenomena, successfully, i.e., the axial symmetry of the QCD Lagrangian is spontaneously
broken in the ground state at zero temperature as

SU(N¢)r x SU(Nys) — SU(Ny)y . (2.78)

In the case of nonvanishing quark masses, the chiral symmetry is explicitly broken by the
mass term. However, even in the limit of My — 0 the chiral symmetry is also broken, but
this time spontaneously, when the ground state has a lower symmetry than the Lagrangian.
The QCD vacuum has a nonvanishing expectation value for the quark condensate [140)]

< qq >vac=<qrQqr + 4L qr >7’£ 0. (2.79)

According to Goldstone’s theorem [141], through the spontaneous breaking of a global sym-
metry there emerge massless Goldstone bosons, whose mumber is identical to the number of
broken symmetries (NJ% — 1) and which are indeed experimentally observed. In the Ny = 2
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case, three Goldstone bosons were observed and are identified with the pions [38] [39] [40].
Their mass of about 140 MeV is small on a hadronic mass scale, but evidently they are
not completely massless. The small nonvanishing mass arises from explicit chiral symmetry
breaking, and thus they are named pseudo-Goldstone bosons. In the Ny = 3 case, addition-
ally five pseudo-Goldstone bosons have been experimentally observed, which are named the
four kaons and the 1 meson. In the Ny = 4 case, there are 15 pseudoscalar Goldstone bosons
compriging pions, kaons, n’s, and charmed mesons, which consist of the fourth quark flavour;
the so-called charm quark. Charm thus strongly breaks the chiral symmetry explicitly.

2.5. Construction of an effective model

The main aim of the present work is to study low-energy hadronic properties from an ef-
fective chiral model which is based on QCD. Therefore, the effective model must possess all
features of the QCD Lagrangian, which are: The exact SU(3). local gauge symmetry, the
dilatation symmetry, the chiral U(1) 4 anomaly, CP symmetry, the global U(Nf)r x U(Ny) 1,
chiral symmetry for massless quark flavours, as well as the explicit and spontaneous breaking
of chiral symmetry. The relationship between these symmetries gives us an opportunity to
formulate an effective model: the so-called extended Linear Sigma Model (eLSM).

In this section, we construct the eLSM [116], [142] for the (pseudo)scalar and (axial-)vector
mesons as well as a dilaton field, which is valid for an arbitrary number of flavours Ny and
colours N.. Hadrons are the degrees of freedom in the eLSM; they are colour neutral as a
result of the confinement hypothesis. Therefore, in the construction of the eLSM, we do not
have to take into account the SU(3). colour symmetry, it is automatically fulfilled. Note
that we construct all terms of the eLSM with global chiral invariance up to naive scaling
dimension four [29], 107, 143 [144]. As shown in Refs. [94] [108], 110, 116], the description of
meson decay widths is quite reasonable.

The first and fundamental step for the construction of the elL.SM is to define the mesonic
matrix ® which contains bound quark-antiquark states. The matrix ® is a non-perturbative
object, and one uses it to build the multiplet of the scalar and pseudoscalar mesons as

®;; = V2G; raiL - (2.80)
According to the left- and right-handed transformations of quarks (2.45) and ({2.46]), the
mesonic matrix transforms under chiral transformations as

P — ﬁQk,RU£j7RUil,LQZ7L = Uil,Lq)lkU,Ij,R, (2.81)

thus,
d — U, U}, (2.82)

Using Eq.(2.43)), Eq.(2.80) can be written as

®;; = \/i%‘,RCIi,L = \/iquLqui = ﬂ(jﬂ%qi
- L (qq _ 6‘75(]') — L (qq + Z'q_'i75q-)
V2 R R g N T

Sij + 1By, (2.83)
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where S;; and P;; are the scalar and the pseudoscalar quark-antiquark currents, respectively,
which are defined by

(2.84)

P = ﬁ@ji’f)%‘- (2.85)

Eventually, one can write the combination of scalar and pseudoscalar currents via the ®

matrix as

d=S54+iP,

The matrices S and P are Hermitian and can be expressed as follows:

with

S = Sataa

Sa = \@(ﬁa%

P:Pataa

Py = V2Gi7 t,q .

(2.86)

(2.87)

(2.88)

where t* denotes the generators of a unitary group U(Ny) with a =0, ..., Nf2 —1.
We summarize the transformation properties of the scalar fields S, the pseudoscalar fields

P, and ® in Table 2.1.

8 a 8 a y
S:%Zazos Aa P:%Zazop Aa ®=5+iP
Elements Sij = qj G Pij = ¢;i7°q; Qi = \/i(jj,RQi,L
a — =g 4 — Fi~D Ao a — 7 e
Currents S = qﬁq P = qivy \/5(] ¢t = \/§QR\/§QL

p S(t, —x) —P(t,—x) T (t, —x)

C St P! o'
U(Np)y Uy SU;, Uy PUY, Uy ®U,,
U(Ny)a LUa0U4 + ULOTUY) | L(UadUL - Ul DTUT) Ua®U,

U(Np)r x UNy) | $(ULOU], + Ur®iU}) | L(UL@U], — Up@'U}) ULoU},

Table 2.1: The transformation properties of S, P, and ® [142].

The eLSM contains also the vector and axial-vector mesons, which are the basic degrees
of freedom for the construction of the right- and the left-handed vector fields. Now let us
define the Ny x Ny right-handed R* and left-handed L# matrices, respectively, as

Rl =245 r7"qir =

_ I _
LY, = V24500 4L = —= (@74 + 477" a) = Vi + A

1

V2 (@70 — 47"+ a) = Vs

V2
where the vector and axial-vector currents are defined, respectively, as
1
b= = 5oy — 108, TG = \/9a~ k10
Vij—\/?QJ'y%—v t% vV _\/iqyt(b

1
Ab = —
() \/5

G Y a = AP AR = V207 441,

_qr

Y

(2.89)

L (2.90)

(2.91)

(2.92)
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which are also Hermitian matrices. The right-handed matrix and the left-handed matrix
transform under the chiral transformation as

R" — RM = UgR'U},, (2.93)

and
ULL*U} .

From R* and L*, we construct the right- and left-handed field-strength tensors, R*” and
LH* | respectively, as

LF — LM = (2.94)

W= OMRY — "RV, (2.95)
LMW = 9MLY — 9" LM (2.96)
which transform under chiral transformations as
RM — R™ = UrR™UY,, (2.97)
" —s " = U L"U] . (2.98)

We present the transformation properties of the right- and left-handed (RF, L*) fields in
Table 2.2 and the vector and the axial-vector fields (V#, AH) in Table 2.3.

Ruﬁzizowa fza o Li A
Elements =/2g, Rfy 4R =V2q17"qi 1
Currents R“ = ar " 254R LZ = v 25ar

P 9" Lu(t, —%) 9" Ry(t, —x)

C 1, R,
U(N;)y Uy R,U;, Uy LU,
U(Ny)a UaR, U ULL,Ua

U(Np)r x U(Ny)r UrR,U}, ULR, U}

Table 2.2: The transformation properties of R, and L, [142].

8 a
VM:%Za:OVuAa Au—\[zao u
Elements | V/ =2 q]’)/’u 4 Al =257 ’V"qz
Currents V“ = q’y“fq At = (775%(1
P 9" Vu(t, —x) —g" Au(t, %)
C -V Al

Table 2.3: The transformation properties of V,, and A, [142].

The basic construction of the mesonic Lagrangian of the effective model combines several

terms:

Lines = Lo,av + Lav + Lyay, + Lo+ Lass -

Now let us construct every term in detail.

(2.99)
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(i) The Lagrangian density Lo av:

The chiral symmetry of QCD is exact in the chiral limit My — 0. The Lagrangian
density Lg 4y fulfils the chiral symmetry exactly. It contains the (pseudo)scalar and the
(axial-)vector degrees of freedom and describes the interaction between them. The covariant
derivative for the coupling of the (pseudo)scalar degrees of freedom to the (axial-)vector ones
has the following structure

DD = 0" +ig) (PR — LFD), (2.100)

then
(D'®)t = 9,8" —ig(R,®" — L), (2.101)

which are invariant under global U(Ny)r, x U(Ny)g transformations.
(D'®) —s (D'®) = U DFoU], . (2.102)

and
(D' — (D*®)" = U (D"®) U] . (2.103)

Therefore, the chirally invariant kinetic term can be constructed as
Tr [(DM@)T(D%) . (2.104)
The following self-interaction terms can be introduced up to naive scaling dimension four,
— A\ (Tr[®T®])?, (2.105)

— A Tr(7®)?, (2.106)
which are also invariant under global chiral transformations.
Proof:

“n(Tr[ele)? = X\ (Tr[UgetU] UL UL))?
= —\(Tr[UgdfoUL])?
= —Al(Tr[U’f Ur®'®])?
= —\(Tr[®T®))% (2.107)
Similarly,

— X Tr(dV9")2 = — X\ Tr(®Td)?, (2.108)

In the Lagrangian density Ls v, the fourth chirally invariant term, describes a four-body
coupling of the scalar, pseudoscalar, vector, and axial-vector degrees of freedom, is con-
structed in the form

@Tr[qﬂ ®|Tr[L,L" + R,R"]. (2.109)

While the fifth term is constructed in the following form:

hoTr[® L, [/® + R, R\ D] . (2.110)
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Furthermore, one can construct an additional term as follows:
2h3Tr[®R,®TL"], (2.111)
which are invariant under global chiral transformations [145].

Finally, we obtain the full Lagrangian density Lo 4y as

Lo ay =Tr (D”(I))T(DNCD)} — A (Tr[@T®])2 — Ao Tr(0T D)2 (2.112)

h
+ %Tr[(lﬁ ®|Tr[L, L* + R, R"] + hyTr[®' L, L'® + ®R, R ]
+ 2h3Tr[®R, ®TLH] (2.113)

which contains terms up to order four in naive scaling dimension. In the Lagrangian density
Lo ay (2.113)), the parameters depend on the number of colours N, [142] 146, 147, [148] as
follows

—1/2
gloch /)

A1, hy o< N2,
A2, ho, hy o< N 1. (2.114)

The quantities Aa, ho, hs scale as N I because it describes a four-point interaction of the
quark-antiquark states. The quantities A1, hi are suppressed by an additional N, and scale
as N2 because these terms are the product of two separate traces. At the microscopic
quark gluon level, one needs furthers large-NN, suppressed transversal gluons to generate

these terms. The quantity g; scales as Nc_l/Q.

(ii) The term Lay:

The Lagrangian density £y includes the (axial-)vector degrees of freedom. The con-
struction of this Lagrangian follows the same principles as in the (pseudo)scalar sector with
additional terms of naive scaling dimension four. The mass term can be constructed as

2

%Tr (L") + (R™)?] . (2.115)

Using Eq.(2.95) and Eq.(2.96)), one can construct the keinetic term of the vector degrees of
freedom as

_ %Tr [(LW)2 + (R“”)z] ) (2.116)

From the transformation (2.93] 2.94) and (2.97] [2.98)), one can obtain that the mass term
(2.115)) and the keintic term (2.116|) are invariant under chiral transformations. Moreover,

the Lagrangian density £y involves also additional terms with 3- and 4-point vertices of
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the (axial-)vector degrees of freedom. The full Lagrangian L4y has the following form:

2
1
Lav = ZLTr [(1? + (R)?] = T [(L0)2 + (R
i (TR (L (L9, 1)) + Te( Ry [R, RY))} + ga[TH(L Ly LM 1Y) + Te(R, R, R RY)|
+ ga[Tr (L, L* L, L") + Tr (R, R*R,R")] + g5 Tr (L, L*) Tr (R, R")
+ g¢[Tr(L, L") Tr(L, L") + Tr(R,R") Tr(R,R")] , (2.117)
with the large- N, dependence of the parameters as

—1/2
go o< N2,

g3, g1 o< N,

gs, g6 < N 2. (2.118)
(iii) The term Ly (q),:
contains only the chiral anomaly term [16] [I§],

The Lagrangian density Ly(1)

A
2
Ly, =c (det o' — det q)) . (2.119)

which contributes to the mass of the isoscalar-pseudoscalar bosons. Their mass also does
not disappear in the chiral limit. These fields are therefore no Goldstone bosons. This term
is invariant under SU(Ny)r x SU(Ny)r, but not under U(1) 4, as shown in the following :
Proof:

2 [ 2
& (det (I)T, _ det (I)’) = c det(UR(I)TUz) _ det(ULq)UlT%)}
C - - SR
= ¢ |det(e PR lem0ile) det(eleLt‘I(I)e*th“)}

- o D 2
= c|det(e”?atapl) — det(ewAt“CI))}

NZ-1
. ¥ o )
= ¢ |det(e7 22 9At“)det(e_19%t°)det of

; N?71 a ;00 ?
— det(e?2a=1 Yita) det(efat0) det &

= ¢ [det(e_wOAt") det ®T — det(eieg\to) det CIJ} ’

= c {e_w%Nf det ®F — ¢aN7 det <I>] :

£ ¢ {det ot — det @]2 . (2.120)
The parameter ¢ scales in the large- N, limit [142] as

¢ oc N, V172 (2.121)
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i.e., it has a dependence on the number of quark flavours (Ny) in this model. For Ny > 2,
the parameter ¢ vanishes which leads to neglect the anomaly for large N.. The correspond-
ing meson is then a Goldstone boson for N. > 1. Note that for Ny # 4, the parameter
¢ is dimensionfull. This is an exception of the discussed rule. Which is possible since the
anomaly also comes from the gauge sector.

(iv) The term Lg:

The last field entering the model is the dilaton field /scalar glueball G through the La-
grangian density L5 which consists of the dilaton Lagrangian Lg; and the coupling of the
dilaton field with (pseudo)scalar and (axial-)vector degrees of freedom.

Firstly, let us discuss the dilaton Lagrangian

As shown in Eq.(2.22), the Yang-Mills (YM) sector of QCD (which is described by Ly ar)
is classically invariant under dilatations. However, this symmetry is broken at the quantum
level. This scale invariance and its anomalous breaking is one of the essential features of our
effective model. From the trace of the energy-momentum tensor 73/}, of the YM Lagrangian
(2.19)), one can write the divergence of the dilatation (Noether) current as follows:

1
Oy apan = (Ty ), = 52(5) <2GZVG§”> #0, (2.122)

which does not vanish. The [-function is defined in Eq.(1.6), and g = g(p) is the renor-
malised coupling constant at the scale u. At the one-loop level,

11N, 4

Bl9) =53 (2.123)
This implies
11 N, p \17!
2(p) = |2 ¢ In( — 2.124
0= [2 s w5 )] (2124

where Ay s is the YM scale and has a value of about (~ 200 MeV). The non-vanishing
expectation value of the trace anomaly represents the gluon condensate

—11N,; /« —11N
w\ __ c S ~a uv\ C ~4
(1) = —g (= a6 ) = — ==, (2.125)
where o
S ma pur\ — 4
<7r Ge, G > = C*. (2.126)

The numerical values of C* have been computed from lattice-QCD simulations (higher range
of the interval) [149] and QCD sum rules (lower range of the interval) [150]:

C* ~ [(300 — 600) MeV]*, (2.127)

whereas, in the lattice-QCD simulation of Ref. [I51], its value has been found to be C' ~ 610
MeV.
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The effective theory of the YM sector of QCD can be built by introducing a scalar dila-
ton/scalar field G at the composite level. The Lagrangian density of the dilaton reads
[T, (1T2) 113] 114, 115, 151]

Lain(G) = %(awc;)2 —Va(G), (2.128)

where the dilaton potential is
1 m? G| G*

The value Gy = A corresponds to the minimum of the dilaton potential Vy;(G). The
particle mass mq emerges upon shifting G — Gg + G. This particle is interpreted as the
scalar glueball and its mass has been evaluated as mg ~ (1500 — 1700) MeV by lattice
QCD [63] 66], [7T]. The scale invariance is broken explicitly by the logarithmic term of the
potential. The divergence of the dilatation current reads

1m%; 4 ]-m%‘ 4 1 2 A2
(i) = (-3366") = ~3 5208 = gmi” (2430

where G is set to be equal to the minimum of the potential Gy. By comparing Eq.(2.125)

and Eq.(2.130)), one obtains

V11
A=_"—"C2. (2.131)
2mg
When mg = 1500 MeV and C ~ 610 MeV [152], the parameter A has the value A = 400

MeV. Note that a narrow glueball is possible only if A 2 1000 MeV.

Now let us turn to couple the dilaton field/scalar glueball with the (pseudo)scalar and
(axial-)vector degrees of freedom. This coupling must be scale invariance.
We assume that, a part from the U(1)4 anomaly and terms related to quark masses, only
the dilaton term breaks the dilatation invariance and generates the scale anomaly in the
effective model. Note that the mass term for the (axial-)vector mesons break the
symmetry explicitly. It does not has dilatation symmetry, since each scale with A2. In order
to achieve scale invariance, one should write down the mass term of the scalar degrees of
freedom as follows

— aG?Tr [qﬂ@] , (2.132)

with the scalar mass parameter
mé = aG3, (2.133)

where a is a dimensionless constant larger than 0, which represents the spontaneous sym-
metry breaking. The mass term for the vector mesons should be written in the same way.
Now let us modify both mass terms by including the scalar glueball as

— m2Ty [@ch} — —m? (é’;)ZTr [qﬂ@} , (2.134)
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and similarly,

2 2 1 G \?2
%Tr [(L")? + (RM)?] — % (G> Tr [(IM)? + (R*)?] (2.135)

0
which implements the scale-invariance [as proven in Ref. [145]]. From Eqs.(2.128] [2.129
2.134] 2.135)), we get the full structure of the Lagrangian density Lg in the effective model

as

(@) =Lomgy — 17 <G4 In ’G' _ G4>

2 4 A2 Al 4
—m (;)2 Tr [qﬂ@} + ";% (C?O)QTr (L") + (R")?] . (2.136)

The Large-N. dependence of the parameter is given as

mg o< N2,
Ag o« Ne. (2.137)

(v) The term Lgsp:

The chiral symmetry is explicitly broken by the quark masses. Two additional terms ap-
pear in the Lagrangian density £gsp, to describe this breaking separately for the (pseudo)scalar
and (axial-)vector fields. We discuss these separately: In the (pseudo)scalar sector, pions are
not really massless because of the explicit breaking of the SU(Ny)y x SU(Ny) -symmetry.
Therefore the following term is introduced to break this symmetry explicitly

Tr[H(®' + @), (2.138)

where

H = diag[hl, hg, ceey th], (2139)

is the diagonal matrix with hév proportional the mass of the quark flavour number. For
example: Ny = 1= hy o my and Ny = 2 = hy o< my,...etc.
For the (axial-)vector sector, one can construct the following mass term which breaks the
chiral symmetry explicitly

Tr[A(L + R2)], (2.140)

where

A= diag[éu, 5d, ceey 5Nf] s (2.141)
which is also proportional to the quark mass terms as

2 2 2
Ous Ody oy ONy OC T, Mg, .., miy,
Thus, the Lagrangian density Lgsp is obtained as

Lpsp = Tr[H(®' + ®)] + Tr[A(L2 + R2)]. (2.142)
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The large- N, dependence of the parameters in the previous Lagrangian density is given as

hi X Ncl/2,
6; o< N2 (2.143)

Spontaneous symmetry breaking

The spontaneous breaking of the chiral symmetry is an important requirement for all
phenomena linked to hadrons in low-energy QCD. One can discuss this point from the
following potential of the mesonic Lagrangian L,,.s along the axis ® = ¢ ¢°

V(G,0) = Vg (G) + mdo? + (M + Ag)o?. (2.144)

The symmetry is broken spontaneously by non-trivial minima, which are in the present case
at
Go #0, o9 #0, for, mg <0,

and
oo =0, Gy #0, for m3>0,

which means that the vacuum is not invariant under SU(Ny)4 transformations. The di-
latation symmetry is broken explicitly which is an important source for the phenomenology
in the vacuum. Note that the conservation of parity and SU(Ny)y symmetry are required,
whereas the U(1)4 anomaly is neglected here. The only state that can condense in the
vacuum is the scalar-isosinglet state, because this state is the only one which has the same
quantum numbers as the vacuum.

Now let us summarize the full Lagrangian of the effective model, the so-called
extended Linear Sigma Model (eLSM), for a generic number N; of flavours in
the following section.
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2.6. The extended Linear Sigma Model

In this subsection we present the chirally symmetric linear sigma model Lagrangian which is
essentially constructed with two requirements stemming from the underlying theory QCD:
(i) global chiral symmetry U(N)g x U(N)r. (ii) dilatation invariance (with the exceptions
of the scale anomaly, the U(1) 4 anomaly and terms proportional to quark masses). It is also
invariant under the discrete symmetries charge conjugation C, parity P, and time reversal
T. It has the following form for a generic number Ny of flavours [108, 110, 116]:

2
L = Lay + Tr[(D,®)(D,®)] — m§ ((C;T;) Te(®TD) — A\ [Tr(®TD)]2 — Ny Tr(dTd)?
G\ m?
(&) 3 +a

— T 4 (R4 T {

[(L")? + (R™)?] } + Te[H(® + &)]

h1
+ ¢(det® — detd)? + ETI((IDT@)Tr (L2 + R2) + hoTx[| L@ + |®R,,[*]
+ 2hsTr(L, ORADT) + i%{Tr(LW [LF, 1Y) + Tr(R, [R*, R])}

+ g3[Tx(L, L, L L") + Tr(R, R, R"R")] 4 g4[Tr (L, L*L,L") + Tr (R, R"R,R")]
+ g5 Tr (L, L") Tr (R, R”) + g¢[Tr(L, L") Tr(L, L") + Tr(R,R*) Tr(R,R")] .  (2.145)

Here, G is the dilaton field/scalar glueball and the dilaton Lagrangian Lg4; [112, 114, [151]
reads . L2 o ot
Lai = 50,6 - Z% <G4 ln‘A‘ - 4) , (2.146)
which mimics the trace anomaly of QCD [I11l 116]. The dimensionful parameter Ag ~
Nc.Agep sets the energy scale of low-energy QCD; in the chiral limit it is the only dimension-
ful parameter besides the coefficient of the term representing the axial anomaly. All other
interaction terms of the Lagrangian are described by dimensionless coupling constants. The
minimum of the dilaton potential in Eq.(2.129) is given by Go = A. A massive particle will
arise after shifting the dilaton field G — Gy + G, where the dilaton field G is interpreted as
the scalar glueball which consists of two gluons (G = |gg)). The value of Gy is related to the
gluon condensate of QCD. According to lattice QCD the glueball mass mg, in the quenched
approximation (no quarks), is about 1.5-1.7 GeV [65]. As mentioned above, the identifica-
tion of G is still uncertain, the two most likely candidates are fy(1500) and fp(1710) and/or
admixtures of them. Note that, we include the scalar glueball because it is conceptually
important to guarantee dilatation invariance of the model (thus constraining the number
of possible terms that the Lagrangian can have). We do not make an assignment for the
scalar glueball in the framework of the strange and nonstrange (Ny = 2 and Ny = 3) cases
(see chapter 3) and it does not affect the results of the study of the Ny = 4 case for the
masses of open and hidden charmed mesons as well as the decay of open charmed mesons.
Therefore, the scalar glueball is a frozen field in these investigations, whereas it becomes a
dynamical field in the study of the decay of hidden charmed states as we will see in chapter
8. The logarithmic term of the dilaton potential breaks the dilatation symmetry explicitly,
a# — A~1 2#, which leads to the divergence of the corresponding current:

1 2 A2
aﬂ‘]tl;il = Td{;l,u = _ZmGA : (2147)
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The model has also mesonic fields described as quark-antiquark fields. We have to note
that when working in the so-called large- N, limit [147], 148]: (i) the glueball self-interaction
term vanishes, (ii) the glueball becomes a free field, (iii) the masses are N.—independent,
(iv) the widths scale as Nt

Let us now turn to the question: How can we introduce a pseudoscalar glueball
into the chiral model (2.145))?
The structure of the chiral anomaly term, ic(det® — det®)?, allows one to incorporate a
pseudoscalar glueball field G into the model in a simple way, of the form

icé(b@ (det<I> — det@T) .

This form describes the interaction of the pseudoscalar field G with the scalar and pseu-
doscalar fields by a dimensionless coupling constant czg. Through this term one can study
the phenomenology of a pseudoscalar glueball. The details of the introduction of the pseu-
doscalar glueball in the extended Linear Sigma Model are presented in chapter 6. Further-
more, it is relevant in the decay of hidden charmed mesons, see chapter 8 below.
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3. The extended Linear Sigma Model for
two- and three-flavours

3.1. Introduction

In the last decades, effective low-energy approaches to the strong interaction have been
developed by imposing chiral symmetry, one of the basic symmetries of the QCD Lagrangian
in the limit of vanishing quark masses (the so-called chiral limit) [I1}, 12]. Chiral symmetry
is explicitly broken by the nonzero current quark masses, but is also spontaneously broken
by a nonzero quark condensate in the QCD vacuum [I3]. As a consequence, pseudoscalar
(quasi-)Goldstone bosons emerge, as discussed in details in the previous chapter. We develop
the eLSM to study the vacuum properties of mesons and glueballs. In the case of Ny = 2
quark flavours, there are only mesons made of v and d quarks. However, the nucleons can
also be taken into account in the context of a chiral model. The interaction of nucleons
with mesons, tetraquarks, and glueballs in the chiral model for Ny = 2 will be described
in the present chapter. Furthermore, in the case Ny = 3, mesons are made of up, down
and strange quarks. It is for the first time possible to describe (pseudo)scalar as well as
(axial-)vector meson nonets in a chiral framework: masses and decay widths turn out to be
in very good agreement with the results listed by the Particle Data Group (PDG) [51]. In
this chapter, we thus present the extension of the eLSM from non-strange hadrons (Ny = 2)
[78, 106, 108, 109, [116] to strange hadrons (N = 3) [83], 101, 110}, 116, 117]. Consequently,
we investigate the vacuum properties of the three-flavour case [110] [116].

3.2. AU(2)g x U(2), interaction with nucleons

In this section we present the chirally symmetric linear sigma model in the case of Ny = 2
[109]. It contains (pseudo)scalar and (axial-)vector fields, as well as nucleons and their chiral
partners. Then we describe how the pseudoscalar glueball interacts with the nucleon and its
chiral partner. This allows us to compute the decay widths of a pseudoscalar glueball into
two nucleons (see Sec. 6.5).

3.2.1. A chirally invariant mass term

The mesonic Lagrangian for the Linear Sigma Model with global chiral U(2)r x U(2)L
symmetry has the same form of the Lagrangian (2.145]).

In this case, the matrix ® reads

3
O =" Gata = (o +inn)t° + (do + i7) - £, (3.1)
a=0
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and includes scalar and pseudoscalar fields. The eta meson ny contains only non-strange
degrees of freedom. Under the global U(2)r x U(2)r chiral symmetry, ® transforms as
® — U ®'Up. The vector and axial-vector fields are described as

3
VE=Y Vit = w4 g1 (3.2)
a=0
and
3
AP =N Al = 0 al - F (3.3)
a=0

respectively, where the generators of U(2) are T =7 /2, with the vector of Pauli matri-
ces 7 and t = 15/2. Under global U(2)r x U(2)1, transformations, these fields behave as
Rt — UgrRFUL, LM — UL LFU].
The mesonic Lagrangian is invariant under U(2)g x U(2)r transformations for
¢ = hg = 0 whereas for hg # 0, this symmetry is explicitly broken to the vectorial sub-
group U(2)y [109], where V' = L + R. Moreover, the U(1)4 symmetry, where A = L — R,
is explicitly broken for ¢ # 0. The spontaneous chiral symmetry breaking is implemented
by shifting the scalar-isoscalar field ¢ by its vacuum expectation value ¢ as ¢ — o + ¢,
where the chiral condensate ¢ = (0|0|0) = Z fr. The parameter fr = 92.4 MeV is the pion
decay constant and Z is the wave function renormalization constant of the pseudoscalar
fields [108, 153].
The meson fields of the model [108] 109] are assigned to the following resonances
listed by the PDG [51]:
(i) The pseudoscalar fields 7 and ny correspond to the pion and the SU(2) counterpart of
the 1 meson, ny = |[au + dd)/+/2, with a mass of about 700 MeV which can be obtained
by “unmixin” the physical 7 and 7' mesons. In the case of Ny = 3 [110] this mixing is
calculated and the results are presented in the next section, where the model contains also
contributions from strange quarks.
(ii) The vector fields w* and 7'* represent the w(782) and p(770) vector mesons, respectively.
(ili) The axial-vector fields f/ and @4 represent the f;(1285) and a;(1260), respectively.
The physical w and f; states contain $s contributions which are negligibly small.
(iv) The scalar fields o and @ are assigned to the physical f5(1370) and a(1450) resonances.

We now turn to the baryonic sector in the eLSM for two flavours. The baryon sector
involves two baryon doublets ¥ and 12, where 1 has positive parity and 1/2 has nega-
tive parity. In the so-called mirror assignment [154] [155], [156] they transform under chiral
transformation as:

Vig = UrVig, Vi — UrV1r, VYar — UrWar, Wor — UrVsy. (3.4)

While 9, transforms as usual, 19 transforms in a “mirror way” [156] [157]. These field
transformations allow us to write the following baryonic Lagrangian for Ny = 2 with a
chirally invariant mass term Ly,s for the fermions [109]:

Liar = V1107, DY V1L 4+ Wi, DY pWig + Warin, Dy Var 4+ Woriv, Dy Vag
— 01 <ElL<I)\I/1R + ﬁ11'%‘1’“1’11'4) -0 <W2L‘I)T‘I’2R + @23@‘?%) + Lmass » (3.5)
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where
DlllR =oF — iClR‘U‘, DiLL =" — ’L'ClL‘u,

and
D‘Q‘R = o" —icoRM, DSL = O" —ico P,

are the covariant derivatives for the nucleonic fields, with the coupling constants ¢; and
co. Note that the three coupling constants ci, co, and g1 are equal in the case of local
chiral symmetry. The interaction of the baryonic fields with the scalar and (pseudo)scalar
mesons is parameterized by g1 and go. The chirally invariant mass term L,,qss for fermions
parameterized by ug, reads

Linass = —to(V12Vor — Vi1rWar — UorVig + Uop¥yy)
= —po(Uays 0y — Uyys0y) (3.6)

where g has the dimension of mass. This mass term plays an important role in generating
the nucleon mass. The physical fields are the nucleon N and its chiral partner N*. They
engender by diagonalizing the baryonic part of the Lagrangian. As a result [109] we have

- 1 8/2 —5/2
o )= ()= —— (€ LY o) (3.7)
N Uy V2coshd \ 75€ —€ Wy
where § measures the intensity of the mixing and is related to the parameter pg and the

physical masses of N and N* by the expression:

my + my=

ho = 3.8
oS 5o (3.8)
The masses of nucleon and its partner [109] read
S DU N B
myNs =\ fmg+ | (G +g2)e| £ (01— g2)e (3.9)

The coupling constants gj 2 are determined by the masses of nucleon (my), its partner
(my+), and the parameter my,

. 1
2= [i(mN —mp~) + \/(mN +mpy+)2 —4m3| . (3.10)

The masses of the nucleon and its partner turn into be degenerate, my = my+ = my, in
the chirally restored phase where ¢ — 0 as observed from Eq. . The breaking of chiral
symmetry, ¢ # 0, generates the mass splitting.

Note that the mass term is not dilatation invariant but we can modify this term to
restore the dilatation symmetry by coupling it to the chirally invariant dilaton field G' and

a tetraquark field x = [u,d][u,d] in an U(2)g x U(2), invariant way. Then we obtain the
dilatation invariant mass term as follows:

Emass = —(OéX + BG)(§275\I[1 - \117175\?2) ) (311)
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where a and § are dimensionless coupling constants. The term L,,4ss would not be possible
if the field ¥9 would transform as . If both scalar fields are shifted around their vacuum
expectation values x — xo + x and G — Gy + G, there emerges a nonvanishing chiral mass

mo = a xo + BGo, (3.12)

where xo and Gg are the tetraquark and gluon condensates, respectively. mg is the mass
contribution to the nucleon which does not stem from the chiral (¢g) condensate o = ¢. In
Ref. [I09] the quantitative value for the parameter mg has been obtained by a fit to vacuum

properties as
mo = (460 £ 136) MeV. (3.13)

Under the simplifying assumption g = 0, as seen in the Ref. [I58], the parameter my is
saturated by the tetraquark condensate, where x is identified with the resonance f,(600)
while for N* there are two candidates with quantum numbers (J© = 37), which are the
lightest state N(1535) and the heavier state N(1650) [123]. But in the present section,
we are interested in studying the case a = 0, when the parameter mq is saturated by the
glueball condensate. The fermions involved are represented by the spinors U1 and Ws. Then

we obtain the following interaction term for the glueball with a nucleon
EG—baryons = 5 G(@Z 5 vy — 61 5 \IJQ)a (314)

where [ is a dimensionless coupling constant. The physical fields N and N* are related to
the spinors ¥y and W9 according to Eq. (3.7) by the following relations:

1

U = ——
! v2coshd

(Ne5/2 + 75N*e’5/2) , (3.15)

1
Wy = ——— (s Ne %2 = N*e9/2) | 3.16
2 v2coshd <75 ) ( )

_ 1 5y s
U= — (N2 - N'y5e9/2) | 3.17
! \/2COSh5< s ) ( )

and

1 _ _
Ug=—— (—Nrse %2 _N"/2) . 3.18
2 v/2 cosh & ( 7 ) ( )

3.3. The U(3)g x U(3) linear sigma model

In this section we present the extended linear sigma model (eLSM) including the strange
sector, Ny = 3, and its implications which have been investigated in Refs. [110, 116].

In the case Ny = 3, all quark-antiquark mesons in the Lagrangian (2.145) are assigned
to the light (i.e., with mass < 2 GeV) resonances in the strange-nonstrange sector. The
pseudoscalar fields P and the scalar fields S read

. WNJ-;O at K+
P=— o =’ o | (3.19)

S
=
nn
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and

on-+ag at KSJr

— —a? *
= ﬁ ag 01\;/5‘10 KOO , (3.20)
K= K og

which together form the matrix ® describing the multiplet of the scalar and pseudoscalar
mesons, as follows

s ONTHONET) g it KT ikt
, 1 2 .
(b = Z(Sa «I» ZPa)Ta = ﬁ ao— + 2‘777 (onag)\-i/-%(mj—wO) Ka'o + ZKO ;
=0 K~ +iK~ K30+ iK° o5 + ins
3.21)
3.22)
and the adjoint matrix ®% is
8 (UNJFag):[i(nNJr”O) a0+ —ant KaJr —iKT
, 1 2 .
(I)T = Z(Sa — ZPa)Ta = ﬁ aa o (crNiag):/;(mian) KSO — ;KO ,
=0 K~ — iK™ K30 —iKO o5 — ing
(3.23)

where T, (a = 0,...,8) denote the generators of U(3). The assignment of the quark-
antiquark fields is as follows:

(i) In the pseudoscalar sector the fields 7 and K represent the pions and the kaons, respec-
tively [51]. The bare fields ny = |tu+ dd) /v/2 and ng = |5s) are the non-strange and
strange contributions of the physical states n and n’ [51]:

1 = NN COS p + Mg sin p, (3.24)

/

n' = —nn sin g + ng cos p, (3.25)

where ¢ ~ —44.6° is the mixing angle [110] between 1 and 1. There are other values for the
mixing angle, e.g. ¢ = —36° [159] or ¢ = —41.4°, as determined by the KLOE Collaboration
[92], but using these affects the presented results only marginally.

(ii) In the scalar sector we assign the field dp to the physical isotriplet state ag(1450) and the
scalar kaon fields K to the resonance Kj(1430). Finally, the non-strange and strange bare
fields oy = ’ﬂu +dd) /v2 and og = [ss) mix with a scalar glueball G = gg) and generate
the three physical isoscalar resonances f,(1370), fo(1500) and fo(1710). As seen in Ref.
[83] that fy(1370), fo(1500) and fy(1710) are predominantly a oy, og, and a glueball state,
respectively. The mixing of the bare fields oy and og is small [110, 116] (in agreement with
large- N, arguments) and is neglected in this work.

Now let us turn to the vector fields V' (with quantum numbers J©¢ = 177) and the axial-
vector fields A (with quantum numbers JP¢ = 17+) which are summarized in the following
3 x 3 matrices, respectively:
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14 10
wytp pHt FOrut

VH = i \Zi_ wh. —ph0 - (3 26)
Vel 7 R PR '
*fL— *
K= K0
and
. f{LN\j_EaTO a/f‘i’ K{L+
o T - f“ _ M0 0 )
A \/5 a‘f i 11\;/5‘;1 K{L ) (3 27)
Ky K™ fis

which are combined into right-handed and left-handed vector fields as follows:

0 fin+a? #
8 1 BV i T_? OKH_K1+
Ry, — V,LL AN T = — - = wN—p~ _ JIN—Ga3 *0 _ 0 s
;)( a a) a \/Q P aq \/2 7\/5 K Kl
= K*~ — Ky K*0 — K7 ws — fis
(3.28)
0 1
8 1 wli/gpo + fl]f/;al pt+ay K + K
1 — H H = — - - —p° ‘f —af
L ;)(Va +Aa)Ta \/5 p +a1 UJI\i/i_,D + 1_1:7/5111 K*O—FK? ,
= K*~ + K| K* + KY? ws + fis
(3.29)

Note that the so-called strange-nonstrange basis in the (0 — 8) vector is used [I10], which is
defined as

1
@N:%(\/igao-i-g%),
1
- _ 1AL
vs = (po-VZes) . e (SuPu VI AL (3.30)

The quark-antiquark (axial-)vector fields in the matrices are assigned as follows:
(i) In the vector sector the fields wy and p represent the w(782) and p(770) vector mesons,
respectively, while the wg and K* fields correspond to the physical ¢(1020) and K*(892)
resonances, respectively.

(ii) In the axial-vector sector we assign the fields fI’y and 7’f to the physical resonances
f1(1285) and a1(1260) mesons, respectively. The strange fields fis and Kj correspond to
the f1(1420) and K279 |or K1(1400)| mesons, respectively. [The details of this assignment
are given in Ref. [110]].
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The matrices H and A are defined as

>
S
=

how 0
2
H=HTh+HsTy=| 0 ™ o |, (3.31)
0 0 e
V2
3 0 0 Sy 0 0
A=ANTy+AsTs=]| 0 % 0 |[=| 0 oy 0 |, (3.32)
6 0 0 ¢
0 0 \/55 S

where hy ~ my, hg ~ mg, Sy ~ m2, §s ~ m?2. The matrices H (3.31)) and A enter
the terms Tr[H (® + ®7)] and Tr[A(LZ + R?)] which explicitly break the global symmetry,
UB)r xUB)L [= UB)y x U(3)4], in the (pseudo)scalar and (axial-)vector sectors due
to different nonzero values for the quark masses. They break U(3)4, if Ho,Ap # 0, and
U@B)y — SU(2)y x U(1)y, if Hg, Ag # 0, for details see Ref. [117].

The spontaneous symmetry breaking of the chiral symmetry is implemented by condensing
the scalar-isosinglet states which are oy = (au + dd)/v/2 and o5 = 55. We shift these fields
by their vacuum expectation values ¢ and ¢g,

oN — oN +on and 05 — 05 + Pg , (3.33)

where the condensates ¢ and ¢g are functions of the pion decay constant fr and the kaon
decay constant fg, respectively, (the detailed calculation is presented in the Appendix)

¢N = Z7rf7r 5 (334)

27k [k —¢N
bs = — (3.35)

Thus leads to the mixing between (axial-)vector and (pseudo)scalar states in the La-
grangian (2.145)),
— oN (finOunn + @Y - 9,7) — V29165 fis0,ms
.9 Tk * *U— *
— i (0N — 65) (K 710 0,150 + K™ 0,1 )
. * —+0 % *—
i (on — V20) (K0 9,Ky + K™ 0,K;57)

- %(@V +V2¢5) (K10 0,K° + Kt 9, Kk~ + B 9,K° + K" 9,K™). (3.36)
In order to eliminate this mixing, one performs shifts of the (axial-)vector fields as follows

f{LN/S - ffLN/s + ZinysWhinys 9" NS (3:37)
a0 0 1 7, R, (3.38)
K{Li,o,ﬁ N Kfi’o’ﬁ 4 ZKleauKiof) , (3.39)

(3.40)

K*;L:I:,O,O K*Mi’O’O + ZK*wK*aluKS:t,O,O ) 340
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which produce additional kinetic terms for the (pseudo)scalar fields. The shift was
performed in the case Ny = 2 in Ref. [108], and the shifts — were performed in the
case Ny = 3 Ref. [I10]. The wave-function renormalization constants have been introduced
to retain the canonical normalization

a0 Z,ﬂri’o,
Ki,U,O N ZKKi,O,O 7
IN/S = Ly InsTIN/S

*pt,0,0 *pt,0,0
K, — ZKSKO .

3.41

3.42
3.43

(
(
(
(3.44

)
)
)
)

Note that for simplicity the isotriplet states have been grouped together with the notation
wivo,a‘fi’o and the isodoublet states with the notation Ki70’0,K5“i’0’0, where 0 refers to
KO, The explicit expressions for the coefficients w; are obtained after some straightforward

calculation (for details see Ref. [116]) as

g1ON
Wy = Way m?u ( )
V29105
Whe = m2 ) (3.46)
fis
) — /2
2mie.
+V2
QmK1

The wave-function renormalization constants Z;, introduced in Eq. (3.37] , are deter-
mined such that one obtains the canonical normalization of the 7, ny, ng, K and K. Their
explicit expressions read [110], [116]:

Ma,

Zp= Ty = —mr (3.49)
/M2, — 9N
2
T = MK , (3.50)
\/477%%(1 — g (on + V2¢5)?
2 *
Ziy = MK , (3.51)
Vam%. — g3 (on — V2s)?
Zp, = Mis (3.52)

ns — Y
2 2.2
Ve ~ 29195

which are always larger than one. After some straightforward calculation the tree-level
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(squared) masses for all nonets in the chiral Lagrangian (2.145)) are given|110, 116] by

_ 22 A2\ o o] _ Zzhon
= Zﬂ_ mgq + )\1 + — qu + >\1¢S = —F, (353)
2 N
2 _ 2 )\ A2 2
A h
Moy = Zy [mo (Al + 2) O +Mid% + ¢N¢>s] = ((;N e ¢N¢s> . (355)
c h
Mg = Zyg [m% Mk + O+ o) 6% + Sok| = 22, (qfs + <z>N> : (3.56)
Miys = Znlng 'y 5 Okos . (3.57)
for the (squared) pseudoscalar masses, while
3
ma, =mg+ </\1 + 2)\2> Ox + A% (3.58)
A2
m%(* ZK* [mo ()\1 + ) (Z5N + \/Q§¢N¢S + (A1 4+ A2) ¢% , (3.59)
A2
Mgy =mg +3 (Al + ) OX + M6% (3.60)
m2, =mg+ Mox +3 (A1 + X2) 6% (3.61)
m2 . =2MoNOs (3.62)
are the (squared) scalar masses. Moreover, the (squared) vector masses are obtained as
h
m? =m} + (h1 + hg + h3)d% + i¢§ + 26N , (3.63)
1 1
mice = mi+ 5 (91 + 20 + ha) 6% + \fqﬁNcbs( 91) + 5 (91 + I+ ha)dg + On + s
(3.64)
ml, =m, (3.65)
2 2, My hy 2
Mg :m1+?¢N+ 5 + ho + h3 ) ¢5 + 2ds (3.66)
while the (squared) axial-vector meson masses are
1 h
ma, = mi + 5201 + b+ hy — ha) SR + 0% + 20w | (3.67)
1 1
milzm%+1(g%+2h1+hz)d> f¢N¢S( )+2(g1+h1+h2)¢5+51\/+5s,
(3.68)
My, = Mo, (3.69)
h h
mj,, =mi + Elqﬁ?v - (29% - 31 + hg — h3> % + 205 . (3.70)

All previous expressions coincide with Refs. [110, 116].
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3.3.1. Model Parameters

The chirally symmetric model Eq. contains 18 parameters which are: m%, m%, c1, 0N,
557 g1, 92, 93, 94, g5, g6, hON; hOS) hl, hg, h3, )\1, )\2. Note that the Coupling of the glueball
with the other mesons has been neglected. The parameters gs, g4, g5, and gg are not
considered in the fit because they do not influence any decay channels in the case of the
Ny = 3 [I10] investigation. The explicit symmetry breaking in the vector and axial-vector
channel is described by 6n and dg. The ESB arises from non-vanishing quark masses,
which leads us to the correspondence oy o mi g and 0g o m% The linear combination
m3i/2 + 0y appears in the vector-meson mass term Tr[(mi/2 + A)(L2 + RZ)]. We can
redefine m?/2 — m?/2 — 6 which leads to the appearance of only the combination g — d
in the mass formulas. This difference is determined by the fit of the (axial-)vector masses.
Without los of generally, we may take dy = 0. Then the unknown parameters are decreased
to 13 in the chiral Lagrangian (or the so-called the extended Linear Sigma Model) [I10]:
m§, mi, c1, 0s, g1, 92, hon, hos, b1, ha, ha, A1, Mg

Moreover, the experimental quantities that are used in the fit do not depend on all previous
13 parameters. The following two linear combinations have been used in the fit rather than
the parameters mg, A1, m1, h1 separately.

Cr =mg+ M (o} + ¢3)
h
Cy=mi + 7 (% +¢3) - (3.71)

The condensates ¢n and ¢g are used instead of the parameters hony and hgg which are
determined by the masses of pion and 7g, as presented in Eqgs. (3.53)), (3.56). Consequently,
there are eleven parameters left:

Cla CQ? C1, 657 g1, 92, ¢N7 ¢Sa h27 h3) )‘2'

The eleven parameters are fitted by 21 experimental quantities as seen in Ref. [I16]. The
parameter values are obtained with y? ~ 1 [I10] as summarized in the Table .

Parameter Value
C, (—0.9183 + 0.0006) GeV?
Cy (0.4135 £ 0.0147) GeV?
1 (450.5420 =+ 7.0339) GeV 2
Ss (0.1511 + 0.0038) GeV?
g1 5.8433 £ 0.0176
g2 3.0250 + 0.2329
N (0.1646 & 0.0001) GeV
bs (0.1262 £ 0.0001) GeV
ho 9.8796 & 0.6627
h3 4.8667 & 0.0864
Ao 68.2972 + 0.0435

Table 3.1.: Parameters and their errors.



3.3. The U(3)r x U(3) linear sigma model 53

Note that the parameters A\; and h; are set to zero because the fit uses all scalar mass
terms except mg, and mgg, due to the well-known ambiguities regarding the assignment
of scalar mesons. The parameter A1 is expressed via the bare mass parameter mg which is
allowed due to the knowledge of the mentioned linear combination. Moreover the parameter
h1 is suppressed in large-N. as well as A;.

3.3.2. Results

The fit results for masses [I10] are interesting because they prove that a chiral framework
is applicable for the study of hadron vacuum phenomenology up to 1.7 GeV, (as listed in

Table

Observable | Fit [MeV]| | Experiment [MeV]
My 141.0 £5.8 137.3+£6.9
mg 485.6 £3.0 495.6 £ 24.8
My 509.4 £+ 3.0 047.9+274
o 962.5 + 5.6 957.8 £47.9
mp 783.1+7.0 775.5 + 38.8
M 885.1 £6.3 893.8 £44.7
Mg 975.1+6.4 1019.5 £51.0
Mg,y 1186 £ 6 1230 £ 62

My a0y | 13725+53 | 14264 +71.3
Mgy 1363 £ 1 1474 £ 74
MEKs 1450 £ 1 1425 £ 71

Table 3.2.: Best-fit results for masses compared with experiment (from Ref. [I10]).

The mass results of the (pseudo)scalar and (axial-)vector sectors are in good agreement
with experimental results as seen in Table The resonances ag(1450) and K(1430) are
well described as quark-antiquark fields. The scalar-isoscalar mesons are not included in the
fit. The decay pattern and the masses suggest that fy(1370) and fy(1710) are (predomi-
nantly) the non-strange and strange scalar-isoscalar fields. In the Refs.[I10] [116] there are
further results for the decay widths for light mesons in the chiral model which are
also in a good agreement with experiment.
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4. Charmed mesons in the extended
Linear Sigma Model

“Research is to see what everybody has seen and to think what nobody else has thought”

Albert Szent-Gyorgi

4.1. Introduction

In this chapter we investigate the eLSM model in the four-flavour case (N; = 4), i.e.,
by considering mesons which contain at least one charm quark. This chapter is based on
Refs.[118], 119], 120}, 1211 122]. This study is a straightforward extension of Sec 3.3 [110]: the
Lagrangian has the same structure as in the Ny = 3 case, except that all (pseudo)scalar and
(axial-)vector meson fields are now parametrized in terms of 4 x 4 (instead of 3 x 3) matrices.
These now also include the charmed degrees of freedom. Since low-energy (i.e., nonstrange
and strange) hadron phenomenology was described very well [I10], we retain the values for
the parameters that already appear in the three-flavour sector. Then, extending the model
to Ny = 4, three additional parameters enter, all of which are related to the current charm
quark mass (two of them in the (pseudo)scalar sector and one in the (axial-)vector sector).

Considering that the explicit breaking of chiral and dilatation symmetries by the current
charm quark mass, m, ~ 1.275 GeV, are quite large, one may wonder whether it is at all
justified to apply a model based on chiral symmetry. Related to this, the charmed mesons
entering our model have a mass up to about 3.5 GeV, i.e., they are strictly speaking no
longer part of the low-energy domain of the strong interaction. Naturally, we do not expect
to achieve the same precision as refined potential models [47, [48], 491 160}, 161, 162), 163, 164],
lattice-QCD calculations [165, 166, 167], and heavy-quark effective theories [50, [168] 169,
170), I71L 1772, 73], 174] 175, 176, 177, 178, 179] [see also the review of Ref. [59] and refs.
therein|. Nevertheless, it is still interesting to see how a successful model for low-energy
hadron phenomenology based on chiral symmetry and dilatation invariance fares when ex-
tending it to the high-energy charm sector. Quite surprisingly, a quantitative agreement
with experimental values for the open charmed meson masses is obtained by fitting just the
three additional parameters mentioned above (with deviations of the order of 150 MeV, i.e.,
~ 5%). On the other hand, with the exception of J/1, the charmonium states turn out to be
about 10% too light when compared to experimental data. Nevertheless, the main conclu-
sion is that it is, to first approximation, not unreasonable to delegate the strong breaking of
chiral and dilatation symmetries to three mass terms only and still have chirally and dilata-
tion invariant interaction terms. Moreover, our model correctly predicts the mass splitting
between spin-0 and spin-1 negative-parity open charm states, i.e., naturally incorporates the
right amount of breaking of the heavy-quark spin symmetry.
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4.2. The U(4), x U(4); linear sigma model

In this section we extend the eLSM [II0] 116] to the four-flavour case. To this end, we
introduce 4 x 4 matrices which contain, in addition to the usual nonstrange and strange

mesons, also charmed states. The matrix of pseudoscalar fields P (with quantum numbers
JPC = 0~1) reads

1 0 0 -
Z5(n + ) 1 mt KT D alu dlu 3Tu elu
po L ™ Zv —7°) K% D~ 1 | ard drd srd erd
V2 K- K ns 5 V2 | ul's dl's sl's cI's ’
50 D+ D; e ul'e dl'e sT'c el'e

(4.1)
where, for sake of clarity, we also show the quark-antiquark content of the mesons (in the
pseudoscalar channel I = i7°). In the nonstrange-strange sector (the upper left 3 x 3 matrix)
the matrix P contains the pion triplet 7, the four kaon states K, K=, K° K° and the
isoscalar fields ny = 1/1/2(@u + dd) and ns = 3s, see Eq. . The latter two fields
mix and generate the physical fields n and 7’ [see details in Ref. [110]]. In
the charm sector (fourth line and fourth column) the matrix P contains the open charmed
states DT, D=, D° DY which correspond to the well-established D resonance, the open
strange-charmed states Dé?, and, finally, the hidden charmed state 7., which represents the
well-known pseudoscalar ground state charmonium 7.(15).

The matrix of scalar fields S (with quantum numbers JP¢ = 0+) reads

50w +af) ag Kg*t Dg?
g L ag F5lon —af) Ki® Dg” (4.2)
V2 K- Ky o5 D '
Dy’ Dg* D& Xeo

The quark-antiquark content is the same as in Eq. , but using I' = 14. A long debate
about the correct assignment of light scalar states has taken place in the last decades. Present
results [9, [10], [72] (73, [74], which have been independently confirmed in the framework of the
eL.SM [110], show that the scalar quarkonia have masses between 1-2 GeV. In particular, the
isotriplet dp is assigned to the resonance ag(1450) (and not to the lighter state a9(980)). Sim-

ilarly, the kaonic states Kj*, K;~, K;T, FSO are assigned to the resonance K;(1430) (and
not to the K;j(800) state). The situation in the scalar-isoscalar sector is more complicated,
due to the presence of a scalar glueball state G, see Ref. [78] and below. Then, oy, og, G
mix and generate the three resonances fp(1370), fo(1500), and fp(1710). There is evidence
[83] that f5(1370) is predominantly a +/1/2(wu + dd) state, while f3(1500) is predominantly
a ss state and fy(1710) predominantly a glueball state. As a consequence, the light scalar
states fo(500) and fp(980) are not quarkonia (but, arguably, tetraquark or molecular states)
[128], 180L 18T, 182, 183, 184, [185] 186l 187, 188]. In the open charm sector, we assign the
charmed states Dj to the resonances D§(2400)° and D(2400)* (the latter state has not yet
been unambiguously established). In the strange-charm sector we assign the state Dg% to
the only existing candidate D§0(2317)i; it should, however, be stressed that the latter state
has also been interpreted as a tetraquark or molecular state because it is too light when
compared to quark-model predictions, see Refs. [47, 48, 52, 53, 58|, K9], 189 190l 191]. In
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the next section, we discuss in more detail the possibility that a heavier, very broad (and
therefore not yet discovered) scalar charmed state exists. In the hidden charm sector the
resonance x.o corresponds to the ground-state scalar charmonium x.o(1P).

The matrices P and S are used to construct the matrix ® as follows,

<UN+a3>\+/;(”N+’f°) af +int Kt 4iK+ D +iD°
b—S54iP—— ay +inm TN g0 piK® D D"
V2| K ik Ky +iK’ os+ins Dy +iDg
Dy +iD’ Dt +iDY DI +iDE xoo+ine ”
43
and the adjoint matrix ®T reads
Onta) wIT) g —ipt Kyt iKY D — D
=§_ip=L a i~ (OTAINTEDG0 iR Dy D
V2| K-k Ky —iK'  os—ins Dig—iDg
D)) —iD’ Dyt —iD* Dy —iDE  xeo —inc
(4.4)

The multiplet matrix ® transforms as ¢ — UL@U; under Ur(4) x Ugr(4) chiral trans-
formations, where Up(py = e L™ is an element of U(4)R(r), under parity, o(t,7) —
i (t, —?), and under charge conjugate ® — ®f. The determinant of ® is invariant under

SU(4)r, x SU(4)g, but not under U(1)4 because det® — detUsPU,y = e V2N det d #
det®.

We now turn to the vector sector. The matrix V# which includes the vector degrees of
freedom is:

%(WN—F/)O) pt K*(892)T D*0 \*
p_ L P valwn —p%) K*(892)° D (4.5)
V2 K*(892)~ K*(892)° wg D™
D D+ D5 I/

The quark-antiquark content is that shown in Eq. , setting I' = v#. The isotriplet field
p corresponds to the p meson, the four kaonic states correspond to the resonance K*(892),
the isoscalar states wy and wg correspond to the w and ¢ mesons, respectively. [No mixing
between strange and nonstrange isoscalars is present in the eLSM; this mixing is small any-
way [192].] In the charm sector, the fields D*, ﬁ*o, D**, and D*~ correspond to the vector
charmed resonances D*(2007)° and D*(2010)*, respectively, while the strange-charmed Dgi
corresponds to the resonance Di‘gi (with mass MD? = (2112.3 £ 0.5) MeV; note, however,

that the quantum numbers J© = 1~ are not yet fully established). Finally, J/4 is the very
well-known lowest vector charmonium state J/¢(15).
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The matrix A" describing the axial-vector degrees of freedom is given by:

F(fin +a}) af Kf DY \"
v s w oo o
V2 Ky K7 fi,s Dg
DY DY Dy Xea

The quark-antiquark content is that shown in Eq. , setting I' = v#~5. The isotriplet field
d; corresponds to the field a1(1260), the four kaonic states K correspond (predominantly)
to the resonance K7(1200) [but also to K7(1400), because of mixing between axial-vector
and pseudovector states, see Refs. [193], [194] [195] 196, 197] and ref. therein|. The isoscalar
fields f1 v and fi g correspond to f1(1285) and f1(1420), respectively. In the charm sector,
the D; field is chosen to correspond to the resonances D1(2420)° and D;(2420)*. (Another
possibility would be the not yet very well established resonance D;(2430)°, or, due to mixing
between axial- and pseudovector states, to a mixture of D;(2420) and D;(2430). Irrespective
of this uncertainty, the small mass difference between these states would leave our results
virtually unchanged.) The assignment of the strange-charmed doublet ngtl is not yet settled,
the two possibilities listed by the PDG are the resonances Dg;(2460)* and Dg;(2536)* [51].
According to various studies, the latter option is favored, while the former can be inter-
preted as a molecular or a tetraquark state [46] 52 53, 56, 57, 58, 198]. Thus, we assign our
quark-antiquark D; state to the resonance Dg1(2536)F. Finally, the charm-anticharm state
Xe,1 can be unambiguously assigned to the charm-anticharm resonance x.1(1P).

From the matrices V# and A" we construct the left-handed and right-handed vector fields
as follows:

wntpt | ity + + *+ + *0 0 j
Vol \/51 p0+a1 ) K+ + K D?V+D
LF=VHF 4 A* = L P +CL1_ w]\:/%p + fl]:’/%al K*0 + K? D* + Dl_
\/i _[Sk?)‘f—fé_ ?*0 —|—F(1) ws—|—f1S D§_+D§1
(4.7)
+0°  fin+ad . . 4
WN\@p - 11://5«11 Pj - af ) K*t — Kfr D0 _ D(l)
Reove oo L o oer S SRS KO- K) Do Dp
*— — ——*0 —0 . - ,
V2 KO_K%) K-k, ws — fis Dg —Dg
— 0 — .
b =Dy D+7D1+ D?*D;l J/¢*X01
(4.8)

which transform under chiral transformations as L* — U LL“UZ and R* — URR“U]T%.

The Lagrangian of the Ny = 4 model with global chiral invariance has an analogous form
as the corresponding eLSM Lagrangian for Ny = 3 [I10, 116], which is discussed in Sec. 2.6
and described in Eq.(2.145)), with the additional mass term

—2Tr[ED O
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which has been added to account for the mass of the charm quark, as well as to obtain a
better fit to the masses.

The terms involving the matrices H, F, and A break the dilatation symmetry explicitly,
because they involve dimensionful coupling constants, and chiral symmetry due to nonzero
current quark masses in the (pseudo)scalar and (axial-)vector sectors. They are of partic-
ular importance when the charmed mesons are considered, because the charm quark mass
is large. In the light sectors, these terms are surely subleading when the quarks w and d
are considered (unless one is studying some particular isospin-breaking processes), while the
quark s is somewhat on the border between light and heavy. We describe these terms sepa-
rately:

(i) The term Tr[H(® + ®1)] with

hy O 0 0
(4.9)

0 0  V2he
describes the usual explicit symmetry breaking (tilting of the Mexican-hat potential). The
constants h; are proportional to the current quark masses, h; < m;. Here we work in the
isospin limit, hyy = hp = hy. The pion mass, for instance, turns out to be m2 o m,,, in
agreement with the Gell-Mann-Oakes-Renner (GOR) relation [199]. The parameter h¢ is
one of the three new parameters entering the Ny = 4 version of the model when compared
to the Ny = 3 case of Ref. [110].

(ii) The term —2 Tr[E®T®] with

ev 00 0
|l 0o ep 0 0

E=| o0 0 & o | (4.10)
0 0 0 e

where ; o m?, is the next-to-leading order correction in the current quark-mass expansion.
In the isospin-symmetric limit ey = ep = en one can subtract from € a matrix proportional
to the identity in such a way that the parameter ey can be absorbed in the parameter
m2. Thus, without loss of generality we can set ey = 0. Following Ref. [I10], for the sake
of simplicity we shall here also set eg = 0, while we keep ¢ nonzero. This is the second
additional parameter with respect to Ref. [110].

(iii) The term Tr [A(L#? + RF?)] with

sy 0 0 0

| o sp 0 o0
A=l o Vo o | (4.11)

0 0 0 b

where 0; ~ m?, describes the current quark-mass contribution to the masses of the (axial-
Jvector mesons. Also in this case, in the isospin-symmetric limit it is possible to set dy =
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§p = 8y = 0 because an identity matrix can be absorbed in the term proportional to m?.

The parameter dg is taken from Ref. [110]. The third new parameter with respect to Ref.
[110] is 0¢c. Note that in the present effective model the mass parameters ¢ and ¢ are not
to be regarded as the second-order contribution in an expansion in powers of m¢. They
simply represent the direct, and in this case dominant, contribution ~ mZC of a charm quark
to the masses of charmed (pseudo)scalar and (axial-)vector mesons.

Another important term in the Lagrangian is ¢(det® — det®")?, which is responsi-
ble for the large ' mass. Care is needed, because a determinant changes when the number
of flavours changes.

We conclude this section with a few remarks on how to extend the Lagrangian in
order to improve the description of hadron vacuum properties. First of all, note that the
requirement of dilatation invariance restricts the interaction terms in the Lagrangian to have
naive scaling dimension four: higher-order dilatation-invariant terms would have to contain
inverse powers of G, and thus would be non-analytic in this field. In this sense, our La-
grangian is complete and cannot be systematically improved by the inclusion of higher-order
interaction terms, such as in theories with nonlinearly realized chiral symmetry. However,
one may add further terms that violate dilatation invariance (which is already broken by the
mass terms ~ H,e, A, and the U(1) 4-violating term ~ ¢) to improve the model.

Another possibility is to sacrifice chiral symmetry. For instance, since the explicit breaking
of chiral symmetry by the charm quark mass is large (which is accounted for by the terms ~
hc,ec,d¢), one could also consider chiral-symmetry violating interaction terms, e.g. replace

Ao Tr(®T®)2 — Ao Tr(®T®)2 + SN Tr(Pd P)? (4.12)

where Po = diag{0, 0,0, 1} is a projection operator onto the charmed states. A value d\y # 0
explicitly breaks the symmetry of this interaction term from Ug(4) x Ur(4) to Ur(3) x UL(3).
One could modify the interaction terms proportional to A1, ¢, g1, g2, h1, ho, and hs in Eq.

(2.145)) in a similar manner.

4.3. Four-flavour linear sigma model implications

The Lagrangian (2.145) induces spontaneous symmetry breaking if m% < 0 : as a conse-
quence, the scalar-isoscalar fields G, oy, og, and x¢co develop nonzero vacuum expectation
values. One has to perform the shifts as

Go—> G+ Gy, oy —>on+ ¢n, 05 = 05+ Pg (4.13)
as obtained in Eq.(3.33)) and in Refs. [116], and similarly for xco,

Xxco — Xco + ¢c (4.14)

to implement this breaking. The quantity Gg is proportional to the gluon condenstate
[78], while the quantities ¢, ¢g, and ¢ correspond to the nonstrange, strange and charm
quark-antiquark condensates.

The relations between the nonstrange, strange, and charm condensates with the pion
decay constant fr and the kaon decay constant fx are presented in Eq. and Eq.
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(3.35]), respectively, whereas the decay constants of the pseudoscalar D, Dg, and ¢ mesons,
fp, fp,, and f,. are

_ON + V2¢pc
/o= iz, (4.15)
_ ¢s + dc
fps = T, (4.16)
2¢¢
= =, 4.17
fnc ch ( )

where the detailed calculation is presented in Appendices A.3 and A.4. The chiral con-
densates ¢y s.c lead to the mixing between (axial-)vector and (pseudo)scalar states in the
Lagrangian , with the additional term —2 Tr[E®T®], with bilinear mixing terms in-
volving the light mesons ny — fin, T — @1 [116], ns — fis, Ks — K*, and K — K, which are
presented in Eq.. In addition, for charmed mesons similar mixing terms of the type
D — Dy, Dj — D*, Ds — Dg1, Dg, — Dg, and nc — xc1 are present:

g1 - _
— 919C X Oune — \ﬁ 919s(DY; auDg + Dféf Dyg)
. g1 * L — * * U+ *—
" Z\ﬁ ¢s(DY'™ 9.Dg; — D™ 8,Dg;)

+ 192—1 ¢N(D*u* aMDS+ _ D*u+ auDé_ 4 D*uO auﬁéo _ b*uo 8MDSO)
g1 0 —0 =50 _ _
-5 on(DV9,D" + D 9,D° + D{*9,D” + DY~ 9,D") . (4.18)

Note that the Lagrangian is real despite the imaginary Kg — K*, Dg, — Dgy,
Dg — Dgy and D — D* coupling because these mixing terms are equal to their Hermitian
conjugates.

The mixing terms are removed by performing field transformations of the (axial-

Jvector states as presented in Egs.(3.37:3.40). The mixing terms (4.18)) are removed by
performing field transformations of the (axial-)vector states as follows

X1 = X1+ Wyer Zne 0'ne (4.19)
DEE 5 DEE L wpg, Zpg 0" DE (4.20)
D™ — DY +wps Zpr, 0" DYy (4.21)
DY — DY +whe Zpz, 0Dyl (4.22)
D*** — D wiy. Zp: 9" Dy, (4.23)
D*~ — D*~ +wp- Zps "Dy~ (4.24)
D0 = D wiyo Zpeo MDY, (4.25)
D0 — D wpeo Zpeo 9D (4.26)
DIEOD  pEEOD oy Zp 9P DEOD (4.27)

These shifts produce additional kinetic terms for the open and hidden (pseudo)scalar
charmed fields. Furthermore, one has to rescale the strange-nonstrange (pseudo)scalar fields
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as described in Egs.(3.41}3.41)) as well as the open and hidden charmed pseudoscalar fields

as

D:I:,0,0 — ZDD:I:,O,O ,
*+ *1

DO — ZDSDO R
x0,0 *0,0

DO — ZDa()DO B
* *t

DSO — ZDEODSO s

nc — Znenc -

Note that for the sake of simplicity we have grouped together the isodoublet states with the
notation D00 and D;O’O, where 0 refers to D and D{?. The coefficients w; and Z; are
determined in order to eliminate the mixing terms and to obtain the canonical normalization

of the D, D, D%, and nc fields. This is described next.

The quantities wg, y, Wa,, W, ¢, WK+, Wk, , are given in Egs. (3.3743.40), while wy,,,, wpy,,
wpy, Wp+, Wp+o, and wp, are calculated from the condition that the mixing terms 1}

vanish once the shifts of the (axial-)vectors have been implemented:

1 hy
[— g1 ON + 5(29% +h1 + hy — hy)wy, X + (M + 208wy, + 2

X (fiNOunn + 7’f . 8#?) =0,

> Wiin ¢S + 9 wle ¢C}

(4.33)
V2 9, M 2 2 hy
—V2g1 65+ (2 g1 + ? +hg — h3)wf1s (Z)S + (ml + 255)wf1s + 2 o Wris ¢N + wf1s ¢C
X f1gOuns =0, (4.34)
g1 hs — g3 g%+ hy + ho g1
[ ﬁqs 5+ 7% Lwg-dnds + %w[{*gt% + (m? + 0N + 05w+ — z?m
1 hy
+ Z(g1 + 2h1 + ho) w3 + ?w;{* qﬁc]( K*9,K¢+ K™ 9,K&) =0, (4.35)
. hs — g3 24+ hi+hy | .
{— z\%gﬁs + 3\/;1 Wi dn s + 91271%%@% (M2 + Oy + 0g)when + z%qﬁN
1 h1 " —0 * _
+ 4(91 +2hy + h2)wK*¢N + 5 wK*¢C] (K0 O Kg+ K a 0.Kg)=0, (4.36)
2 2
g1 91 — h3 97 + h1+ ho g1
[— ﬁés + 1\@ Wi, NP5 + %wmqﬁ% + (m3 + 0y + 0g)wr, — 5¢N
1 h —0 e _
—|—4(g%+2h1+h2)w1<1¢?v—|—21le¢%} (K{LO 6uK +Kf+ B#K +K,1 auKO+Kf auK+) =0,

(4.37)
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2
+h1+h
{— 7¢5 + (91 — ha)wpg, dsdc + 912#7«@514% + (mi + s + dc)wpg, — %¢C
+hi+h h1
+917212 D51¢C+ 2wD51¢N} (Dg‘l 9 D;+DgILa Dy ) 0, (4'38)
2
] + h1 + ho . g1
[ = Z%cﬁs + (hs — gP)wpy, ¢sdo + glflw/jglcb?g + (m3 + s + 0c)wpy, + Z\ﬁcbc
2
g7 + h1 + ho h1 *_
+1f D5, b + 5 wD51¢N Dt 9,Diy =0, (4.39)
2
.9 . g1 +hi+hy . .91
{Zﬂés + (hs — gf)ngl Psoc + %%zl‘b?ﬁ + (mi + s + do)wpy, — Z\ﬁ(bc
2
91 + hi + ho % h1 Dk *
+ 1# DSl¢C + wD* O% | DS 8.D%sh =0, (4.40)
h g2 1 2 2 2 - 91
- Z*¢N + 7 Lwp-dndo + 191+ 2ha + ha)wp+ gy + (mi + 0y +dc)wp- + Zﬁcbc
+hi+h h * -
+ 912712“@*&) + ;wD@é} D™ 9,D5” =0, (4.41)

g1 h3_g% * 1 2 * 2 2 * . g1
120N + Wy 4+ =(g7 + 2h1 + ho)wh- + (mf +0n + 0c)whHs — 1=
[ 5 N 7 WD ondc + (97 1+ ho)wp«dy + (m] + dn + d¢)wp ﬁqﬁc

P4+ hi+h h
+ ISR G g 4 o] D 9,05 o, (1.02)
iy +h3_g%w sdN O+~ (974 2ht + ha)wpeody + (2 + 6 + 30 wpeo +iLg
2 N \/§ D N®C 4 91 1 2)%WD N 1 N C)Wp \f C
24+ hi+h hy
+ Lw D*0¢C + 9 UJD*O¢S:| *MO 6 D 0, (443)
g1 — g1 L o T 2 . .o
|:7'2¢N + \/i 1wD*0¢N¢C + 4(9]_ +2h1 + h‘2)wD*0¢N + (ml +5N +(5C>’U)D*o — ZE¢C
{+hi+h h —
# DR 0t 4 K0 D00, D 0, (1.49)
N+ AT hng dnoC + 1(g% +2hy + ho)wp, 6% + (m2 + 0 + dc)wp, — Lo
2 \/§ 1 4 1 1 \@
2
+hi+h h o o
A 2wD1¢%+;wD1¢%] (DY 0,0+ D4 0,0°+ Di* 0,0+ D™ 0,D%) =0,

(4.45)
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hy h1 h1
- \/igl (;SC + (29% + ? + h‘2 - hg)chlqb%' + (m% + 25C)U}Xcl + ?chlgb?v + ?ch1¢2S

X Xél 8;”70 =0, (4.46)

Equations (4.33)) - (4.37) correspond to the mixing terms (3.36) obtained in the case of
strange-nonstrange investigation [116]. Equations (4.33)-(4.46) are fulfilled only if we define

xo1 = \/i%ljc, (4.47)
Wpy, = W , (4.48)
wpy = W (4.49)
wpe — igl(@;ﬁ:g{%d 7 (4.50)
o — igl(ﬁbévn%fﬁbc) 7 (451)
wp, = &1 ((ﬁz; :7;21%0) . (4.52)

The wave-function renormalization constants of the strange-nonstrange fields are given in

Eqgs.(3.4913.52)) [I10, 116]. For the charmed fields, they read

Ty, = Tixer : (4.53)
V m?(c& - 29%¢%’

Zpy = Vimpg, , (454
\2mb,, — 6395 + d0)?

Zp;, = il , (4.55)

V2, — 9105 — oc)?

Zp; = 2mp- , (4.56)

Vamd. — g (éx — V2oc)?
2 M

Zpyo = 1D , (4.57)
\/477%*0 — g3 (N — V2¢¢)?

Zp 2mp, (4.58)

\Jamd, — @ on V200

It is obvious from Eqgs.(3.4943.52) and Eqs.(4.53)-(4.58)) that all the renormalization coeffi-

cients will have values larger than one.
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4.4. Tree-level masses

In this section we present the squared meson masses of all mesons in the model after having
performed the transformation above as well as transforming the unphysical fields to the
physical fields, e.g. for the pseudoscalar mesons ny, ns to n, 7', and the scalar mesons

oN, 0g to o1, o9 due to the mixing terms of these fields.
We obtain the tree-level masses of nonstrange-strange mesons in the eLSM:

(i) Pseudoscalar mesons:

mi=2§[m3+<A1+A2>¢N+A1¢S+A1¢c} :
>¢N \/25¢N¢S+()\1+)\2)¢%+/\1¢%}7

C
¢?V+A1¢%+A1¢%+2¢?v¢%¢%] :

(ii) Scalar mesons:

3
m?lo =md + <A1+2A2>¢?V+A1¢?9+A1¢2c,

A
mg(*:ZIQ(S[m%%—(MwL 2) ¢>N+ ¢N¢s+(>\1+>\2)¢s+>\1¢c ;

7%
Ao
mgN_mO—i-S()q—i— ><Z>N+/\1<b5+)\1¢c7

m2, =mg+ Moy + 3(M + A2) 9% + A1 6F

(iii) Vector mesons:

mzzmQ s
¢2
mé, —ml+25N+—(h1+h2+h3)+—¢5+—¢c,

hi

Mg =m%+2és+2¢>?v+<2

+h2+h3>¢§+¢%,
¢N h2 2
m2. =m? + 6n + 0s + 2+h 1+ = +7¢N¢S( - 91)
¢s

5 (91+h1+h2)+*¢0 ~

(4.59)
(4.60)
(4.61)

(4.62)

(4.63)
(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)
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(iv) Axial-vector mesons:
m?m =m? (4.71)

al?’
2 ¢N

h
m2, =md + 26 + g1k + (b + by — hs) + L Gh 4 L7, (4.72)

h
M, =m%+2és+;¢?v+¢%+2g%¢§+¢%< Ly h2h3> , (4.73)

ho
mi, —m1+5N+5S+¢N<2 + hy + >+ﬂ¢zv¢s(g?—h3)

<Z55 (91 + hi + ha) + > ¢c (4.74)

Note that all the squared strange-nonstrange mesons masses have the same expressions
obtained in the Ny = 3 case as shown in Sec. 3.3, but with an additional term related to
the charm sector. However, this term will not affect the results because it is multiplied by
a vanishing parameter as we will see below in the results section.

The masses of (open and hidden) charmed mesons are as follows:

(i) Pseudoscalar charmed mesons:

C
Mo = Zio[mG + MOR + M5 + (M + X)@E + 2 o 0% + 220], (4.75)
A A
iy = Zh i+ (5 )b+ Mok - Sonect On+ M) bec (479
m2Ds = Z%s [m(Q) + )‘1¢?\/ + (A1 + >‘2)¢%‘ — Agods + (A1 + )\Z)QZ%‘ +ec] . (4.77)

(ii) Scalar charmed mesons:

My = Mo + MoK + MoF + 3\ + A)dE + 220 (4.78)
A

mD* ZD* [mo + <)\1 + 2>¢N + >\1¢>S + \/2§¢C¢N + (A1 + >\2)¢%} + 50] ) (4.79)
A A

Mo = Z o {mo <)\1 + 22)¢%V A0+ 7%¢N¢C + (A1 + A2)od + ec} . (4.80)

mps = Zhg[mg + Mok + (M + A2)d% + Aadeds + (M + Ao) o +ec] - (4.81)

(iii) Vector charmed mesons:

h 1
mp. =mi + 6y + 0¢ + ¢N<2 +h1 + 2>+¢N¢C(h3_9%)

2 V2
+ %C(g1 4 hy+ho) + 51 0% (4.82)
m2,, =m?+25 +@¢2 +@¢>2+ Mo h $2 (4.83)

2
mby =3 + 8 + 60 + 23 (g7 + by + ha) + b c(hs — g7)

2
L%

5 (g% +h1+h2)+—¢N . (4.84)
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(iv) Axial-vector charmed mesons:

gy =i + 35+ G + S (g3 4y + ha) + s (gt — ha)
% (6 + byt hy)+ 1 5 BN (4.85)
mp, =mi + 6n + 6c + ¢N< + hy + h;) +\}§¢N¢C(g%_h3)
¢C( 1+h1+h2)+—¢>5, (4.86)
My, =mi+20c + 3 S o+ Tb?; + 297 6% + 05 (i;l + hy — h3> . (4.87)

Further interesting quantities are also the following mass differences, in which the explicit
dependence on the parameters ¢ and d¢ cancels:

mp, —mbe = V2 (gi — ha)pndc, (4.88)
My, — M3y = 2(97 — h3) ot (4.89)
Mg, —mps = 2(g; — ha)ds dc - (4.90)

4.4.1. n and 1’ Masses

From the Lagrangian (2.145), we obtain mixing between the pure non-strange and strange
fields ny = (4u — dd)/v/2 and ng = 3s as

C
Liynns = —ZZnSZM}Q’v(Z)sQ%??N??S ~ (4.91)

which has the same formula for Ny = 3 case, as seen in Ref. [I16], but it includes charm
quark-antiquark condensate (¢¢).
The generate part of the ny-ns Lagrangian [116] has the form
L = L @mn)? + 2 (0uns)? — L2 nn? — Lm2 g £ v 4.92
s, full = 5 (OuIN )™+ 5(0uns)” = Sy n® — Smpgs™ + Tynnns (4.92)
where T, defines the mixing term of the pure states ny and 7g.
By comparing Eqs. (4.91)) and (4.92)) we obtain the mixing term T, as follows

C
Tﬁ = _ZZUSZW¢?V¢S¢2C ) (4:93)

We can determine the physical states n and 1’ as mixtures of the pure non-strange and
strange fields ny and ng, see the details in Ref. [116], as

< " > _ ( cosy  sinpy ) < nN > 7 (4.94)
n —sing, cos g, ns

1 = cos @ynN + sin s, (4.95)
n = —sinp,nn + cos pyns | (4.96)

which gives
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where ¢, = 44.6 is the n — 7/ mixing angle [110].
By overturning Eqgs. (4.95)) and (4.96)), one obtain the pure states ny and ng as

NN = €os pyn — singyn (4.97)
ng = sin pyn + cos o1’ (4.98)

By substituting ny and ng by n and 1’ in the Lagrangian Eq. (4.92)), we get [116]

~

Loy, [(9,m)? cos? o, + (8um')? sin? @, — sin(2p,,)0und* 7]

[(8M17)2 sin® on + (8un’)2 cos® ©n + sin(2¢;,)0,m0" ']

+
[l el N N Bl N S

m%N [1n? cos® o + (1)? sin® on — sin(2p,)n1']
— im,%s [n?sin® ¢, + (1) cos? ¢, + sin (2, )]

+ To{[n* — ()] sin ¢y cos @y + cos(2¢y) '}

1 1 1 . .
= 50um)* + 5(0un')? = 5 lmy, cos” o + my sin® gy — T sin(2,)]n’
1 ) .
— §[m,27N sin? ¢, + m%s cos? gy + Ty sin(2p,)](17)?
1 .
~ L2, —m2, ) sin(2,) — 2T, con(2e,) o (1.99)

which gives the masses of the physical states n and 7', m, and m,y, in terms of the pure
non-strange and strange, ny and ng, mass terms:

m% = m??N cos? ¢y + m%s sin? ¢, — Y, sin(2¢,), (4.100)
m%, = mfm sin? @, + m%s cos? @, + Ty sin(2p,) . (4.101)

where the mass terms m,,, and m,, are known from Eqs. (4.61)) and (4.62).

4.4.2. Scalar-Isosinglet Masses

There is a mixing between the pure states o = (du+dd)/v/2 and o5 = 5s in the Lagrangian
(2.145) with the mixing term given by

Loyos = —2MPNPSONOTS (4.102)

Notice that the mixing term (4.102)) of on and og does not depend on the charm quark-
antiquark condensate ¢¢. So it is the same mixing term in the case of Ny = 3 [116].
The generate part of the oy-0g Lagrangian has the form

2 L o

1 1 1
,CUNg&fuu = 5((9“0']\[)2 + §(au0'5)2 — §m‘27NUN — §m03052 + Y,on05 , (4.103)

where Y, is the mixing term of the o and og fields,
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Ty = —2\10N0s - (4.104)

The mixing between the states on and og yields o1 and o3 fields [see Ref. [116]]:
o1\ _ COS Y, SN, ON (4.105)
09 —sing, cos s og ) '
which can be written as

01 = COS psoN + sinp,0g, (4.106)
09 = —Sin Y,0N + COS P05 | (4.107)

where ¢, is the ox-0g mixing angle.
By overturning Eqgs. (4.106) and (4.107)), one obtain the pure states o and og as

ON = COS 0,01 — SiN Y09 , (4.108)
05 = sin p,01 + €COS Y09 (4.109)

Substituting from Egs. (4.108) and (4.109) into Eq. (4.103), one obtain the o1 — o9

Lagrangian as follows:

—

Loioy = [(8u‘71)2 cos? Py + ((9M02)2 sin? p, — sin(2¢4)0,010" 09]

2
1
+ 5[(8“01)2 sin? o, + ((9”02)2 cos? o, + sin(2¢4)0,010 9]

—_

- fmz.N (03 cos? @, + (09)?sin? @, — sin(2p4 )o10)

— DN

— 5Miaslot sin® go + (02)° cos® gy + sin(25)010)]

+ Tg{[a% — (02)2] sin g cos @, + cos(2py)o102}
1 1

= 5(3u0)2 + §(au0/)2 - 5[7”

sin? @, + m%o cos® @, + Yo sin(2¢,)](02)?

2

. cos? Yo + mgs sin? oy — Yy sin(2gog)]a%

2
ON

Lo o

as

i
2
—mZ,)sin(2¢5) — 25 cos(2¢,)]o102 (4.110)

We then obtain the mass terms of o1 and o9 fields as

m2, = mf,N cos® p, + mgs sin? p, — T, sin(2p, ), (4.111)
m2, = mgN sin’ @, + mz.s c0s® 0y + Yy sin(2p,) , (4.112)

where m,,, and my¢ known from Eq. (4.65) and Eq. (4.66)), respectively. While the mixing
term Y, is

1
Y, = §(m25 —mZ)tan(2p,) - (4.113)
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The resonances o1 and oy will be assigned to the physical states fy(1370) and fo(1710)
[116], respectively.

One can determine the o1 — 09 mixing angle ¢, from Eqs. (4.104) and (4.113) [116] as

AN PN Ds )

1
Yo = —— arctan (
2 gs —m?,N

(4.114)

8A\1ONPs ]
2 )

1
=—arctan
[(4)\1 +3X2)p%; — (4A1 + 6X2) 0%
In the large- N, limit, one sets A\; = 0, as shown in Ref. [116] for the case Ny = 3. Therefore
we get from Eq.(4.114]) that the mixing angle ¢, between o1 — o9 is zero. Naturally the
mixing angle between o1 — o9 is very small, which is in agreement with our result. Then ¢,
does not affect the results in this framework.

4.5. The Model Parameters

The Lagrangian contains the following 15 free parameters: mg, A1, A2, m1, g1, c1, hi,
ho, hs, dg, 0c, €c, hn, hg, and he. For technical reasons, instead of the parameters hy, hg,
and h¢ entering Eq. , it is easier to use the condensates ¢y, ¢g, ¢c. This is obviously
equivalent, because ¢y, ¢g, and ¢¢ form linearly independent combinations of the parame-
ters.

We can obtain the relation between ¢ and its counterpart in the three-flavour case cy, =3
of Ref. [I10] as follows:
The axial-anomaly term as described in the Lagrangian (2.145)) in the case of Ny = 3 can

be written as
Leas = cnp=3(det®y, 5 — detcijf:gf , (4.115)

and in the case of Ny =4
Leas = ¢ (det® — detd’)? (4.116)

The (pseudo)scalar multiplet matrix, ®, in the case of Ny = 4, which includes the 3 x 3
(pseudo)scalar multiplet matrix, PN =3, can be written as

0
o= = 8 (4.117)
0 0 o0 %
By using Eq. to calculate the determinant of ®, we obtain
det® = ¢ det®p,—3, (4.118)
NG f
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The axial-anomaly term in the case of Ny = 3, Eq. (4.115)), can be transformed to the case
of Ny = 4 by using Eq.(4.117)) as follows:

2¢cn,=
Loas = —2=2(det® — detdl)?, (4.119)
oC
Comparing between Eq.(4.116) and Eq.(4.119), we get
2¢N,—3
= <Z>£ (4.120)

Thus, the parameter ¢ can be determined once the condensate ¢¢ is obtained.

In the large-N, limit, one sets hy = A\; = 0. Then, as shown in Ref. [I10] for the case
Ny = 3, ten parameters can be determined by a fit to masses and decay widths of mesons
below 1.5 GeV as shown in Table 1. In the following we use these values for our numerical
calculations. As a consequence, the masses and the decay widths of the nonstrange-strange
mesons are — by construction — identical to the results of Ref. [I10] (see Table 2 and Fig. 1
in that ref.). Note also that, in virtue of Eq. , the parameter combination ¢zcc/2 is
determined by the fit of Ref. [110].

Parameter Value Parameter Value
my 0.413 x 10° MeV* ma —0.918 x 10° MeV?
¢Zc/2 | 450-107° MeV—2 ds 0.151 x 10°MeV?
9 5.84 hy 0
ho 9.88 hs 3.87
N 164.6 MeV bs 126.2 MeV
A 0 A2 68.3

Table 4.1.: Values of the parameters (from Ref. [110])

For the purposes of the present work, we are left with three unknown parameters: ¢¢, ¢,
dc. We determine these by performing a fit to twelve experimental (hidden and open)
charmed meson masses listed by the PDG [51], minimizing

12 2
Mth — ppevP
=D <15M?“’Z ) : (4.121)
A

i

where ¢ is a constant. We do not use the experimental errors for the masses, because we
do not expect to reach the same precision with our effective model, which (besides other
effects) already neglects isospin breaking. In Ref. [I10], we required a minimum error of 5%
for experimental quantities entering our fit, and obtained a reduced x? of about 1.23. Here,
we slightly change our fit strategy: we choose the parameter ¢ such that the reduced x?
takes the value x?/(12 — 3) = 1, which yields ¢ = 0.07. This implies that we enlarge the
experimental errors to 7% of the respective masses.
The parameters (together with their theoretical errors) are:
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Parameter Value
bc 176 4 28 MeV
Sc (3.91 £ 0.36) x 10° MeV?
ec (2.23 £0.71) x 10° MeV
c (2.91 £0.94) x 10°% MeV 12

Table 4.2.: Values of the unknown parameters.

4.6. Results

In this section we present the w; and the wave-function renormalization constants Z; values
which are important parameters for the determination of the masses and the decay widths
of mesons. We present also the masses of light mesons as well as (open and hidden) charmed
mesons.

4.6.1. The w; and the wave-function renormalization constants Z;

All 15 parameter have been determined as shown in the previous section. Then, the param-
eters w; can be determined from Eqs. (3.46 - 3.49) and (4.45 - 4.50) and the wave-function

renormalization constants from Egs. (3.49}[3.52)) as summarized in Table [4.3}

parameter value parameter value
Wal 0.00068384 Wy, 0.00068384
W, 0.0005538 WK1 0.000609921
WE* -0.0000523i Wpg, 0.000203
wp+ = wp=o | -0.0000523i wp; -0.00004231
wp, 0.00020 Wy 0.000138
Zn = Zny 1.70927 Zng 1.53854
A% 1.60406 ZKg 1.00105
Zne 1.11892 Zp 1.15256
Zpg 1.15716 Zpz, 1.00437
Zpy = ZDSO 1.00649 ZDSO 1.00649

Table 4.3.: w; and the wave-function renormalization
constants Z; values.

As seen in Table [4.3] all wave-function renormalization constants have values larger than
one. The parameter wp- is equal to wp+o and the parameter wpx is equal to Wpso for isospin
Symmetry reasons.
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4.6.2. Masses of light mesons

The results for the light meson masses are reported in Table .4l By construction, one finds
the same values as in Refs. [110] 116].

observable | J¥ | theoretical value [MeV] | experimental value [MeV]

My 0~ 141 139.57018 £ 0.00035
my, 0~ 509 047.853 £+ 0.024
o 0~ 962 957.78 £ 0.06
mr 0~ 485 493.677 + 0.016
Mg 0r 1363 1474 £ 19

Mo, | OF 1362 (1200-1500)-i(150-250)
Mgy 0t 1531 1720 £+ 60

mic 0t 1449 1425 £ 50

My 1~ 783 782.65 £ 0.12
Mg 1~ 975 1019.46 £ 0.020
m, 1~ 783 775.5 £ 38.8
Mpc* 1~ 885 891.66 £+ 0.26

mp. | 1T 1186 12818 % 0.6

Ma, 1" 1185 1230 £ 40

mpe | 1T 1372 1426.4 + 0.9
meg, 1+ 1281 1272 £ 7

Table 4.4.: Light meson masses.

Note that the values of the light mesons are the same as in the case of Ny = 3, shown in
Table 3.2, as they are not affected by the charm sector because Ay = h; = 0.
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4.6.3. Masses of charmed mesons

In Table we present the results of our fit for the masses of the open and hidden charmed
mesons, by comparing the theoretically computed with the experimentally measured masses
[see also Ref. [118] for preliminary results|. For the nonstrange-charmed states we use the
masses of the neutral members of the multiplet in the fit, because the corresponding reso-
nances have been clearly identified and the masses have been well determined for all quantum
numbers. In view of the fact that the employed model is built as a low-energy chiral model
and that only three parameters enter the fit, the masses are quite well described. The mis-
match grows for increasing masses because Eq. imposes, by construction, a better
precision for low masses. For comparison, in the right column of Table we also show the

value 0.07M;™ which represents the ‘artificial experimental error’ that we have used in our
fit.

Resonance | Quark content | J¥ | Our Value | Experimental Value | 7% of the exp.
[MeV] [MeV] value [MeV]

DY uc, uc 0~ | 198173 1864.86 +0.13 130
D:ch s¢, ¢ 0~ | 2004 + 74 1968.50 4+ 0.32 138
ne(1S) cc 0~ | 2673 +118 2983.7 + 0.7 209
D8(2400)0 UC, UC 0" | 24144+ 77 2318 £ 29 162
Dgo(2317)i s¢, ¢ 0" | 2467 476 2317.8 +0.6 162
Xco(1P) cc 0" | 3144 £128 3414.75 +0.31 239
D*(2007)" uc, uc 17 | 2168 £ 70 2006.99 + 0.15 140
D S¢, 3¢ 17 | 2203 £69 2112.3+0.5 148
J/P(1S) cC 17 | 2947 + 109 3096.916 +£0.011 217
D1 (2420)0 Uuc, uc 17 | 2429 + 63 2421.44+ 0.6 169
Dg1(2536)* s¢, ¢ 17 | 2480 £ 63 2535.12 +0.13 177
Xe1(1P) cé 1% | 3239 £ 101 3510.66 + 0.07 246

Table 4.5.: Masses of charmed mesons used in the fit.

The following remarks about our results are in order:

(i) Remembering that our model is a low-energy effective approach to the strong interac-
tion, it is quite surprising that the masses of the open charmed states are in good quantitative
agreement (within the theoretical error) with experiment data. In particular, when taking
into account the 7% range (right column of Table 2), almost all the results are within lo
or only slightly above it. Clearly, our results cannot compete with the precision of other
approaches, but show that a connection to low-energy models is possible.

(ii) With the exception of J/1, the masses of the charmonia states are somewhat un-
derestimated as is particularly visible for the resonance 7.(1S5). On the one hand, this is
due to the way the fit has been performed; on the other hand, it points to the fact that
unique values of the parameters ho, dc, and £c are not sufficient for a precise descrip-
tion of both open and hidden charmed states over the whole energy range. One way to
improve the fit of the charmonium masses would be to include non-zero values for Aj, h;.
Another way is explicitly breaking the chiral symmetry as discussed at the end of Sec.
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However, since the description of open charm states is already reasonable, we only need to
consider the charmonium states. For the (pseudo)scalar charmonia, we would thus modify
the second term in Eq. by introducing another projection operator under the trace,
Tr(Pc®'®)? — Tr(Pe®Pe®)2. A similar consideration could be done for the (axial-)vector
charmonia.

(iii) The experimental value for the mass of the charged scalar state Df(2400)*, which is
(2403 +£14435) MeV, is in fair agreement with our theoretical result, although the existence
of this resonance has not yet been unambiguously established.

(iv) The theoretically computed mass of the strange-charmed scalar state DEB—L turns out
to be larger than that of the charmed state D{(2400)". In this respect, the experimental
result is puzzling because the mass of D%,(2317)% is smaller than that of Df(2400)°. A
possibility is that the resonance D¥,(2317) is not a quarkonium, or that the current mass of
the quarkonium field is diminished by quantum fluctuations [see e.g. Ref. [200], 201}, 202].]

(v) The theoretical mass of the axial-vector strange-charmed state Dg; reads 2480 MeV,
which lies in between the two physical states Dg1(2460) and Dg;(2536)*. We shall re-
analyze the scalar and the axial-vector strange-charmed states in light of the results for the
decay widths, see chapter 7.

The theoretical results for the squared charmed vector and axial-vector mass differences,
in which the explicit dependence on the parameters e and d¢ cancels and which were
presented in Egs.(4.8844.90) are

mass difference | theoretical value MeV? | experimental value MeV?
mp, — mip. (1.240.6) x 10° 1.82 x 10°

My, — M7, (1.8£1.3) x 10° 2.73 x 10°

mi, — m?Dg (1.240.6) x 10° 1.97 x 108

Table 4.6.: Mass differences.

Here we compare them also with the experimental results ( the experimental error is omit-
ted because, being of the order of 10> MeV?2, they are very small w.r.t. the theoretical ones).
The agreement is fairly good, which shows that our determination of the charm condensate
¢c is compatible with the experiment, although it still has a large uncertainty. Note that
a similar determination of ¢ via the weak decay constants of charmed mesons determined
via the PCAC relations has been presented in Ref. [203]. Their result is ¢c/¢pn ~ 1.35,
which is compatible to our ratio of about 1.07 + 0.20. Previously, Ref. [204] determined
oc/on =~ 1.08 in the framework of the NJL model, which is in perfect agreement with our
result.

From a theoretical point of view, it is instructive to study the behavior of the condensate
¢c as function of the heavy quark mass m¢. To this end, we recall that the equation
determining ¢¢ is of the third-order type and reads (for A\; = 0)

ho,c = (mg + 2e0) o + Aol - (4.122)

By imposing the scaling behaviors hoc = mcil(),C and e¢c = écm%, the solution for large
values of m¢ reads ¢c ~ hoc/2ec < 1/me, which shows that the mass differences of Egs.
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(4.8814.90) vanish in the heavy-quark limit. However, the fact that the value of the charm
condensate turns out to be quite large implies that the charm quark is not yet that close to
the heavy-quark limit. To show this aspect, we plot in Fig. 4.1 the condensate ¢¢ as function
of m, by keeping all other parameters fixed. Obviously, this is a simplifying assumption,
but the main point of this study is a qualitative demonstration that the chiral condensate
of charm-anticharm quarks is non-negligible.

®c [MeV]
200~

o
150 \

100}

" ¢ [MeV]

5000 10000 15000 20000 25000

Figure 4.1.: Condensate ¢¢ as function of the quark mass m¢. The dot corresponds to the
physical value me = 1.275 GeV [51].

Note that, in contrast to the demands of heavy-quark spin symmetry, our chiral approach
does not necessarily imply an equal mass of the vector and pseudoscalar states and of scalar
and axial-vector states. Namely, for a very large heavy quark mass one has m% ~ gc and
sz* ~ §¢c. Thus, in order to obtain a degeneracy of these mesons, as predicted by heavy-
quark symmetry [50, 168 169, 170, 171} 172], we should additionally impose that ec = d¢.
Numerically, the values have indeed the same order of magnitude, but differ by a factor of
two, see Table 4.2. Nevertheless, the differences of masses mp~ —mp =~ 180 MeV of the spin-
0 and spin-1 negative-parity open charm states turns out to be (at least within theoretical
errors) in quantitative agreement with the experiment. Thus, at least for negative-parity
mesons, our chiral approach seems to correctly predict the amount of breaking of the heavy-
quark spin symmetry. For the mass difference mp, —mp: of spin-0 and spin-1 mesons with
positive parity, our model underpredicts the experimental values by an order of magnitude,
i.e., our approach based on chiral symmetry follows the predictions of heavy-quark symmetry
even more closely than nature!

We conclude our discussion of the charmed meson masses by remarking that chiral symmetry
(and its breaking) may still have a sizable influence in the charm sector. In this context it
is interesting to note that in the theoretical works of Refs. [174] [I75] 176l 177, 178] the
degeneracy of vector and axial-vector charmed states in the heavy-quark limit [see Egs.
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(4.88H4.90])| as well as of scalar and pseudoscalar charmed states was obtained by combining
the heavy-quark and the (linear) chiral symmetries.
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5. Particle decays

5.1. Introduction

The study of decays of resonances plays a central role in understanding hadron phenomenol-
ogy. One can describe the behaviour and the inner structure of subatomic particles in
mathematical expressions of decays based on Feynman diagrams, which are applications of
quantum field theory.

An unstable particle transforms spontaneously into other more stable particles, with less
mass. This can be followed by another transformation, until one arrives at the lightest
particles. These transformations occur according to some conservation rules and are called
decays. There are three types of decays: strong, weak, and electromagnetic. Strong decays
occur when an unstable meson (quark-antiquark state with gluons mediating the interaction)
decay into lighter mesons. Weak decays occur when a quark couples to the massive bosons
W+ and Z° due to weak interactions. A famous electromagnetic decay is that of the neutral
pion into two photons (7° — 2v), but not into objects consisting of charged subcomponents.

In the 1960s, Okubo, Zweig, and lizuka explained independently the reason why certain
decay modes appear less frequently than otherwise might be expected. This is summarized
in their famous rule (OZI rule) [205, 206), 207] which states that decays whose Feynman
diagrams contain disconnected quark lines (which occur by cutting internal gluon lines) are
suppressed.

The probability of a decay’s occurrence can be computed. For a particle with rest mass
M with energy and momentum (FE, ﬁ), the survival probability P(¢) (the probability that
the particle survives for a time ¢ before decaying) [51] is

IP)(t) — e—t/’yﬂ' _ e—]\ltl—‘/E‘ (51)

where 7(= 1/T") is the mean life time and T" is the decay width. After the particle moves a
distance z, the probability is

P(t) = et/ — ¢ MaT/IP, (5.2)

In this chapter, we will study two-body decays of mesons. Also three-body decays of mesons
will be analyzed. Moreover, the decay constant of mesons will be calculated. Therefore, in
the present chapter, we develop formalisms for computing the corresponding decay constants
and for both the two- and three-body decays.
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5.2. Decay constants

In this section we develop the general formula for the decay constant by using the transfor-
mation method. As seen in Sec. 2.5 the matrix ® is a combination of scalar and pseudoscalar
currents:

b=5+iP. (5.3)
The hermitian conjugate is
ol =5 —iP, (5.4)
which transforms as
of - Uzo'U] . (5.5)

The pseudoscalar matrix can be written as

1
P=_—(d—of :
which transforms as
1 t et
P — Qi(UL(I)UR Ur® UL), (5.7)
with
ULGU(Nf)L, URGU(Nf)R. (5.8)

The chiral symmetry group of QCD is
U(Ng)p xU(Nyp)r =U1)y x SU(Ny)y x U(1)a x SU(Ny)a . (5.9)
The U(1)y transformation corresponds to
Uy =Up =Ug = e, (5.10)
while an SU(Ny)y transformation corresponds to
UV:UL:UR:eie“l/ta, (5.11)
and an SU(Ny)4 transformation corresponds to
Uy =Up = U, = et (5.12)

where QX’A are the parameters, and t% are the generators of the group, witha =1, ..., Nf2 -1

For Ny =2, tg = %12 and t; = %TZ’ where 7; are the Pauli matrices. Note that the matrices
of the scalar mesons S and of the pseudoscalar mesons in the model are hermitian.
Therefore they can be decomposed in terms of generators t* of a unitary group U(Ny) with
a=0,.., Nf2 — 1. For small parameters

U=1+if,t% (5.13)
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Under a Uy (Ny) transformation, the pseudoscalar matrix becomes

1
P%%m@m—@@my (5.14)
Using Egs.(5.3)), (5.6), and (5.13]), we obtain the transformation of fields
P — P +62{t,,S}, (5.15)

Introducing the wave-function renormalization of the fields

ZiP — Z; P+ 02{t,, S}, (5.16)
which can be written as g
P%P+%{%}, (5.17)

The weak decay constants take the following form

ﬁ:={m2$}. (5.18)

5.3. Two-body decay

In this section, we investigate various aspects of the decay of a particle into a two-particle
final state [208].

Consider a particle with four-momenta P described by P(M,0), in its rest frame, which
decays into two particles with momenta p; and masses m;, where i = 1,2, with M > mq+mo.
This two-body decay is described by the Feynman diagram in Fig.

pl’ ml

Py, My

Figure 5.1.: Feynman diagram of a two-body decay [51].

The initial state of the decaying particle and the final state can be defined as

lin >=1bl, 0>, (5.19)

|fin >=al, af, | 0> . (5.20)

Assume that the decaying particle and the decay products are confined in a ‘box’ with
length L and volume V = L3. The three-momenta are quantized in the box, as known from
quantum mechanics, as P = 2mnp/L and p12 = 2mny, ,/L. The corresponding energies of
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these particles are described by wp = vVM? + P2 and wp, p, = \/mi 5 + DIy

The corresponding matrix element of the scattering matrix in terms of the initial and final
states is

S —iM
V3/2 | f2wp, 2wp, 2wp
where S refers to a symmetrization factor, §*(P—p;—p2) denotes the delta distribution which
describes the energy-momentum conservation for each vertex, and M is the corresponding
tree-level decay amplitude.

The squared modulus of the scattering matrix (5.21)) gives the probability for the particle
decaying from the initial state |in > state to the final |fin > as:

< fin|SWin >= (2m)4 64 (P = p1 — p2) (5.21)

1| —iMP

2wp, 2wp, 2wp

| < fin|SWlin > |2 = (2m)3 (64 (P — p1 — p2))?. (5.22)

Using the “Fermi trick” [209], the square of the delta distribution can be obtained as follows:
2m)* (04 (P — p1 — p2))? = (2m) (P — p1 — p2) /d4x et (P—p1—p2)
= (27T)454(P —p1 —p2) /d4x

t
= (2n)*6Y(P - py —pg)/ d3x/ dt
1% 0
Vit

= (2m)*6* (P —p1 — p2) (5.23)

where z is the Minkowski space-time vector. Consequently, the probability of the two-body
decay (5.22)) can be written as

_ , 1 — iM|?
| < fin|SWin > |* = 73 W@ﬂ)‘l 54 (P —p1 — p2)V't. (5.24)
p14Wps

The number of final states is obtained as the factor V' (d p)l \%4 épf when the three-momenta

of the outgoing particles lie between (p1, p1 + d>p1) and (pg, p2 + d®ps). Consequently, the
probability for the decay in the momentum range becomes

d*pr v d*ps _ S| —iMJ?
(2m)3  (27)3 2wy, 2wp,2wp

><(27T)4(54(P —p1 —p2) X

| < fin|SWlin > 2V

(5.25)

By integrating over all possible final momenta (p; and ps), we obtain the definition of the
decay rate I' of the two-body decay as

r— S/ d3p1 d3py | —iM|?

(27)3 2wp, 2wp,2wp

(2m)* 64 (P = p1 — p2). (5.26)
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The probability to obtain the two particles as decay products at any instant ¢ is
Py(t) =Tt. (5.27)
Consequently, the probability of the initial particle surviving at the same instant is
Py(t) =1-T¢. (5.28)
which holds only when ¢ << I'"!. The mean-life time is
=171, (5.29)
Now, let us turn to the evaluation of the decay rate of the two-body decay:

| —iM]J?

F=—— [ &pdPpy———" 5P —p; —py). 5.30
2(27r)2/ P2 g, 2wy, 2wp (P=p1=p2) (5:30)

Consider the two outgoing particles to have the same mass (m; = ms) and note that, in the
rest frame of the decaying particle the four momentum is P = (M, 0). Therefore, the delta
function can be obtained as
5P = p1 = p2) = 6% (p1 + p2) 6(M — wp, — wp,)
= 83(p1 + p2)d(M — 2wy, ) . (5.31)

Using the Dirac delta function to solve the integral over d®ps, we obtain
S —iM|?
— /d3p1 ‘ ZM’
2(2m)? (2wp, )2 2M

When we use the generic identity 6(g(z)) = >, 0(x — ;) /]¢'(x;)], where g(x;) = 0, the ¢
distribution can be written as

S(M — 2wy,). (5.32)

4M
M 2uy) = S50l = ) (5.33)

where the energy-momentum conservation gives

M2
Ip1| = - m%Q = ky, for (m1 =ma). (5.34)

Using the spherical coordinates d3p; = p?df2d|p;1| and integrating over d|p;|, the decay

rate (5.32)) becomes

When the decay amplitude does not depend on the angle, we obtain the general formula
[116] 208] of the two-body decay rate as

Sk

_ g PRp 2
FA%BC—[SWMN iM|7, (5.36)
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with the center-of-mass momentum of the two decay particles

1
by = 5o [M (2 — m3)? — 202 (0 + B~y —ma). (537

and the symmetrization factor S equals 1 if the outgoing particles are different, and 2
for two identical outgoing particles (because of the inter change ability of outgoing particles
lines). The isospin factor I considers all subchannels of a particular decay channel. The
decay threshold is encoded by the 6 function.

5.4. Three-body decay

In this section we expand our investigation to various aspects of the decay into a three-body
final state which is more complicated than the two-body decay, as we will see in the following.

Consider a particle A with four-momentum P in its rest frame, with P = (M, 0), decaying
into three particles (By, Bz, Bs) with momenta p; and mass m;, where i = 1,2,3, with
M > mi+mo+mgs. This decay is confined in a “box” that has length L with volume V = L3
The momenta, of the decaying particle and the three outgoing particles are quantized in the
box as P = 27np/L and p123 = 27ny, , 5/ L, respectively. The corresponding energies for
the decaying particle are wp = v/ M?2 + P? whereas those for the produced particles are
Wpyos = ,/m%’m +p%7273. The Feynman diagram that describes the three-body decay is
presented in Fig. 5.2.

N/PP”H
P M K/K\ Po. Mgy
Pg, my

Figure 5.2.: Feynman diagram of the three body decay [51].

The initial and final states read

lin >=bl, 0>, (5.38)

|fin >=al, af al | 0>, (5.39)

and the corresponding element of the scattering matrix is

1 1
V32 20wy, 2wy, 2wp, 2wp
x 04(P — p1 — p2 — p3)(—iMaB, ByBs) » (5.40)

< fin|SWlin >= (2m)*

where —i M is the invariant amplitude of the vertex function that enters into the Feynman
rule for the vertex A — B1B3Bs. The probability for the process A — B1B3B3 can be

computed by squaring the amplitude (5.40)
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1 1
< fin]SWlin > > =— 278
| < finlS™ | V3 \/2wp12wp22wp32wp( )
X ((54(P — Pp1 — P2 —p3))2’ — iMA_>313233 2 . (5.41)

Due to the Fermi Trick [209], we simplify the delta squared as
(27)83(64(P — p1 — po — p3))% = (2m)16H(P — p1 — pa — p3) /d4x oi@(P—p1—p2—p3)
— 0! (P p ) [ dlo
= e p) [ e [
= (2m)*6"(P — p1 — p2 — p3)V't, (5.42)

where = (¢, 21, x2, x3). The probability for the decay A — BBy Bs when the three particles
By, Bz, and B have momenta between (py, p; +d°p1), (P, P2 +d>p2) and (ps, ps +d>p3),
respectively, is given by

Bp1  dPpy , dPps

. (1)1 2
| < fin|SW|in > |*V amE " @Y @

(5.43)

where Vd®p;/(2m)? describes the number of states with four momenta between (py, p; +
1> P1

d®p1). Using Eqgs. (5.41) and (5.42)), the probability of the three-body decay Eq.(5.43)

becomes

d3 d3 d?
< Sl = Y (2m)3 v (2m)? ~ (2m)?
1
- % (2m)404(P — py — py —
2wp1 2wp2 2wp3 2wP ( ) ( p1 P2 p3)

y d3p1 dPpy d’ps
(2m)3 (2m)3 (2m)3

- Z.MA%BlB233’2tv (5.44)

which does not depend on the normalization volume V. By integrating over all possible final
momenta, we can obtain the decay rate I' as:

r— / d’p1 d®pa dpy | —iMasp B, Bs|?
(2m)3 (2m)3 (27)3 2wy, 2wp, 2wy, 2wp

(2m)*6*(P — p1 — p2 — p3), (5.45)

which can be written as

I = d®py dPpy &° 122250 §4(P — p1 — p2 — p3) . 5.46
(275 / bira"paap3 2, 20ty 2y 260 ( P1— P2 —P3) ( )

In the rest frame of the decaying particle with P = (M, 0) we have

54(P —pL—Dp2—p3) = 53(p1 +p2+p3)0(M — wp, — wp, — Wpy) - (5.47)
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Substituting Eq.(5.47)) into Eq.(5.46)), we obtain

1 | — iMa—B, BBy (P15 D2, P3)|?
T = d3 d3 d3 1253 ’ )
16(27)° / prap2@ps Wi, Wy Wy M
X 53(171 + p2 +p3)(5(M — Wp; — Wpy — wps) ) (5'48)

solving the integral over d®ps (by use of the Dirac delta function), we get

r— /d3p1 By | —iMa—B,B,B;s(P1, D2, —(P1 Jr1172)|2 5
16(2m)® Wy WpyWps M

(M — wp, — wp, _wp3)7

(5.49)
where wy, = (p3 + m233)1/2 and now ps3 is a notation for —(p; + p2). The matrix element
depends on the angle  between p; and po, and so Eq. (5.49)) becomes

1 p1 dp1- padp2 , )
r= dcosf | — iM g, —
821 )? / wplwpgwngpl p2dcost| —iMap BBy {P1, P2, —(P1 + P2)}
X O(M — wp, — wp, — wpy) (5.50)
but
wl =pt+mb = 2wy dwy = 2p1dpy,
. wp, dwp, = p1dp1 . (5.51)
Similarly,
Wpy dup, = p2dpz (5.52)

wﬁs =i +p)+ m233 = p? + p3 + 2p1pa cos b + m2337

At p; and po fixed, we have
2wy, dwp, = 2p1 padcos, (5.53)

Substituting Eqs.(5.51| - [5.53)) into Eq.(5.50]), we obtain

1 dwy, dwy, dw )
I'= 8(2)3 / = ]\;2 B - ZMA—)BlBQB:i’Q 6(M — wp, — Wy, — Wpy) (5.54)

Using the Dirac delta to eliminate wy,

1 1 .
I = WSiM / ’ - ZMA—)BlBQB:a’Q dwpl dwp? )

27
1 1 ; 2 2 2
= WW | - ZMA—>313233| dm12 dm23 y (555)

which is the standard form for the Dalitz plot [51].
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Figure 5.3.: Dalitz plot for a three-body final state [51].

The limits of integration can be determined from the Dalitz plot [51], which leads to the
following formula for the decay rate of A into By, By, Bs

| - /L.MA‘)BIBQBS |2 dmgS dm%2 . (556)

M_ 2 2 max
SA—}BlBQBg ( mg) (m23)
FA*)Bl BQ Bg -
(

32(27)3M3 J 1y 42

m%g)min

Integrating over m3;, we obtain

SA—>B1B2B3 (]\/[—m3)2 . 2 2 2 2
LA—B BBs = 32213 M iy 2 | — iMa— BBy Bs | [(M323)max — (Ma3)min] dMmTs .
(5.57)

The range of mgg is determined by the value of m%z when po is parallel or antiparallel to ps3
as follows [51]

2
(m33)min = (B3 + B3)* — (V B —m} + By - m%) : (5.58)

2
(m33)max = (B3 + E3)? — (V By —m} — By - m%) : (5.59)
where 5 and E73 are the energies of particles By and Bs, respectively, in the ma rest frame,

2 2,2
E;:m12_m1+m2

2m12

M?2 —m2, —m?2
Ef = 12 3 5.60
3 St (5.60)

Finally, the explicit expression for the three-body decay rate for the process A — B1BoBj3
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1s:

S (M —m3)?
FA%BlBng = DA B Ba By | - iMA%BleBs|2
32(2#)3M3 (

mi+mg)?

2

» \/(_ml +mi2 — mz)(m1 +mi2 — mz)(—m1 + mi2 + ma)(my + miz + ma)
mis

\/(—M +miz2 — m3)(M + miz — m3)(—=M + miz +m3)(M +miz +m3) , 4
X o) dmyy ,
mip
(5.61)

where M a_,B,B,B; is the corresponding tree-level decay amplitude, and Sa—p, B,B; IS a
symmetrization factor (it is equal to 1 if By, Bs, and Bs are all different, and equal to 2 for
two identical particles in the final state, and equal to 6 for three identical particles in the
final state).
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6. Decay of the pseudoscalar glueball into
scalar and pseudoscalar mesons

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not
‘Bureka’ (I found it), but ‘that’s funny’...”

Isaac Asimov

6.1. Introduction

The fundamental symmetry underlying Quantum Chromodynamics (QCD), the theory of
strong interactions, is the exact local SU(3). colour symmetry. As a consequence of the non-
Abelian nature of this symmetry the gauge fields of QCD (the gluons) are coloured objects
and therefore interact strongly with each other. Because of confinement, one expects that
gluons can also form colourless, or ‘white’, states which are called glueballs.

In this chapter we study the decay properties of a pseudoscalar glueball state whose mass
lies, in agreement with lattice QCD, between 2 and 3 GeV. Following Ref. [111), 113, 210, 21T]
we write down an effective chiral Lagrangian which couples the pseudoscalar glueball field
(denoted as G) to scalar and pseudoscalar mesons. We can thus evaluate the widths for the
decays G — PPP and G — PS, where P and S stand for pseudoscalar and scalar quark-
antiquark states. The pseudoscalar state P refers to the well-known light pseudoscalars
{m,K,n,n'}, while the scalar state S refers to the quark-antiquark nonet of scalars above
1 GeV: {ap(1450), K;(1430), fo(1370), fo(1710)}. The reason for the latter assignment is a
growing consensus that the chiral partners of the pseudoscalar states should not be identified
with the resonances below 1 GeV, see Refs. |78, [108], 1T0] for results within the extended
linear sigma model, see also other theoretical works in Refs. [72] [73] [74, [75], [76], [77, 131, 212,
213, 214 215], 216l 217] (and refs. therein).

The chiral Lagrangian that we construct contains one unknown coupling constant which
cannot be determined without experimental data. However, the branching ratios can be
unambiguously calculated and may represent a useful guideline for an experimental search
of the pseudoscalar glueball in the energy region between 2 to 3 GeV. In this respect, the
planned PANDA experiment at the FAIR facility [218] will prove fruitful, since it will be
capable of scanning the mass region above 2.5 GeV. The experiment is based on proton-
antiproton scattering, thus the pseudoscalar glueball G can be directly produced as an
intermediate state. We shall therefore present our results for the branching ratios for a
putative pseudoscalar glueball with a mass of 2.6 GeV.

In addition to the vacuum properties of a pseudoscalar glueball, we describe (to our know-
ledge [124), 125], 126}, [127] for the first time) the interaction of G with baryons: we introduce
the chiral effective Lagrangian which couples G to the nucleon field and its chiral partner.
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This Lagrangian describes also the proton-antiproton conversion process pp — G, which
allow us to study the decay of a pseudoscalar glueball into two nucleons.

Additionally, it is possible that the pseudoscalar glueball G has a mass that is slightly
lower than the lattice-QCD prediction and that it has been already observed in the BESIII
experiment where pseudoscalar resonances have been investigated in J/1 decays [219] 220,
221). In particular, the resonance X (2370) which has been clearly observed in the 77—/
channel represents a good candidate, because it is quite narrow (~ 80 MeV) and its mass
lies just below the lattice-QCD prediction. For this reason we repeat our calculation for
a pseudoscalar glueball mass of 2.37 GeV, and thus make predictions for the resonance
X (2370), which can be tested in the near future.

6.2. The effective Lagrangian with a pseudoscalar glueball

In this section we consider an Ny = 3 chiral Lagrangian which describes the interaction
between the pseudoscalar glueball and (pseudo)scalar mesons. We calculate the decay widths
of the pseudoscalar glueball, where we fixed its mass to 2.6 GeV, as predicted by lattice-QCD
simulations, and take a closer look at the scalar-isoscalar decay channel. We present our
results as branching ratios which are relevant for the future PANDA experiment at the FAIR
facility.

We introduce a chiral Lagrangian which couples the pseudoscalar glueball G = lgg) with
quantum numbers J¢ = 0=+ to scalar and pseudoscalar mesons as in Refs. [111], 124 125
126, 127, 211]

cint = icael (detfb - detcbf> : (6.1)

—mesons

where ¢, is a (unknown) dimensionless coupling constant.
O = (54 P)t" (6.2)

represents the multiplet of scalar and pseudoscalar quark-antiquark states, and t® are the
generators of the group U(Ny). In the present case Ny = 3 the explicit representation of
the scalar and pseudoscalar mesons reads [110] [116]:

X (UN+‘18)\J;%(77N+7TO) a0+ 4+t Kf]hL +iKT
0y, 0
K}~ +iK~ K0+ iK° o5 +ing

Let us consider the symmetry properties [9, 10] of the effective Lagrangian (6.1)). The pseu-
doscalar glueball G consists of gluons and is therefore a chirally invariant object. Under
U(3)r x U(3)g chiral transformations the multiplet ® transforms as ® — UL<I>U1T% where

Urr) = e L™ is an element of the group of U(3)g(r) matrices. Performing these trans-
formations on the determinant of ® it is easy to prove that this object is invariant under
SU(3)r x SU(3)g, but not under the axial U(1)4 transformation,

det® — det(Ua®U4) = e P4V2N7 detd # detd .

This is in agreement with the so-called axial anomaly. Consequently the effective La-
grangian (6.1)) possesses only an SU(3), x SU(3)g symmetry. Further essential symmetries
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of the strong interaction are the parity P and charge conjugation C. The pseudoscalar
glueball and the multiplet ® transform under parity as

G(t, 7) - —G(t,—7),

O(t,7) — O (t, 1) .

Performing the discrete transformations P and C' on the effective Lagrangian leave it
unchanged. In conclusion, one can say that the symmetries of the effective Lagrangian (6.1])
are in agreement with the symmetries of the QCD Lagrangian. The rest of the mesonic
Lagrangian which describes the interactions of ® and also includes (axial-)vector degrees of
freedom is presented in Sec. [3.3

6.2.1. Implications of the interaction Lagrangian

We have to consider that when m% < 0 spontaneous chiral symmetry breaking occurs and
the scalar-isoscalar fields condense. When this breaking takes place, we need to shift the
scalar-isoscalar fields by their vacuum expectation values ¢y and ¢g,

oN = oN + ON, (6.4)

and

o5 — 05+ ¢g . (65)

In addition, when (axial-)vector mesons are present in the Lagrangian, one also has to ‘shift’
the (axial-)vector fields and to define the wave-function renormalization constants of the
(pseudo)scalar fields:

T — L7,

K'— ZxK*,

nj = Zn;Nj

Ki' = Zi: Kj' (6.6)

where ¢ = 1,2, 3,4 runs over the four kaonic fields and j = N, S. Once the field transforma-
tions in Eqs. (6.5) and have been performed, the Lagrangian (6.1)) contains the relevant
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tree-level vertices for the decay processes of G, and takes the form [124]:

i Cap A «0770 7 %0 1—
= Q%G(\/ing Zgag K"K + V22 Zgs ag K'Ky — 27 Zicad KK

— 27 Zral Ky~ K° — 220 Zxag Ko K+ — V225 Zicad Ky K+
-0 —0 _
— V225 2, KK ny + V225  Zy KK gnn + 2Zy5a5 agns
~N2Z} 2 KKty — V223 2, KK 10 + V223 Z. K K
_ 2 2
+ V225 2. K™K + Zysad ns + Z7 Zngnikns — Zng Zans m°

+ 22} 2. K K1~ + 22} Z KO K~ — 223 Z. K"K+

— 22y ZPnsm Tt — 221 Zag KK + V22 Zyy KoK TN

~ V223 Z KT KT — 223 Z KK T+ 22,0070
+2Zrafn’os — V2 2k Zia KgTK ™ + V22, Zg: KK o

V22 Zgs KK on + V225 Z KR $ — 2Zyyindn s

+ V225 Zk KR o + V225 Zics KKy dn — Zygnisdh

+V2Zg Zxs KOK o o + V2 Zxs Z Ky K oy

- Zns775(712\7 — 2Z,snsONON + \@ZKS ZKKS_K+O'N

+ 2Z7raa'7r_¢g + ZZWaa’W_aS + 2Z7raa7r+q§5 + 2Z7raa7r+05

— 22y NINONOS — 22y yINONGS — 22y INONTS) - (6.7)

which is used to determine the coupling of the field G to the scalar and pseudoscalar
mesons.

6.3. Field assignments

The assignment of the quark-antiquark fields in Eq. or is as follows:

(i) In the pseudoscalar sector the fields 7 and K represent the pions and the kaons, respec-
tively [23]. The bare fields ny = }ﬂu—l—czd> /v/2 and ng = |5s) are the non-strange and
strange contributions of the physical states n and 7’ [23]:

1 = 1N COS @ + ngsin g,
n' = —ny sin + ng cos @, (6.8)

where ¢ ~ —44.6° is the mixing angle [110]. Using other values for the mixing angle, e.g.
© = —36° [I59] or ¢ = —41.4°, as determined by the KLOE Collaboration [92], affects the
presented results only marginally. In the effective Lagrangian there exists a mixing
between the bare pseudoscalar glueball G and both bare fields ny and ng, but due to
the large mass difference between the pseudoscalar glueball and the pseudoscalar quark-
antiquark fields, it turns out that this mixing is very small and is therefore negligible.

(ii) In the scalar sector the field dp corresponds to the physical isotriplet state ag(1450)
and the scalar kaon field K to the physical isodoublet state Kj(1430) [23]. The field
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on = (tu+dd)/+/2 is the bare nonstrange isoscalar field and it corresponds to the resonance
fo(1370) [110, 80]. The field og = Ss is the bare strange isoscalar field and the debate about
its agssignment to a physical state is still ongoing; in a first approximation it can be assigned
to the resonance fy(1710) [110] or fp(1500) [80]. (Scalars below 1 GeV are predominantly
tetraquarks or mesonic molecular states, as seen in Refs. [212] 213| 214, 222] 216], 223] 224]
220, 226], 227, 228], which are not considered here). In order to properly take into account
mixing effects in the scalar-isoscalar sector, we have also used the results of Refs. [79, [80].
The mixing takes the form:

fo(1370) on =nn = (tu + dd)/V2
fo(1500) =B- G =ygg , (6.9)
f0(1710) og = 8§

where G = gg is a scalar glueball field which is absent in this study and B is an orthogonal
(3 x 3) matrix which has three solutions. The solution 1 and 2 from Ref. [79] is:

0.86 045 0.24
—045 0.89 —0.06 |, (6.10)
—0.24 —0.06 0.97

By

081 054 0.19
By=| —049 049 072 |, (6.11)
0.30 —0.68 0.67

and the solution 3 from Ref. [80)]:

0.78 —0.36 0.51
By=| —054 003 084 |. (6.12)
0.32 093 0.18

In the solution 1 of Ref. [79] the resonance fp(1370) is predominantly an nn state, the
resonance fo(1500) is predominantly a glueball, and fp(1710) is predominantly a strange ss
state. In the solution 2 of Ref. [79] and in the solution of Ref. [80] the resonance f,(1370)
is still predominantly a nonstrange nn state, but fy(1710) is now predominantly a glueball,
and fp(1500) predominantly a strange ss state.

Note that the experimental values of the fields are used, which are summarized with the
numerical values of the renormalization constants Z; [110], the vacuum expectation values

of oy and og which are ¢n (3.34) and ¢g (3.35), respectively, and the decay constants of
pion (fr ) and kaon (fx) [51] in the following Table
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Observable Experiment([51])[MeV] constants | Value
My 137.3£6.9 /. 1.709
mK 495.6 +24.8 Zi 1.604
My 9479 £ 274 ZKg 1.001
My 957.8 +£47.9 Znn 1.709
Mag 1474 £ 74 Zns 1.539
MK, 893.8 +44.7 ON 158 MeV

my, asmo) | (1200 — 1500) — i(150 — 250) | ¢s 138 MeV
M (1500) 1505 = 6 [ 92.2 MoV
my, (1710) 172278 fx 110 MeV

Table 6.1.: Masses and wave-function renormalization constants.

6.4. Decay widths of a pseudoscalar glueball into
(pseudo)scalar mesons

The chiral Lagrangian (6.7) describes the two- and three-body decays of a pseudoscalar
glueball, G, into scalar and pseudoscalar mesons. All the decay rates depend on the un-
known coupling constant czg. The decay widths for the two- and three-body decays of a

pseudoscalar glueball are listed in the following:

Firstly, let us list the two-body decay widths for a pseudoscalar glueball, G. Performing
the two-body decay-width calculation Eq.(5.36)), the decay widths for every channel can be

obtain as follows:
Vaskxy =Vaor-rrt T F@_@%{go + Fé_ﬂ(ofgo Tl gk

2 42 .2
ZK¢NC(;¢ 4 2 2 12 2 2 2 11/2
- g [mg + (mi —mi)” = 2(mi + mic:) mg |

)

167Tmé
I‘G~’—>a07r = FG~—>(18 70 + Fé—mo T + Fé’—mg wt+
373 ¢ %
_ Go 14 2 212 2 2y, 2 11/2
— 327rm3(~; [mé+(ma0 —m3) —2(ma0+mﬁ)mG~] ,
Z2_ 3% c sin?
_ s "N "Ge 4 2 2 \2 2 2 2 11/2
Fé’—>n0N - 327rm3~ [mé’ + (mn - mO'N) - 2<m17 + maN> mé] )
G
Z2 $3; ¢, cos? o
_ s TN "Ge 4 2 2 32 2 2 2 11/2
FG‘WIUN = 597 [mé + (mn/ —mg )" — 2(mn/ —|—mUN)mé]
G
Z2 3 L cos?p
_ v TN "Gy 4 2 2 \2 2 2 2 11/2
PG’—M]US - 32t mi [mé + (mn - mo’s) - 2(m77 + mas) mé] ’

G

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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Z2 9% % sin? o
v PN €6 /2.
= 327”7‘% [mé + (m?l, —m2_)? — 2(m3,, + m?,s) m% | / (6.18)

G—n'og

Qe

Secondly, let us turn to the three-body decay widths for a pseudoscalar glueball, G. We
use the three-body decay-width expression Eq. -, which reads in the present case for the
decay of G into three pseudoscalar mesons Pp, Py, and Ps,

)2
r _ Seamppy [T

é—)Plp2P3 - 32(27T)3m3

. 2 2
5 J(m1+ma2)? - ZMG%P1P2P3| dle
a 1+m2

y \/(—m1 + mig — ma)(my + miz — ma)(—m1 + Mi21m, ) (M1 + mia + ma)
2

5 , (6.19)

o \/(—mé + mig — TI”L;J,)(TTLG~ + mig — mg)(—mé + mig + mg)(mé + mig + mg)
mia

The quantities my, mg, ms are the masses of Py, P, and P, Mé—>P1152I53 is the tree-level
decay amplitude, and Sga_, P, P, P, 18 @ symmetrization factor (it is equal to 1 if Py, P, and
Pj3 are all different, equal to 2 for two identical particles in the final state, and equal to 6
for three identical particles in the final state). The decay channels can be obtained as follows:

(1) The full decay width into the channel K Kn results from the sum

FG’—)KK’U = FG’—)KOI_(OU + FG—LK*K+77 = 2FG_>K*K+77 ) (620)

with the modulus squared decay amplitude
. 2 1 2 2
| —iMa gkl = 1 CGaZic Ly c0s” ¢,
where m; = mg = mg and m3 = m,,.
(2) The full decay width into the channel K K7’ results from the sum

Vaskky =Taoxoroy T ask-kn = 2Las -k (6.21)

with the modulus squared decay amplitude

1
. 2 2 72 2 2
| = iMe gk |” = 5 CGe Lk Zyy SN P,

where m1 = mg = mg, and m3z = m,,.
(3) The decay width into the channel nmn has as modulus squared decay amplitude

1
A 2_ 212 g4 g2 A2
| = iMe ] 3 CrpZny Zns COS™ p sin” ¢,
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where m1 = mg = m3 = m,, and the symmetrization factor Sé—mnn = 6.

(4) The decay width into the channel nnn’ has as modulus squared decay amplitude

. 1 : .
| — ZM@_WW,\Q 3 éQZgNng (cos® p — 2 cos psin? p)?,

where my = mg = my, m3 = m,y and the symmetrization factor Séﬁmm’ =2

(5) The decay width into the channel nn'n’ has as modulus squared decay amplitude

, 1 L .
| — Z'Mé—mn’n"Q gcéq)ZgNng (sin® ¢ — 2 cos® psin p)?,

where my = my, ma = m3 = m,y and the symmetrization factor Séﬁnn’n’ =2

(6) The full decay width into the channel nz7 is computed from the sum

T 3 (6.22)

G—nr—nt 9" G—nm nt

T =

G—nrr

:F~

G—nm0

with the modulus squared decay amplitude

1
2 2 gAg? G2
| =Mt | = A CapZnZngsin” ¢,

where m1 = m,, and mg = m3 = m,.

(7) The full decay width into the channel w7 is computed from the sum
3

Fé%n/ﬂwr = Fé%n/ﬂ'oﬂo + FG~>17 Ir=mt T §FC~¥~>17’7T_7T+ ) (623)
with the modulus squared decay amplitude
. 1
| — z./\/l@_mrﬁ\Q 3 éq)Zf{.ng cos® p,
where my = m,y and ma = m3 = my.
(8) In the case G — K~ K70 one has:
M Y Y
| MG K- K+7r0’ 4 G<I> K%
where m; = mo = mg and m3 = m o. Then:
Tey g gno = 0.00041 % [GeV] . (6.24)

The full decay width into the channel K K7 results from the sum

Poswkr =Lask-—k+m0 T e kogom + Ve gopern- T e gor—rnt

=60, o im0 - (6.25)
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There exists an interesting and subtle issue: a decay channel which involves some scalar
states which decay further into two pseudoscalar ones. For instance, K5 = K5(1430) decays
into K. There are then two possible decay amplitudes for the process G — KKm: one
is the direct decay mechanism reported in Table 6.2, and the other is the decay chain
G- K K; — KKn. The immediate question is, if interference effects emerge which spoil
the results presented in Table and Namely, simply performing the sum of the
direct three-body decay (Table and the corresponding two-body decay (Table is
not correct.

We now describe this point in more detail using the neutral channel G — KYKOr as an
illustrative case. To this end, we describe the coupling Kj to K7 via the Lagrangian

Lrsrn= gKSI_(Oﬂ'O + \@gKSKVT"' + h.c. . (6.26)

The coupling constant g = 2.73 GeV is obtained by using the experimental value for the
total decay width T'xz = 270 MeV [23]. The full amplitude for the process G — KK "
will result from the sum

full direct viaKg viaK§

MG%KOKOWO MG%KOKOWO + MG’—>K0K*0—>K0K0W0 + MG‘—>KORSO—>K0R0W0 ) (6.27)

Thus for the decay width we obtain
full direct viaKg
FG—>K0K07r0 - FG—)KOKOWO + G—>K0K*0—>K0K0n0+
v1aLK0 mix
Fé—)KOKSO—)KOKOTrO L kogoq0 (6.28)
where I"2iX is the sum of all interference terms. We can then investigate the magni-

G— KOKO 0
tude of the mixing term I'nix, and thus the error incurred when it is neglected. The explicit

calculation for the K9K%70 case gives a relative error of

mix
TEY ko gogo ) L T3%(9>0)
Tdirect + F"jaKf)k ~ v~iaK6‘ - ~ 22 % (g < O)
G—KOKOx0 G—KOK}O—KOKOr0 G—KORKO—KOKO70

(6.29)

Present results from the model in Ref. [110] show that g < 0: the estimates presented in Ref.
[124] may be regarded as upper limits. We thus conclude that the total error for the channel
G — K°KO7Y is not large and can be neglected at this stage. However, in any future, more
detailed and precise theoretical calculation, these interference effects should also be taken
into account.
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6.4.1. Results

The branching ratios of G for the decays into three pseudoscalar mesons are reported in Table
for both choices of the pseudoscalar masses, 2.6 and 2.37 GeV (relevant for PANDA and
BESIII experiments, respectively). The branching ratios are presented relative to the total

decay width of the pseudoscalar glueball FtG?t.

Quantity Case (i): mpz = 2.6 GeV | Case (ii): mg = 2.37 GeV

o rrn/ T2 0.049 0.043

e iereq /TS 0.019 0.011

T/ T2 0.016 0.013
Péﬁnnn’/rgt 0.0017 0.00082
[Py 0.00013 0

o rernl LY 0.47 0.47

o ymn/ TS 0.16 0.17

T mn/ T 0.095 0.090

Table 6.2.:

Next we turn to the decay process G — PS. The results, for both choices of me, are
reported in Table for the cases in which the bare resonance og is assigned to fo(1710) or

Branching ratios for the decay of the pseudoscalar glueball G into three pseu-
doscalar mesons.

to f0(1500)

Quantity Case (i): mg = 2.6 GeV | Case (ii): mg = 2.37 GeV
o s/ L2 0.060 0.070
Torun/ T2 0.083 0.10
oo/ T 0.0000026 0.0000030
Toryon /TS 0.039 0.026
T/ TS 0.012 (0.015) 0.0094 (0.017)
Toya/ L2 0 (0.0082) 0 (0)

Table 6.3.:

Note that the results are presented as branching ratios because of the as of yet unde-
termined coupling constant czg. Concerning the decays involving scalar-isoscalar mesons,
one should go beyond the results of Table by including the full mixing pattern above
1 GeV, in which the resonances fo(1370), fo(1500), and fy(1710) are mixed states of the

Branching ratios for the decay of the pseudoscalar glueball G into a scalar and
a pseudoscalar meson. In the last two rows og is assigned to fo(1710) or to

fo(1500) (values in parentheses).
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bare quark-antiquark contributions oy = ’ﬂu+c?d> /2, 0 = 5s), and a bare scalar
glueball field G. This mixing is described by an orthogonal (3 x 3) matrix, see Eq.
72, 73], [74], (75, [76], (77, (78, [79), 80}, 81], 82]. In view of the fact that a complete evaluation of
this mixing in the framework of our chiral approach has not yet been done, we use the two
solutions for the mixing matrix of Ref. [79] and the solution of Ref. [80] in order to evaluate
the decays of the pseudoscalar glueball into the three scalar-isoscalar resonances fy(1370),
f0(1500), and fo(1710). In all three solutions fp(1370) is predominantly described by the
bare configuration oy = ‘ﬂu + Jd> /v/2, but the assignments for the other resonances vary:
in the first solution of Ref. [T9] the resonance fp(1500) is predominantly gluonic, while in the
second solution of Ref. [79] and the solution of Ref. [80] the resonance fy(1710) has the largest
gluonic content. The results for the decay of the pseudoscalar glueball into scalar-isoscalar
resonances are reported in Table

Quantity Sol. 1 of Ref. [T9] | Sol. 2 of Ref. [T9] | Sol. of Ref. [80]
Fé’ﬁnfo(1370)/rgt 0.00093 (0.0011) 0.00058 (0.00068) | 0.0044 (0.0052)
T onp(1s00)/L2 | 0000046 (0.000051) | 0.0082 (0.0090) | 0.011 (0.012)

T poirioy/ T2 | 0.011 (0.0089) 0.0053 (0.0042) | 0.00037 (0.00029)
Ty po1370)/ T2 | 0.038 (0.026) 0.033 (0.022) 0.043 (0.029)
Tey o1500)/L2 | 0.0062 (0) 0.00020 (0) 0.00013 (0)
Loy poamioy/TE | 0(0) 0 (0) 0 (0)

Table 6.4.: Branching ratios for the decays of the pseudoscalar glueball G into n and 7, re-
spectively, and one of the scalar-isoscalar states: fo(1370), fo(1500), and fo(1710)
by using three different mixing scenarios of these scalar-isoscalar states reported
in Refs [79, 80]. The mass of the pseudoscalar glueball is ms = 2.6 GeV and
mg = 2.37 GeV (values in parentheses), respectively.

In Fig. We show the behavior of the total decay width th =Tea ppp t Tapg s
function of the coupling constant czq4 for both choices of the pseudoscalar glueball mass.
(We assume here that other decay channels, such as decays into vector mesons or baryons
are negligible.) In the case of m s = 2.6 GeV, one expects from large- N, considerations that
the total decay width Fg’t < 100 MeV. In fact, as discussed in the Introduction, the scalar
glueball candidate f,(1500) is roughly 100 MeV broad and the tensor candidate f;(2220) is
even narrower. In the present work, the condition FtG?t < 100 MeV implies that czg S 5.

Moreover, in the case of mg = 2.37 GeV for which the identification G = X (2370) has been
made, we can indeed use the experimental knowledge of the full decay width [T x(2370) =
83 4 17 MeV [219, 220, 221]] to determine the coupling constant to be czq = 4.48 £ 0.46.
(However, we also refer to the recent work of Ref. [229], where the possibility of a broad
pseudoscalar glueball is discussed.)

Some comments are in order:

(i) The results depend only slightly on the glueball mass. Thus, the two columns of Table
and are similar. It turns out that the channel K K7 is the dominant one (almost
50%), and also that the nmm and n'7m7 channels are sizable. On the other hand, the two-body
decays are subdominant and reach only 20% of the full mesonic decay width.
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Figure 6.1.: Solid (blue) line: Total decay width of the pseudoscalar glueball with the bare mass
Mg#= 2.6 GeV as function of the coupling c¢zg. Dashed (red) line: Same curve for
Mg#= 2.37 GeV.

(ii) The decay of the pseudoscalar glueball into three pions vanishes:

T ~0. (6.30)

G—rrm

This result represents a further testable prediction of our approach.

(iii) The decays of the pseudoscalar glueball into a scalar-isoscalar meson amount only
to 5% of the total decay width. Moreover, the mixing pattern in the scalar-isoscalar sector
has a negligible influence on the total decay width of G. Nevertheless, in the future it may
represent an interesting and additional test for scalar-isoscalar states.

(iv) Once the shifts of the scalar fields have been performed, there are also bilinear mixing
terms of the form Gy and Gng which lead to a non-diagonal mass matrix. In principle, one
should take these terms into account (in addition to the already-mentioned nyng mixing)
and solve a three-state mixing problem in order to determine the masses of the pseudoscalar
particles. This will also affect the calculation of the decay widths. However, due to the
large mass difference of the bare glueball fields G in contrast to the other quark-antiquark
pseudoscalar fields, the mixing of G turns out to be very small in the present work, and
can be safely neglected. For instance, it turns out that the mass of the mixed state which
is predominantly glueball is (at most) just 0.002 GeV larger than the bare mass ms = 2.6
GeV.

(v) If a standard linear sigma model without (axial-)vector mesons is studied, the re-
placements Z, = Zx = Z,, = Z,s = 1 need to be performed. Most of the results of the
branching ratios for the three-body decay are qualitatively (but not quantitatively) similar
to the values of Table (variations of about 25-30%). However, the branching ratios for
the two-body decay change sizably w.r.t. the results of Table This fact shows once more
that the inclusion of (axial-)vector degrees of freedom has sizable effects also concerning the
decays of the pseudoscalar glueball.

(vi) In principle, the three-body final states for the decays shown in Table can also
be reached through a sequential decay from the two-body final states shown in Table [6.3
where the scalar particle S further decays into PP, for instance, K;(1430) — Kn. There
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are then two possible decay amplitudes: One from the direct three-body decay, and one from
the sequential decay, which have to be added coherently before taking the modulus square
to obtain the total three-body decay width. Summing the results shown in Table and
6.3| gives a first estimate (which neglects interference terms) for the magnitude of the total
three-body decay width. We have verified that the correction from the interference term
to this total three-body decay width in a given channel is at most of the order of 10% for
mg = 2.6 GeV and 15% for mg = 2.37 GeV. For a full understanding of the contribution of
the various decay amplitudes to the final three-body state, one needs to perform a detailed
study of the Dalitz plot for the three-body decay.

6.5. Interaction of a pseudoscalar glueball with nucleons

In this section we compute the decay width of the pseudoscalar glueball into a nucleon and
an antinucleon and we present the result as a branching ratio to remove the effects of the
undetermined coupling constant.

A U(2)r x U(2); Lagrangian of the interaction of a pseudoscalar glueball G with the
baryon fields Wy and Wy [126, 230)] is

G(Uy Uy — Uy Uy). (6.31)

int i

G—baryons el
This interaction Lagrangian (6.31]) describes the fusion of a proton and an antiproton, which
is hermitian and invariant under SU(2)g x SU(2)r, parity (G — —G), and charge con-
jugation as proved in Ref. [230]. Now let us write the interaction Lagrangian with the
physical fields N and N* which refer to the nucleon and its partner [230] , respectively. By

substituting Eqgs. (3.1543.18)) into Eq.(6.31]), we obtain

nt _ Cé‘lj -~ AT Sk Fy AT ATk —O —% «
Eé—nucleons - 2 cosh & G( - ZN75N —iN Ne® —iNN7e ® —iN 75N

— iNvsN +iNN*e’ +iN"Ne™ —iN y5N*)
C~ ~ I -
GY_ Gi(— 2Ny N +iNN* [ — ™|

- 2cosh d
N[ ] o
—1Cay, ~ [— —~ 5V N
- ff f{ G (stN +sinh6N"N — sinh SNN* + N 5N ) : (6.32)
COS

We consider first the pseudoscalar field G and the nucleon fields N , N*, NN, and N as
confined in a cube of length L and volume V = L3. The four-momenta of G, N, and N
are denoted as p, k1, and ko, respectively: From Quantum Mechanics it is known that their
3-momenta are quantized as p = 27n,/L, ky = 2mny, /L, and ky = 27ny,. Using a Fourier

transformation the field operators [230] can be obtained as

eTPX | g TP X ) : (6.33)

~ 1 1
G(X)= \/Vzﬁ: /TEP (ap
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N(X) = \1Fv kz ‘ /gg (dg 7@ s) X ol a (R s) X)) | (6.34)
1,8

and
N(X) = \% > \/?’: (b (Faor) X s al, v (ki) e X) (6.35)
ko,r

where, as known from Quantum Field Theory, the glueball and the two fermionic fields
were decomposed in terms of annihilation and creation operators, ap, b, d, and apT, bt, df,
respectively.
In Eq. the coupling constant czy, cannot be; determined, but it is easy to calculate
the ratio of the decay of the pseudoscalar glueball GG into a nucleon and an antinucleon and
of the decay into N and N [230],

r QFGAWN '

G—N*N+h.c.

6.5.1. Decay of a pseudoscalar glueball into two nucleons

Let us calculate the decay process of I'z_ 75 which is described by the first term in Eq. 1 ,

—ig a—
= N~sN . :
£ coshéG 7 (6:37)

The G resonance represents the initial state i)

i) = al,|0), (6.38)
whereas the final state is

f) =0,

-/
k1 ,s" ko !

10Y, (6.39)

The corresponding matrix element of the scattering matrix reads

{(f151i) , (6.40)

We now calculate the expectation value Sy; in terms of the initial and final states:

Spi = (7181) = (fli [ XLl (6.41)

Inserting Eqs. (6.33), (6.34), (6.35), and (6.37) into (6.41) and performing a time-ordered
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product of creation and annihilation operators [230] we obtain

—1g\/ my? 4
3 <O|bk~/ o | X
coshéVz2,/2Ey, E,Ey, 1T et
% Z <aﬁe—iP-X I aﬁ]‘é‘P-X)
P

X Z (dk}sﬁ (k_i, s) e X b;;h (k‘_i, s) eiKl'X) Y5

(f15li) =

k_i,s
X Z (bkgmu (k_é,r> e R X 4 d;} v (k_é, 7“) eiKz'X) a;/|0>
k; r
<O|ba/ Y rb]]; Sd;} CL“(lpe —i(P—Ka— 1)Xﬂ’)/5v|0>
<O|bk1 o rblil sdJlch ((5 +a, ap) |0ye P Ko =KXy
= (0] <51511€1’553 bk?l, % ) O [0y e~ PR X g5
<0‘(5~ “’685’6 55 <(5~ "’(57“7" — dk;/,,‘/d - > |0> —i(P—Kay— KI)X'LL"Y5’U
= Oy Do B Oy O €T s (6.42)

We therefore obtain

(f15li) =

— / d* XiMe (P K= KX
V2,/ 2Ek2EpEk1
V2 /2B, EpEr,

where V' is the volume of the ‘box’ which contains the fields and .M is the invariant amplitude
which is given by

iM (2n)* 64Ky + Ky — p), (6.43)

cosgh 5" (k;’ 8) V5Y (k}, T) : (6.44)

To find the lifetime of G we have to take the square of the amplitude, which is the probability
for the process,

2
My

IS = 73 9 Ey, EpE,

2
my

~ V32E,Ey, Ey,

[iM* (27m)® (§*(Ky + K — p))®
iM% (27) (6% (p — K1 — K))?Vt, (6.45)
where

(2m)* (64 (K1 + Ko — p))? = (2m)" (6% (p — K1 — K2))*V .

This is proved in Sec.5.3. The probability for the decay, when the two particles N, N have
momenta between (ki, ki + d®k1) and (ko, ko + d®ks), is given by

dkl d3k:2
@np " @n)?

| < fISli> PPV (6.46)
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By integrating over all possible final momenta, summing over all final spin orientations and
division by ¢, one can calculate the decay rate as

2 . 2
= SO &k [ Phys 0t (P - K+ K) 6.47
(27)2 / 1/ *2E, Ey, Ey, ( 1 Kz) (6.47)

In the rest frame of the decaying particle, p = (mg, 0), one finds
5 (P — K1+ K3) = 6*(k1 + ko)d(mg — Ex, — Ep,) .- (6.48)

Solving the integral over dks (by using the Dirac delta function) we are left with

2 . 2
my 3 |ZM|
I'= g d°k] ——96 ~ —2F . 6.49
(2m)* < / 2B} mg (e = 2Eh) (049
We can write
M=
_ G
where
m2
k=7 —ma? (6.51)

is the modulus of the momenta of the outgoing particles. Using the spherical coordinates,
d®k1 = dQ|k1|2d|k1| and solving the integral over dki, one obtains the decay rate as

2
my . 2

I'= E ke. 6.52
27Tm2(~; — MRy ( )

For the computation of 3 |iM|?, one should use the following two identities [230] :

> = (YK, +my
gums)ums)—(QmN >a5’ (6.53)

and

. . K
R I (6.54)
s 2mN OLB
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The averaged modulus squared amplitude will thus be
2

M = 3 (1) () o () e ()]

_ Cofm X =3 (V5)apv8 (k:é,r) op (k?é,r) > (45) (k?l, 5> Ty, (151, 5>

T

2 K e
9 YR, +my YR, +my
= X (75)0[6( L ) (75)/4y< L >
Bu vo

cosh? § 2mpy 2my
2 —AH Ky 4+ m PKy,+m
:792 x Tr [%( i N)% <V s Nﬂ
cosh® ¢ 2mpy 2mpy
92 1 2
= X 4K7 - Ky +4m
cosh?s =~ 4mpy? ( Lo N )
92 m% —2mpy2+ 2m?v
= X
cosh? § 2m%;
2
cosh? § 2mpy2 |’
where
2 2
m= —2m
K, Koy = GfN

Then we obtain the final result of the decay rate I's_ 5,y as follows

O LY
G=NN = 4rcosh?e 1
Similarly, we now proceed to calculate the rate for the decay process G — N'N , which is
described in Eq.(6.32) by the term
—isinh &
cosh
The corresponding matrix element can be obtained by

Spi = (f1S]i) = (£l / 44X L))

—ig tanh & \/mNTNT -
A VNN (O ,/d4X
Va 2Ek2EpEk1 18 2T

(6.55)

Lo = gGN'N = —tanhd gGN N . (6.56)

% Z (aﬁe—iPX +a TezPX>

i

N A —iK1-X | 3t = (1 iK1-X

<37 (057 (Bs) X 8] T (R, s) 1)

kz,s

- —iKy X | gt - Ky X\ 1

3 (e () Nl () )

kz,r
x 5193151/655’5ﬁﬁ’5k_ék3/57"r’ave_i(P_Kl_K2)X ) (6.57)
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which can be written as:

(f|S]i) = — VTN d X iMe i (P-Ke=KDX (6.58)
V2,/2E}, EpEk1

where

iM =g tanhd u (k_i, s) v (k_é, r) . (6.59)

The decay rate of the pseudoscalar glueball into N™ N is obtained as

my=1mmn . 2
Tauw v = g 2 1MPKE, (6.60)

, mN*4+mN4+m%—2mN2mN*2—2mN*2m25—2mN2m25
mZ
G

which is proved in Ref. [230]. The averaged modulus squared decay amplitude is

Z |z./\/l|2 = ¢? tanh?§ Zﬁ (kﬁ,s) v <k:;,r) [ﬁ (kﬁ,s) v (k:;,r)r

B _(’Y“Km +mN*> <—’Y“K2M +my

> g% tanh? ¢

1 . K
= -Tr [(ry Lu N >< 7 2“+mN>} ¢* tanh? ¢

2m 2my
1
= — (4K1 - Ko — 4mNmN*) g2 tanh? &
4mNmN*
_ 1 2 2| 2 2
= m [mé—(mN+mN*) } g° tanhJ .
(6.62)
We obtain the final result of the decay width I's_ 5+ \ as
2 2
g“ tanh” d
Laswn = TArmZ {m% — (mn + mN*)Q} k} (6.63)
G

The mass of the nucleon and its partner are my = 938 MeV and mpy~ = 1535 MeV,
respectively [23], whereas the mass of the lightest pseudoscalar glueball is predicted from
lattice calculations to be about 2.6 GeV. The moduli of the momenta of the outgoing particles
are ky = 900 MeV and kg = 390.6 MeV. From Eq. and Eq. we obtain the
branching ratio of the pseudoscalar glueball decay processes G—->NNandG—N'N
[126] 230]:
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@= Q?MTN
G—N N
_ ky mig
 2sinh? (5[m2G~ — (my + mpy~)] k}
—1.94, (6.64)

which can be tested by the upcoming PANDA experiment at the FAIR facility in Darm-
stadt.
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7. Decay of open charmed mesons

7.1. Introduction

Charm physics is an experimentally and theoretically active field of hadronic physics [231].
The study of strong decays of the heavy mesons into light pseudoscalar mesons is useful to
classify the charmed states. In this chapter, which is based in the paper [I19], we study
the strong OZI-dominant decays of the open heavy charmed states into light mesons. In
this way, our model acts as a bridge between the high- and low-energy sector of the strong
interaction. It turns out that the OZI-dominant decays are in agreement with current exper-
imental results, although the theoretical uncertainties for some of them are still very large.
Nevertheless, since our decay amplitudes depend on the parameters of the low-energy sector
of the theory, there seems to be an important influence of chiral symmetry in the determina-
tion of the decay widths of charmed states. As a by-product of our analysis, we also obtain
the value of the charm-anticharm condensate and the values of the weak decay constants of
D mesons. Moreover, in the light of our results we shall discuss the interpretation of the
enigmatic scalar strange-charmed meson D%,(2317) and the axial-vector strange-charmed
mesons Dg;(2460) and Dg1(2536) [59) 189, 190), 191]. We show the explicit form of open-
charmed decay widths which were obtained from the Lagrangian at tree level. The
formulas are organized according to the type of decaying particle. The precise description
of the decays of open charmed states is important for the CBM experiment at FAIR.

7.2. Decay widths of open-charmed scalar mesons

In this section we study the phenomenology of the open charmed mesons in the scalar sector.
The Lagrangian ([2.145) contains two open charmed scalar mesons which are Dg and Dy,.

The neutral scalar state D? and the charged Dgo’i decay into D, while the strange-charmed
state Dg%E decays into DK. The corresponding interaction Lagrangian from Eq. 1) for
the nonstrange-charmed meson Dj with D7 and the strange-charmed meson with DK has
the same structure, as we shall see below. Then, we shall calculate the general decay width
of a scalar state in this case. B

We consider a generic decay process of a scalar state S into two pseudoscalar states P, i.e.,
S — P P;. The interaction Lagrangian for the neutral scalar state will be given in the
following general simple form:

Lspp :ASPPSOJB{JJBQO + BSPPS[)@M]B{)WJBQO
+ Cspp 8,8 9" PP P + Espp 8,5° P 9" P . (7.1)

Firstly, to calculate the decay amplitude for this process we denote the momenta of

S, P, and Py as P, P;, and P», respectively. Then, (upon substituting 0# — —iP* for the
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decaying particles and " — 1151“ o for the decay products) we obtain the Lorentz-invariant

SP, P, decay amplitude _iMS—@lﬁQ as
— Z'MS_>§10§20 =i(Aspp — BsppP1 - Po+ CsppP - Pi + EsppP - P») . (7.2)

Using energy momentum conservation on the vertex, P = P; + P», we obtain

—iMg_ popo = i[Aspp — BsppP1- Py + Cspp(PL+ Py Py) + Espp(Py + P1 - P2)] . (7.3)

In the decay process, the two pseudoscalar mesons ]510 and ]33 are on-shell; therefore
P} = mQﬁO and P? = m%o. Moreover,

1 2
2 2 2
P2_P2_P2 mg —my —my
PP = L -2 = b P (7.4)
2 2
Therefore, the decay amplitude (7.3)) can be written as
2 2 2
mS - = =
—iMg_, popy = i[Aspp + (Cspp + Espp — Bspp) 51 =
+ Cspp m% + Espp m%} : (7.5)
The decay width T’ Sy PO PO then reads
1°2
k(ms,mg ,mgp )
T 1 27 | s |2
Lo popy = 8rm2 | Z'/\/ls—ﬂvlopg‘ . (7:6)

A non-singlet scalar field will posses also charged decay channels. We then have to consider
the contribution of the charged modes from the process S — PfEPQqE to the full decay width.
By multiplying the neutral-mode decay width of Eq.(7.6)) with an isospin factor I, we obtain

Vs pp = Venpop D prpr =1 0g oo - (7.7)
The full decay width can be written as
k(ms,mp ,mp) )
Vs pp = | — ZMS_”S{)ﬁ20| ) (7.8)

8mrmg

where [ is determined from isospin deliberations, or from the interaction Lagrangian of a
given decay process.

Note that usually the contribution of the charged modes, is twice the contribution of the
neutral modes, which, as we will see in the explicit interaction Lagrangian below, leads us
to write the general decay width of S into charged modes, ]SfE]SQjF , as follows:

r k(mg,mp ,mp,)

e — — 2

S—PF Py 8rm2 | ZMSHP{)PQO‘ : (7.9)
Using this general structures of the decay process of a scalar into two pseudoscalar states,

S — PP, in the following we compute the decay width of the nonstrange-charmed scalar

state Dgo’i into D7 and the strange-charmed scalar state Dg%E into DK.
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7.2.1. Decay Width D;"* — Dx

Firstly, we study the phenomenology of the scalar doublet charmed mesons Déo’i which
are assigned to D{(2400)%%. These open-charmed mesons are known to decay into Dm
[119, 120l 122]. The corresponding interaction Lagrangian from Eq.(2.145), for only the

neutral and positively-charged components (the other ones like Dgo’f possess analogous
forms) reads

Lpgpr = Apyo pe D (D°1° + V2D ™) + Bpeo . D5 (9, D°0"n° + /20, D* 97 ™)
+ Cpsopr 0Dy’ (7°0" D° + V271~ 0,D%) + Epeo 0, D5 (D°0"7° + V2D 0'n™)
+ Ap; pe Dy (D™ 7" = V2D"77) + Bpypa Dy (9, D~ 0" 7° — V/20,D°0"7 )
+ CD;DWQLDSJF(WO@“D_ —V27179,D% + EDSDﬁapD8+(D_8MTFO — V2D 977,

(7.10)
where the coefficients read
Zﬂ-ZDZD*O
Apsopr = A = Xade, (7.11)
Zﬂ-ZDZD*O w + wD
BDgoDw = fo Wa,; WDy [9%(3¢N + \/§¢C) - 291%
1 1
+ ha(én + V260) — 2hzén], (7.12)
ZnZpZ pro . wWp, + 1Wp« .
Cpsopr = —%MD*OUJDl [\/i@g%gi)c - glﬁ — \/§1h3¢0] , (7.13)
* 1
ZrZpZpro . Wg, — LW p*0
Epzpop. = #OUJD*O’U)M [ig} (3n — V260) + 291W
1
+iha(dpn — V2¢c) — 2ihson] (7.14)
ZnZpZp=
Apgpr = T Ao, (7.15)
ZnZpZpx Wqy + W
BD;;Dw = —fo Wa; WDy [g%(?’ﬁbN + \/id’C) - 291#1;31
ai 1
+ ha(on + V26¢) — 2h3on], (7.16)
ZxZ pZp+ ) wp, + 1Wp= .
Cpipr = ————wp=wp, |V2igidc — g~ \ihgpe | (7.17)
0 2 Wp*Wp,
AYAY A% , Wy, — IWp*
Epspr = —————Lwpswq, [igi (3én — V2¢c) + 29y —1 D"

4 Wp*Wa,

+iho(pn — V2¢c) — 2ihsdn] - (7.18)
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Note that the parameters wp+ and wp«o are imaginary as shown in Eqs. (4.48) and (4.49),
respectively, which means that the coefficients containing the imaginary unit are real. Fur-
thermore the wave-function renormalisation factors Z Do and Zp; are equal, as well as the
parameters wp«o and wp+ (for isospin symmetry reasons), which leads to

* * * *
ADSDW = ADSODW’ BDSDT( = BDSODW’ CDSDT(‘ = DSODW’ ED(*;DW = ED(’;ODW .

In the interaction Lagrangian (7.10), the considered decays are that of the neutral state
DSO and the positively charged state D8+. Both have two relevant decay channels .

Firstly, let us focus on the decay of D? which decays into neutral modes D7 and charged
modes DT7~. The explicit expression for the decay process DSO — D% ig similar to
Eq. as seen in Eq.; when using Eq. upon identifying the mesons S, ]31, and P,
with the scalar meson DSO, and the pseudoscalar mesons as D° and 70, respectively. The
coefficients Agpp, Bspp, Cspp, and Dgpp refer to ADSODW, BDSODW, CDSODW, and EDSODW,
respectively. We then obtain I'px0_, poro as follows:

1 (M0 = Mpo = Mze)® —dmymiy v
T'pgo—s pogo :87TmD*0 4m%*0
0 0
m2D*o - m%o - mio
x [Apsopr + (Cpsopr + Epsopr — Bpsopg) — 5
-+ CDSODrerDO -+ EDgoDnmgrO]Q . (7.19)

The decay width for DSO — D7~ has the same expression as but is multiplied by an
isospin factor 2, which can be seen in Eq.. All the parameters entering Eqs. have
been fixed as presented in Tables 4.1, 4.2, and 4.3. The value of I'ps«0_, p; is then determined
as follows:

FD3(2400)0—>D7r = FD30—>D07T0 + FD30—>D+r (7.20)
= 139771 MeV. (7.21)

Now let us turn to the positively charged scalar state DS+ which decays into D*7% and
DO7t. The explicit expression for the decay process DSO — D% is also similar to Eq.
as seen in Eq., when using Eq. (upon identifying the mesons S, ]51, and P, with
D8+, D*, and 7%, respectively). One may proceed in a similar manner for the decay width
of D(’§+ — D% T, where an overall isospin factor 2 is also present. Then we obtain the value
for T Dt Drt

L' pe(2400)+ D7 = I'p+a0 + Tpoq+ (7.22)
= 51717 MeV . (7.23)

7.2.2. Decay Width D5 — DK

We turn here to the phenomenology of the scalar state Dg% which is assigned to D%, (2317)%.
This open strange-charmed meson decays into DT K? and D°K* [119] as known from [51].
The corresponding interaction Lagrangian from Eq.(2.145) reads
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Lp: px = Aps,pi Dy (D™ K® + D°K™) + Bp:, px D} (0,D~0"K° + 9,D°0"K ")
+ Cpy i 0u D5 (K°0" D™ + 0,D°K™) + Epy pi 0, D5 (D~ 9" K° + D°0"K ™)
+ Apy,pi Dy (DYK® + D°K™) + Bp: px D (0,D7 0" K + 0, D°0*K™)
+Cpyypi 0, Do (K°0" DY +9,D°K™) + Ep; pi 0, Dy (DTO"K® + D9 K ™),

(7.24)
with the following coefficients
L Lplp*
Ap: DK = ——="X2 |:¢N +V2(¢s — ¢C)] ; (7.25)
V2
L ZpZp* Wg, +w
Bp: bk = — 50w, wp, [ \/5917[{1 Dy
W, WD,
VG~ ha)ox + (g + )0 +oc)] . (120
ZKZpZps wp, + iWpx i
Cp+ = S yp wps | V29— — —(¢> + h
D3, DK 5 D, WD, [ g1 wp, Wy ﬂ(!h 2)ON
+i(g7 + h2)os + 2i(hs — gf)aﬁc} : (7.27)
ZKZpZps: WK, — WD i
Ep: prg = ————2 wi wps | V201 ———5 + —(g> + h
D3, DK 5 K, WD, [ g1 —"— \/5(91 2)ON
-2~ hosila? + h)oc| (129

As seen in Eq. the explicit expression of D, has a form analogous to that of D;g for
isospin symmetry reasons. The decay width of the process DEB’ — DT KDY is obtained from
Eq. when using Eq. upon identifying .S, ﬁl,and P, with Dgér, DT, and K° and
upon replacing Aspp — Apx pk, Bspp = Bpy pk, Cspp — Cpy pk, Espp — Epz pk-
The decay width for the process Dgg — DYK™ has an analogous analytic expression. The
full decay width of D%, with a mass of about 2467 MeV into DK [119], see Table [£.5, is
then
FD§O—>DK ~ 3GeV.
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7.3. Decay widths of open-charmed vector mesons

In this section we describe the phenomenology of open-charmed vector mesons D*%*. The
neutral state D*? is assigned to D*(2007)" while the positively charged state D** to D*(2010).
These resonances decay into two pseudoscalar states D [51]. Let us now consider the decay
of a vector state V into two pseudoscalar states P, i.e., V — Py P, in general. The general
simple form of the interaction Lagrangian, as obtained from Eq., reads

Lypp = AVPPVSﬁPa“ﬁg + BVPPV£8“.5913§ + Cypp 8VV£(8”]5§6”ﬁ§ — 3‘“[510 8”1520) .
(7.29)

Py(Py)
SL“)(P) 7
VAVAVAVAVAVAVAVAVAVAVAN o}
\% Y
Py(Py) "

Figure 7.1.: Decay process V — PP,

We denote the momenta of V, ]31, and ﬁg as P, P, and P», respectively, and compute the
decay amplitude for this process. We consider the polarization vector ELQ)(P) for the vector
state. Then, upon substituting 0* — —iP* for the decaying particle and " — z'Pl’f o for
the decay products, we obtain the following Lorentz-invariant VP P, scattering amplitude
—iM,,_, 5 p, from the Lagrangian (7.29):

(@) — (PR L, (7.30)

—Z S—
MV—>P1P2 I

with

Wyopp = —{AvppPy + ByppP{ + Cypp[Py (P - P) — P/(P- R)]}, (7.31)

where h‘(/ pp denotes the Vﬁl ]52 vertex.

The calculation of the decay width requires the determination of the modulus square of
the scattering amplitude. The scattering amplitude in Eq. depends on the polariza-
tion vector z—:ff‘) (P).

For a general scattering amplitude, one has to calculate [—iM,, PPy
ing one vector state with mass my. The calculation reads as follows:

2 of a process contain-
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—iM =Pyt = (7.32)

3
[ 1
. 12 _ _iagla) 2
= ‘_ZMV%P1P2’ 3 Z | ZMV—)ﬁlﬁQ’
a=1

3

1 « a v
= 5 EL )(P)€l(/ )(P)h;\j’PPhVPP
a=1
1 PP, ,
=3 ( — G + ;:,Lg> "y ppht pp
1 [ 2 (P.Uh!\jPP)2
= | = (2 + e (7.33)
3 VPP m%/

where

PP,

3
> eI (P) = —guu + 2 (7.34)
a=1

2
\%4

Eq.(7.33) contains the metric tensor g,, = diag(l,—1,—1,—1). Note that, if the vector
particle decays, then P, = (my,0) in the rest frame of the decaying particle and thus

(PMmg)Q _ (m:ﬂiO)z (02 (7.35)

Therefore, we have to calculate the squared vertex (hfp p)? using Eq. 1}

(A pp)® = AV ppm + By ppm + Cypp[Py(P - P1) — P{'(P - P)P?
+2AyppByppPy - Py + 2Ay ppCypp[(P - Pl)m2132 — (P, - P)(P- P)]
+ 2BVPPCVPP[(P1 . P2>(P . Pl) — (P . Pg)mzﬁl} . (7.36)

Now let us compute the squared vertex at rest (also using Eq. (7.31))):

(WY pp)? = A%/PPE]QBQ + B\2/PPE1251 + CtpplEp (P P1) — Ep (P - Py))?
+ QAVPPBVPPE;N)IEISQ + 2AVPPCVPP[(P . PI)EIQSZ — EﬁlEﬁQ(P . P2)]
+ 2BVPPCVPP[E}31Eﬁ2 (P . P1> — (P . PQ)E%l] . (737)

From Egs. (7.33)), (7.36)), and (7.37)) we obtain
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[—iMyvoppl® = %{(A%/PP + By pp)k? (my,mp ,mp )
+ Copp{k*(my,mp ,mp )[(P- P1)* + (P P,)’]
—2(P-P)(P- P2)(E131Eﬁ2 — P - P)}
+2AvppBypp(Ep Ep — P1 - P2)
+24vppCypplk?(my, mp,,mp )P P = (P - P)(Ep B, — Py - )]

+ 2BVPPCVPP[(P . Pl)(EﬁlEﬁz — Pl . Pg) — k:2(mv, mj%, mﬁl)(P . PQ)}}
1
= {8 pp + BYpp + CRppl(P- P + (P- P2)’]
+2CVPP[AVPP(P : Pl) — BVPP(P . PQ)]}kQ(mV,mﬁz,mﬁl)
+2{AvppBypp — Ctpp(P - P1)(P - P3) + Cyvpp(ByppP - Py
~AyppP- Py)}(Ep Ep — Pr - Pg)} . (7.38)

The vertex Al pp from Eq.(7.31)) can be transformed as

hl(/PP = —[A\/pppéu + B\/ppf)iu + Cvpp(mvEﬁlpéu — mvEﬁQPiu)]
= —(vap — CvppmvE§2)P1“ — (AVPP + CvppmvElgl)PQM , (7.39)
where
PI'P:mVEﬁl and PQ-P:mvEﬁz. (740)

We can then write Eq.(7.38) in a slightly different (but equivalent) form, by inserting
Eq.(7.39)) into Eq. (7.33)) as follows:

- 1
|—iMy_pp|* = g{_[(BVPP — Cyppmy Ep )Py + (Avpp + CVPPmI%Eﬁl)PQMF

1
+ — [(Bvpp — Cvppmy Eg ) Py P!
my
+ (Avpp + Cvppmy Ep ) Py, PH*} . (7.41)

Using Eq.7 kQ(mV,m%,mﬁl) = E% - m2ﬁ2, and kQ(mV,mE,mﬁl) = E%l - mzﬁl,

we obtain that Eq.(7.41]) can be written as

1
? = 3[(Bvrp — Cvppmy Ep)* + (Avpp + Cyppmy Ep )

—2(Avpp + Cyppmy Ep )(Bvpp — Cvppmy Ep )|k (my,mp ,mp,)
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1
= g[AVPP — Bypp + Cvppmy(Ep + Ep )k (mv,mp ,mp )
1

= g(AVPP — Bypp + Cyppm?)* k% (my, mp,mp ) - (7.42)
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The decay width for a vector meson decaying into two pseudoscalar mesons I'|, BB (as
obtained from Eq. (7.29) can be computed with the following formula:
k(myv,mg ,mp)
I ’ 2 TP T |2
L'y 55 = B2, ] ZMV—>P1P2’ , (7.43)
where [ is an isospin factor and the modulus square of the decay amplitude | — iMV BBy K

is given in Eq. (7.42)) or, equivalently, Eq. (7.38). Now let us apply this result to calculate
the decay width of the vector meson D*®* into D from the Lagrangian (2.145)).

7.3.1. Decay Width D*%* — Dr
The D* D7 interaction Lagrangian from Eq.(2.145) reads

Lp+pr = Apsp= DX (70" D° + V21~ 0" D) + Bpep DX (D 0" 7° + V2D o7 ™)
+ Cp+pr0, D} (9" D 0" 70 + V20" D 0"n ™)
+ Chepr0y D2 (0#7°0” D° + V20" 7~ 9" D)
+ Ap pr DY (700" D° + V211 0" D7) + Bhep DY (DP0F 7 + V2D~ 04t
+ Chepr0y D30 D°0 70 + v/20M D~ 0" 7 ™)
+ Cpepr0, D} (0#7°0” D° + V20" 7+ 0" D7)
+ Apsp=D}T (7’0" D™ — V21~ 0" D) + Bp«pr D} (D~ 0"7° — V2D 9"7 )
+ Cpspr0, DT (0" D~ 0" 7" — 20" D07 ™)
+ Chepr0y DT (070" D™ — V20"7~ 9" D°)
+ Apepr Di (%0 DT — V21T 0M DY) + Bp.p, D (DT 0" — V2D 04 n )
+ ChuprOy D (0" DT 0" 70 — V20" D0 n ™)
+ Cpspr0, D (0'7°0" DY — V20 79" DY) (7.44)

with the following coefficients

7
Aprp = 524 7p [+ V3up, (hs — g})oc)| | (7.45)
_ ot _ 2 _ NG 2
Bp+pr = 4Z7rZD 291 — Wq, (397 + ha — 2h3)dN + V2w, (97 + h2)oc| (7.46)
7
Cp*pr = §Z7rZDwa1wD192 . (7.47)

Note that the Lagrangian in Eq. contains the parameter combinations Apspr, Bp* D,
and Cpxpr and their complex conjugates. Thus, it is certain that the Lagrangian is hermi-
tian; so we obtain [,JIB*DW = Lp+pr-

In the following we will focus only on the decays D** — Dz and D** — D=, where the
corresponding decay of D** and D*~ — D yields the same result due to isospin symmetry.
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The interaction Lagrangian has two decay channels for the neutral charmed-vector
meson D*0 which are D*0 — D0 and D*® — D*7~. We have to note that the decay of
D*Yinto D7~ is impossible because, in this situation, the sum of the decay product masses
is larger than the mass of the decay particle, so

FD*O%D+7T7 == 0

This result shows very good agreement with the experiment result: experimentally it is
not seen, as listed by the Particle Data Group [5I]. Then the decay of the neutral state
D*Y into the neutral modes D°7% is the only possible decay in the eLSM (2.145). To
compute I'pso_, po 0, we use Egs. and upon identifying V, ]31, and P, with
D0 79 and D° and the coefficients Ay pp, Bypp, and, Cypp with Ap«px, Bp+px, and
Cp*px, respectively. We then obtain the corresponding expression

1 (m2D*o - m20 - TnQDO)2 - 4771207”2D0 372
I'pro_poo=— T 1 T
247 4mD*O
X (Ap*pr — Bp*pr + Cp*Dr m2D*o)2 . (7.48)

The parameters entering Eq.(7.44) have been determined uniquely from the fit (see Tables
4.1, 4.2, and 4.3). Therefore we can calculate the value of the decay width immediately:

FD*(2007)0—>D071'0 = (0025 + 0003)M8V s (749)
where the experimental value reads '} (2007)0 pogo < 1.3 MeV as listed in Ref. [51].

Now let us turn to the phenomenology of the positively charged state D*(2010)%, which
can decay into D°7F and D70, The decay width of the channel D*(2010)* — D%z* has
an analogous analytic expression as I'p«o_, poso, which is described in Eq.(7.48), whereas
concerning the decay D*(2010)% — DTn% Eq. holds upon multiplication with an
isospin factor 2. We then obtain the following results:

T p(2010)+ 5 p+x0 = (0.01810:003) MeV (7.50)
I p+(2010)+— por+ = (0.03870:005) MeV . (7.51)

The experimental values [51] read

Ferf(Qmo)JrHDﬁo = (0.029 + 0.008)MeV
and

TP o010)+ s pogs = (0065 % 0.017)MeV .
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7.4. Decay widths of open charmed axial-vector mesons

In this section we turn to the study of the phenomenology of axial-vector charmed mesons,
i.e., the two- and three-body decays of Dy and the two-body decays of the strange Dgy. The
nonstrange-charmed field D; corresponds to the resonances D1(2420)%* while the strange-
charmed doublet Dgl is assigned to the resonance Dg1(2536)F. Firstly let us focus on the
two-body decays of the axial-vector charmed mesons D, Dg;. The nonstrange-charmed Dy
decays into vector-charmed and light pseudoscalar mesons, D1 — D*m, while the strange-
charmed doublet Dg; decays into D*K, which also contains a vector-charmed meson and
a light pseudoscalar meson. Therefore, both decays have the same structure of the corre-
sponding expression for the decay amplitude. This leads us to consider the general case of
the two-body decay process of an axial-vector meson A into a vector V' and a pseudoscalar
state P, i.e., A — V P. The following interaction Lagrangian describes the decay of the
axial-vector state into neutral modes:

07,0 pO
L,yp=A,pAM0VOP

+ B, 5 [A° (0,V) — 9,V0) 9" P° + 0¥ A" (V09 P° — V00, PY)] . (7.52)

AV P

SS/Q)(P 1)

PPy

Figure 7.2.: Decay process A — V P.

Let us study a generic decay process of the form A — VOP% The 4-momenta of AV,
and P are denoted as P, Pi, and P5, respectively. We have to consider the corresponding
polarization vectors because there are two vector states involved in the decay process A —
VOPO ie., A and V. These we denote as ELO[)<P) for A and ES,B)(Pl) for V. Using the
substitutions O* — —iP* for the decaying particle and o* — iP{f o for the decay products,
(c,8)

we obtain the Lorentz-invariant AV P scattering amplitude —iM Aspopo A8 follows:
y aﬁ
—iMD) = D PP (PR (7.53)
with
W s = 1{Aaypg"™ + BayplPU'Py + PSP — (PL- Py)g" — (P~ Po)g™ ]}, (7.54)

pv 5
where hAW3 denotes the AV P vertex.
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It will be necessary to determine the modulus square of the scattering amplitude in order
to calculate the decay width. We note that the scattering amplitude in Eq. depends
on the polarization vectors s,(f‘) (P) and 5(5 )(Pl). Therefore, it is necessary to calculate the
average of the modulus squared amplitude for all polarization values. Let us denote the
masses of the vectors states A and V as ma and my, respectively. Then the averaged

modulus squared amplitude |—iM|? is determined as follows:

-— _ 7/8) 2
[SiM ol = Z ’ ZMA%VOPO
oeﬁ 1
RS ®)(p
=3 el (P)elP (PR, pel@ (P)e (PR 5 (7.55)
a,f=1
Given that
> PP
S ED(P)E(P) = —guw + 55 (7.56)
- miy
a=1
[an analogous equation holds for £(®)], we obtain from Eq. 1’
- 1 P,P, P, P,
- 2 2P TN
=My yopol” = 3 <_9m+ ;%2:> ( Gur + ”U”Lv >hl:;/PhAi/P
* 122 * A
_ Ly e B O S S Ak
T3 | TwAVP AV P mA m%/
%
+hAVPP ul1 hAvPP Py
miym’
%
L ‘hAVP ‘ ‘hAVPPM ‘hAVPPM‘Pl” 7 5
~3 ‘AVP) m2 m2 m2m? » (7:37)
A v Al

which contains the metric tensor g, = diag(l,—1 —1,—1). The decay width for the
process A — VOPY then reads

k(ma, my,mp)

r 0 = |—iM ol . (7.58)
A—VOPpO 2 A—VOPO
- 8mm5 -
Note that a non-singlet axial-vector field will in general also possess charged decay channels.
Therefore, in addition to the decay process considered in Eq. -, we must consider the
contribution of the charged modes from the process A — VT PT to the full decay width.

Then the full decay width is obtained as

Py svp=Tasvopo + T, pepr =10, yopo-
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Using Eq.(7.57) we obtain the two-body decay width of vector meson, Eq.(7.58]), as follows:

02 uv nZ
r L K(ma,my,mp) ‘h,uu ‘2 _ ‘hAVP ‘ ‘hAVPPh’ ‘hAVﬁP Pl”
A—=VP 1277772124 AV P m3 “ m%/ m%/mi ’
(7.59)

where the quantities P* = (m4,0), P{' = (Ey, k), and P}’ = (E 5, —k) are the four-momenta
of A, V, and P in the rest frame of A, respectively. The following kinematic relations hold:

2 2 2
myj —my —mp
PVPP: 9
2
my +my —m%
Py Py =mpby = 5 ;
2 2
m45 —my + m=4
A \4 P
PA'Pp:mAEIB_ B .

The terms entering in Eq. (7.59) are given by

)h%/P‘ =445, 5+ Blys {m%/m% +mAm +2(Pr- Py)* +2(P - P2)* + 6(Py - P2)(P - P2)]
— 64,y pBayp(Pr-Pat+ PP, (7.60)
‘hAVP ‘ Ay pma+ Blyp [(P PP 4 (P Py)*mY —2(P - Py)(P - Po)(Py - P2)}
+ 24, 5By p [(P-P)(P- Py) — (P~ Pym%] (7.61)

‘h/:xl;/Ppl v A?AVPmV + BAVP [(P - P1)*m% + (P Py)*mi, —2(P - P)(P - Py)(P; - P2)}
+ 24,y pBavp [(P Py (P Py) — (P P2)’m%/] ) (7.62)

2 2

(hAVPP P =[A (P P

with By = \/KQ(mA7mV,m]5) +mi and Eps = \/KQ(mA,mV,mls) +m?5.

7.4.1. Two-body decay of D,

We present the relevant interaction Lagrangian for the nonstrange axial-vector meson Dy
which is a light-heavy quark Qg and is assigned to D;(2420)%*. This Lagrangian describes
only the two-body decays of this state, and is given as:
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EDlD*w = AD1D*WDiLO (DZOﬂ‘O + \/QD;+7T_)
+ Bppe { DI [(0,D;° = 8,D;°) 97 + V2 (9, Dyt — 9,D5%) 67" |
+0" D | (Dy09,m° = D;20,5°) + V2 (D5t dum™ — Dy o,m) |}
+ A, DI (D2 + VD)
+ Bl pen {Df“ [(aVD;O — 9,D20) 87" + V2 (9,D} — 9,D;") ayﬂ
+0" D (D309, — D;°0,x°) + V2 (D~ 0,n* — Dy 0,77 |}
+ ADlD*ﬂ-D;lﬁ_ (D;iﬂ'o - \/§D;07T7>
+ Bpype { DI (0,0} = 0,D;7) 97 = V2 (9,D; = 9,D;") 97" |
+0" D [ (D57 0um" = Dy 0,7°) = V2 (D09~ — D0,x7)| |
+ Ay per DI <D;+7TO . \@D;%Jf)
+ Bp,per { DI (0D} = 0,D;7) 97 = V2 (9,D;” ~ 9,D;") 9|
+OV DI [(Dfa,ﬂo — D5 9,m°) — V2 (D108, xt — D;Oa,,ﬁ)} } . (1.63)

with the following coefficients

1
Ap,Drr = ﬁZw(g% —h3)éc , (7.64)
1
BDlD*TF = §Zﬂ'92wa1 . (765)

From the interaction Lagrangian we obtain that the neutral state of D; decays
into D*7% D**7~ and that the positively charged state decays into D**70, D*On+ (see
below). The interesting point is that the decays DY — D7~ and D" — D%* (although
kinematically allowed) do not occur in our model; because there is no respective tree-level
coupling. This is in agreement with the small experimental upper bound. Improvements in
the decay channels of D;(2420) could be made by taking into account also the multiplet of
pseudovector quark-antiquark states. In this way, one will be able to evaluate the mixing of
these configurations and describe at the same time the resonances D;(2420) and D;(2430).

Decay Width D — D*=

The decay width of DY into D*97¥ is given by Eq. upon substituting the fields A, V°,
and PY with DY, D*0_ and 7 respectively. One may do likewise for the decay width of DY
into D*T7~, but in this case it is necessary to multiply the expression by an isospin factor
2. Given that all parameters entering Eqs. ([7.59] [7.64] [7.65) are known from Tables 4.1, 4.2,
and 4.3, we consequently obtain the following value of the decay width of DY into D*x

T, (2420000 = L' Dy (242000 e+ n- + LDy (242000 proz0 = 65751 MeV. (7.66)
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Experimentally the decay width of D;(2420)? into D**7~ has been observed.

Decay Width D — D*x

One can proceed in a similar manner for the D; state, but in this case we set A= D], V0 =

D*, and PY =7 in Eq. (7.59). We obtain the following value of the decay width

_ _ +51
U pi L pen = py2420)+ D420 + Ty (2420t 5 prort = 65735 MeV.

7.4.2. Decay Width D; — Dnn

(7.67)

Now we turn to the three-body decays of the open axial-vector nonstrange charmed meson
D1(2420)%F which decays into three pseudoscalar mesons, Drw. The relevant interaction
Lagrangian can be written in a single equation as follows:

[’Dl Dnr

= ADleD/anuDO <7T02 + 27T_7T+)

+ Bp, prr DY D8, 7°7° + Cp, prn DY D0 m 1

+ EDIDMD’fODOTFf),ﬂTJr + FDIDMD’fOD+(7r08M7T7 — ,ﬂroﬂ'*)
+ ADleleoauDo <71'02 + 27r77r+)

+ BDIDWDfODoé?#WOwO + CDleD’fODOOHWﬂT_

+ EDIDWDfODOﬂ‘*'auw_ + FDlDWDfOD_(7706”7r'F — 8#7r07r+)
+ ADlDWDf+6#D_ (71'02 + 27T_7T+)

+ BDIDMDf"FD_@lmOWO + CDIDWﬂDf+D_8#7r_7r+

+ EDIDWﬂDf+D_7T_6M7T+ + FDlDWDﬁL+D0 (w_auwo — GMW_WO)
+ ADlD,T,rD’lhaﬂD+ (71'02 + 27T_7T+>

+ BDlDWDf_DJFOHﬂOﬂO + Cpypan DY " DOt ™

+ Ep, prr DY~ DTt 0, 7™ + Fp, prne DY DO (7t 0,m° — 9, 7%) |

with the coefficients

1
AD,Drr = ZZEF Zpwp, (97 + 2h1 + ha) ,

1
Bp,prr = ZZgr Zp Wa, (39% + ha — 2h3) ,

1
Cp\Drr = =72 Zp Wa, (9% + h2) ,

2 iy
Ep,prr = Z2 Zp wa, (97 — h3) ,
V2
Fp,prr = ngr Zpwa, (91 — ha — 2h3) .
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As seen in the Lagrangian (7.68) there are three relevant channels for the neutral state
DY which are DY — D770 DY — DOzt7n~ and DY — DTn~7". The positive state also
has three relevant channels due to D — D*wt7~, Df — D*7%2% and Df — D=0z,

Decay Width Dt — DOty

The Lagrangian ([7.68) allows us to calculate the decay width for the process Dy — Dr.
Firstly let us focus on the three body-decay of the neutral state DY into D°7%70. We denote
the momenta of D9, D° 7% and #° as P, P;, P, and Ps;. A vector state D; is involved in

this decay process. We then consider the corresponding polarization vector e,ga)(P) for Dy,
and substitute O — —iP* for the decaying particle and O* — z'Pl‘fQ,3 for the decay products.

We straightforwardly obtain the following DY DY7%70 scattering amplitude —i (@)

DY— D070
from the Lagrangian (7.68)):
—iM®) = (@ (P) pY (7.75)
DY9— DO 070 o D1 Drr 0 ’
where h%l Drr 18 the vertex following from the relevant part of the Lagrangian,
h%ler = — [ADlerplu + BDlDﬂ-ﬂ—PZM] . (7.76)

In order to calculate the decay width of DY we need to calculate the averaged modulus
squared decay amplitude ]—iMD?_}DoWowoo\Q from Eq. 1}
13
|_iMD‘fﬁ\D07r07r0|2 == Z | —i go(i))_}DoWoWOP
a;l

w

ey (P)=S) (PYHp, e BB, D

(0%
< P,P,

— G + M2 )h%lwa hB’lDWﬂ'

|P h% D7r7r|2
L e I (7.77)

where
|h%1D7r7r|2 = A2D1D7r7’rP12 + 2AD1D7T7T BD1D7T7T(P1 : PQ) + B2D1D7‘(‘7’r P22 9 (778)

1Py bty prwl” = | = [AD, Darn (P - P1) + Bp,prr(P - P2)]|? (7.79)

where P* = (M,0), P{" = (Ep,,p), P} = (Ep,,—p), and P{' = (Ep,, —p) are the four-
momenta of DY, DY 7% and 7¥ in the rest frame of DY, respectively. In this frame,

2 2 2
Mip — My — My
P -P= )
2
2 m%Q_ml_mQ m% _m1_m2
P P1:m1+ 3 37
2 2
2 2 2 2
2, Mg =My —My Moz — My — M
P-Py=m3+ 5 + 32 3
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The quantities M, mi, ms, ms refer to the mass of D(l), DY 7% 70 respectively. Using
Eq.(6.19) the decay width for the process DY — D7%70 can be obtained as

1—‘ 2 (M_m3)2 (mgg)max
A—=P PPy — 96 (27T)3M3/( mg)? /( )

m m23)min

2
n
2 ‘th DWWPN‘

+ e dm3s dm3, . (7.80)

m
o ’thDﬂ'ﬂ

The decay of the neutral states for the processes D} — D% t7~ and DY — D7~ 7" has

the same formula as in Eq. (7.80)), only in this case it is multiplied by an isospin factor 2 as
given by the Lagrangian (7.68). We then get

FD(IJ*)DOﬂ.ﬂ. = FD1(2420)0~>D07TO7T0 + FD1(2420)0*>D07T+7T0 = (0.59 4+ 0.02) MeV. (7.81)

For the positive state D1(2420)" the decay process Df — DT7%9 has an analogous
analytic expression as for the process D? — D790 (as presented in Eq. ), while
Df — DT tr~ has the same formula, multiplied by an isospin factor 2 as given from the
Lagrangian (|7.68)).

PD?—>D+7r7r = FD1(2420)+—>D+7TOTI'0 + FD1(2420)+—>D+7F+7T7 - (056 Zl: 002) MeV (782)

This has been observed experimentally.

Decay Width DY"" — Dxtz0

The scattering amplitudes for the processes Dy — D~ 7t7% and Df — D%t 70 differ
markedly from the previous processes for the three-body decay of D[f7+, as can be seen
from the interaction Lagrangian . Thus, we study the decay widths for these channels
differently. Let us firstly focus on the decay width of the neutral state DY into D~ nt 70,
which has the same expression as for the decay process Df — D%t 70. To write the
scattering amplitude for D? — D 7t70 we denote the momenta of D?, D=, 7nt, and «°
as P, Pi, P, and P3. For the meson DY, we consider the polarization vector E;(la)(P) and
substitute O* — —iP* for the decaying particle and O* — iP{f 9.3 for the outgoing particles.
We then obtain the following decay amplitude from the Lagrangian :

_iMl()()ff)ﬁDOfﬂ+ﬂ0 = 55’4&) (P) X%lDﬂ'ﬂ' ’ (783)
where the vertex Xngm is
Xngﬂ'ﬂ' = _FDIDWTF(PZM - P;) . (784:)

The averaged modulus squared amplitude |—: M DY DO— 50 |2 has the same general formula
as in Eq. 1} with substituting the vertices h%le — Xngm,
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i 1 | Py Xg D ?
|_ZMD(1’—>D0—7T+WO‘2 = g [_ lyj]_DTHT|2 + M12 =
F[2) Drn 1 2 2 2
= [W(P~P2—P-P3) —(m2+m3+2p2'P3)] - (7.85)
The decay width D — DT 770 reads
F% o (M—=m3)?  (m33)max

r , = LT / dm3s dmi

A—P1P,P3 3x 32 (27.‘.)3 M3 (m1+ms)? (m%3)min Ma3 AMg

1
X [W(P-PQ—P~P3)2—(m%+m§+2P2-P3)] , (7.86)

where the quantities M, m1, mz, and mg refer to the masses for the fields DY, D*, 7=, and
79, respectively, and the kinematic relations

2 2 2
Moz — My — M3
PPy = )
2
2 2 2 2 2 2
mi, —m? —m mi, —mé —m
P-P3:m§+ 13 21 3 23 22 3

All the parameters entering Eq.(7.86)) are fixed and listed in the Tables 4.1 and 4.3. Conse-
quently we obtain the decay width of D;(2420)° into D7~ 70

I‘Dl(2420)0—>D+7r*7r0 == 0211—88%51\/[6\/ (787)
The decay of the charged state Df’ into D771 has an analogous expression and is
FD1(2420)+~)D07T07T+ = (022 + 001) MeV (788)

This decay is observed experimentally.

7.4.3. Decay Width Dg; — D*K

As a last step we turn to the strange-charmed axial-vector state D;l which is assigned
to Dg1(2536). This resonance decays into D*(2010)*K? and D*(2007)°K* in the model
(2.145)), whereas kinematically the decay to DK is not allowed. This is in agreement with
experimental data in which the decays Dg1(2536)" — DTK? and Dg(2536)% — DK™
are not seen (as stated by the PDG [51]). The Dg; D*K interaction Lagrangian from Eq.

(2.145]) reads

Lps, DK = AD51D*KDgir(D;_KO + DZOK_)
+ Bpg, -k {D& [(0,D} — 0,D;57)0" K + (9,D} — 0,D}*)0" K~
+0"D4T Dy 0,K° — D} 0,K° + D9, K~ — D39, K~}
+ Abg e Dy (DiFK° + DK
+ Bp, pe i { Dy [0, DT — 8,D57) 0" K° + (8, D} — 0,D}°)8" K]
+ 0" DY (D3 0,K° — Dyt 0,K° + D39, K™ — D*9, KT}, (7.89)
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with the following coefficients

Agpric = 171 [2(VE6x — 265 — 460) + ha(V2 — 20s) +4hade] . (T90)

7
Bpg,prx = _EZK G2WEK, - (7.91)

According to the interaction Lagrangian, Dg; decays into the channels D** K% and D** K.
The formula for the decay vxiidths I‘D;%DHKO and FD;CIHD*OKO is as in Eq. QD when
setting A = Dg1, V = D*, P = K and replacing the vertex b’ 5 by the following vertex
h%lng*K:

Wpe p i = i{ADg Dk g"" + Bpg Dk [Py Py + Py'P” — (P - P2)g"" — (P1 - P2)g"™]}

(7.92)
The parameters are fixed and presented in Tables 4.1, 4.2, and 4.3. We then obtain the
decay width into D*K as

U'psi@s36)+ =Dk = Upt peog+ T Upt L pergo
= 25172 MeV. (7.93)

whereas F%§1(2536)+HD*K = (0.92 £ 0.03 4 0.04) MeV.

7.5. Weak decay constants of Charmed mesons

In this subsection we evaluate the weak decay constants of the pseudoscalar mesons D, Dg,
and ng. Their analytic expressions read [see Appendix A and also Ref. [118 [119, 122]]

v2Zp .
fps =250 (7.95)
Zpg
2¢¢
froo =—— . (7.96)
nc ch
Using the parameters of the fit we obtain
Fp =(254 £ 17) MeV | (7.97)
Fps =(261 £ 17) MeV | (7.98)
= ev. .
fne =(314 £ 39) MeV 7.99

The experimental values fp = (206.7 £ 8.9) MeV and fp, = (260.5 £ 5.4) MeV [51] show a
good agreement for fp, and a slightly too large theoretical result for fp. The quantity f,.
is in fair agreement with the experimental value f,, = (335 £ 75) MeV [232] as well as with
the theoretical result f,, = (300 & 50) MeV obtained in Ref. [233]. These results show that
our determination of the condensate ¢¢ is reliable (even if the theoretical uncertainty is still
large).
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7.6. Summary

We summarize the results of the (OZI-dominant) strong decay widths of the resonances Dy,
D*, Dy, and Dgy, in Table 7.1. For the calculation of the decay widths we have used the
physical masses listed by the PDG [51]. This is necessary in order to have the correct phase
space. With the exception of Dg;(2536)" — D*K, all values are in reasonable agreement
with the mean experimental values and upper bounds. Although the theoretical uncertainties
are still large and the experimental results are not yet well known, the qualitative agreement
is anyhow interesting if one considers that the decay amplitudes depend on the parameters
of the three-flavour version of the model determined in Ref. [I10]. Note that the theoretical
errors have been calculated by taking into account the uncertainty in the charm condensate
¢c = (176 £ 28) MeV. The lower theoretical value corresponds to ¢c = (176 — 28) MeV,
while the upper one to ¢ = (176 + 28) MeV. The explicit expressions for the decay widths
are reported in the previous.

Here we do not study the decay of other (hidden and open) charmed states because we
restrict ourselves to OZI-dominant processes. The study of OZI-suppressed decays which
involve the large- N, suppressed parameters Ay and hy is left for the next chapter. There, also
the decays of the well-known charmonium states (such as x. and 7.) will be investigated.

Decay Channel Theoretical result [MeV] Experimental result [MeV]
D;(2400)° — D7 1397303 DT~ seen; full width ' = 267 + 40
D (2400)" — D 51717 DT 7Y seen; full width: I = 283 + 24 + 34

D*(2007)° — D7 0.025 £ 0.003 seen; < 1.3
D*(2007)Y — D r— 0 not seen
D*(2010)* — D0 0.0180002 0.029 + 0.008
D*(2010)* — DOt 0.03870-00% 0.065 + 0.017
D;(2420)° — D*r 65151 D*F 7~ seen; full width: T' = 27.4 +2.5
D1(2420)Y — DOrrr 0.59 4 0.02 seen
D;(2420)° — DT~ 70 0.2175015 seen
D1(2420)Y — Dt~ 0 not seen; I'(DTn ™) /T(D* r~) < 0.24
D;(2420)" — D*r 65755 D07t seen; full width: I' = 25 £ 6
D1(2420)" — D7 0.56 + 0.02 seen
D1(2420)" — D707t 0.22 +0.01 seen
D1(2420)" — Dzt 0 not seen; I'(DY7*) /T (D*7%) < 0.18
Dg1(2536)T — D*K 25772 seen; full width T = 0.92 + 0.03 & 0.04
Dg1(2536)" — DTK? 0 not seen
Dg1(2536)" — +DK T 0 not seen

Table 7.1: Decay widths of charmed mesons.

The following comments are in order:

(i) The decay of D(2400)? into D7 has a very large theoretical error due to the imprecise
determination of ¢c. A qualitative statement is, however, possible: the decay channel
Dy (2400)° — D is large and is the only OZI-dominant decay predicted by our model. This
decay channel is also the only one seen in experiment (although the branching ratio is not
yet known). A similar discussion holds for the charged counterpart D (2400)7.
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(ii) The decay widths of the vector charmed states D*(2007)° and D*(2010)* are slightly
smaller than the experimental results, but close to the lower bounds of the latter.

(iii) The results for the axial-vector charmed states D1(2420)° and D;(2420)* are com-
patible with experiment. Note that the decay into D*r is the only one which is experimen-
tally seen. Moreover, the decays D1(2420)° — D7~ and D1(2420)" — DYz although
kinematically allowed, do not occur in our model because there is no respective tree-level
coupling; this is in agreement with the small experimental upper bound. Improvements in
the decay channels of D;(2420) are possible by taking into account also the multiplet of
pseudovector quark-antiquark states. In this way, one will be able to evaluate the mixing of
these configurations and describe at the same time the resonances D;(2420) and D;(2430).

(iv) It is interesting that the decays of the vector states D*(2007)° and D*(2010)* and of
the axial-vector states D1(2420)° and D;(2420)" can be simultaneously described with the
same set of (low-energy) parameters. Namely, in the low-energy language these states are
chiral partners and the results (even if the experimental knowledge is not yet conclusive and
the theoretical uncertainties are still large) show that chiral symmetry is still important in
the energy range relevant for charmed mesons.

(v) The decay of the axial-vector strange-charmed Dg;(2536)t — D*K is too large in
our model when compared to the experimental data of about 1 MeV. This result is robust
upon variation of the parameters, as the error shows. We thus conclude that the resonance
Ds1(2536)* is not favored to be (predominantly) a member of the axial-vector multiplet (it
can be, however, a member of the pseudovector multiplet). Then, we discuss two possible
solutions to the problem of identifying the axial-vector strange-charmed quarkonium:

Solution 1: There is a ‘seed’ quark-antiquark axial-vector state Dg; above the D*K
threshold, which is, however, very broad and for this reason has not yet been detected.
Quantum corrections generate the state Dg1(2460)* through pole doubling [223] 225, 226].
In this scenario, Dg1(2460) is dynamically generated but is still related to a broad quark-
antiquark seed state. In this way, the low mass of Dg1(2460) in comparison to the quark-
model prediction [47, 48] is due to quantum corrections [179, 200, 201, 202] 234, 235]. Then,
the state Dg1(2460), being below threshold, has a very small decay width.

Solution 2: Also in this case, there is still a broad and not yet detected quark-antiquark
field above threshold, but solution 1 is assumed not to apply (loops are not sufficient to gener-
ate Dg1(2460)). The resonance Dg(2460)F is not a quark-antiquark field, but a tetraquark
or a loosely bound molecular state and its existence is not related to the quark-antiquark
state of the axial-vector multiplet.

(vi) For the state D§,(2317) similar arguments apply. If the mass of this state is above
the DK threshold, we predict a very large (= 1 GeV) decay width into DK (for example:
FDE()*DK ~ 3 GeV for a D§, mass of 2467 MeV as determined in Table 4.5). Then, the two
solutions mentioned above are applicable also here:

Solution 1: A quark-antiquark state with a mass above the DK threshold exists, but it is
too broad to be seen in experiment. The state Dgp(2317) arises through the pole-doubling
mechanism.

Solution 2: Loops are not sufficient to dynamically generate D%,(2317). The latter is not
a quarkonium but either a tetraquark or a molecular state.

In conclusion, a detailed study of loops in the axial-vector and scalar strange-charm sector
needs to be performed. In the axial-vector strange-charm sector mixing with a pseudovector
quark-antiquark state should also be included. These tasks go beyond the tree-level analysis
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of our work but are an interesting subject for the future.
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8. Decay of hidden charmed mesons

8.1. Introduction

Charmonia exhibit a spectrum of resonances and play the same role for understanding
hadronic dynamics as the hydrogen atom [236]. The properties of charmonia are deter-
mined by the strong interaction which is undoubtedly one of the most challenging tasks.
Since the discovery of the charmonium state (J/v) with quantum numbers JF¢ = 17~
in November 1974 at BNL [42] and at SLAC [41], a significant experimental progress has
been achieved in charmonium spectroscopy. As an example of this, the hadronic and elec-
tromagnetic transitions between charmonium states and their decays have been measured
with high precision with the BESIII spectrometer at the electron-positron collider at IHEP
Beijing. Moreover, unconventional narrow charmonium-rich states have been recently dis-
covered in an energy regime above the open-charm threshold by Belle [237] 238], 239], 240]
and BaBar [241], which potentially initiates a new area in charmonium spectroscopy. The
upcoming PANDA experiment at the research facility FAIR will exploit the annihilation of
cooled anti-protons with protons to perform charmonium spectroscopy with an incredible
precision.

Recent theoretical developments such as nonrelativistic QCD [242] 243 244] and heavy-
quark effective theory [245], potential models [164] [163], lattice gauge theory [246] 247 [248],
and light front quantization have shown the direct connection of charmonium properties with
QCD. More details of the experimental and theoretical situation is given in the Ref. [59].
Therefore, we highlight the study of the decays of charmonium states and their mixing with
glueballs in the eLSM. The charm quark has been included in the eL.SM by its extension from
the case Ny = 3 [110] to the case Ny = 4 [119]. The eLSM has four charmonium states,
which are the (pseudo-)scalar ground states 1.(1S) and x.o(1P) with quantum numbers
JPC =07* and JPC = 0" as well as the ground-state (axial-)vector .J/t(15) and .1 (1P)
with quantum numbers J©¢ = 17 and JP¢ = 17+ [1I8] [119], respectively. It also includes
two glueballs: a scalar glueball (denoted as G) and a pseudoscalar glueball (denoted as G),
composed of two glouns. There are two candidates for the scalar glueball which are the
resonance fo(1500) (which shows a flavour-blind decay pattern) and the resonance fy(1710),
because its mass is very close to lattice-QCD predictions, and because it is produced in the
gluon-rich decay of the J/v, as seen in Refs. |72} [73] [74] [75, [76, [77, [78], (79 80, 81l 82| 217].
The latter is a mixing between three bare fields: the nonstrange oy = (v + dd)/v/2,
the hidden-strange og = s8, and the scalar glueball G = gg. This three-body mixing in
the scalar-isoscalar channel was solved in Ref.[83] and generated the physical resonances
f0(1370), fo(1500), and fo(1710). The last field that was introduced in the eL.SM is a pseu-
doscalar glueball via a term describing the interaction between the pseudoscalar glueball
with scalar and pseudoscalar mesons; as seen in chapter 6. The decay channels of the pseu-
doscalar glueball into scalar and pseudoscalar mesons [124] 125] 126], [127] could potentially
be measured in the upcoming PANDA experiment at the FAIR facility [218], which is based
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on proton-antiproton scattering and has the ability to produce the pseudoscalar glueball
in an intermediate state with mass above 2.5 GeV. The mass of a pseudoscalar glueball
predicted by lattice QCD (in the quenched approximation) is about 2.6 GeV [65] 66] 67, [71].

In the present chapter we study the decay properties of the charmonium states .o and
ne within the eLSM. The charmonia region is a good one to look for exotics [249] 250]. As
seen in Ref. [251] 252] 253], lattice QCD predicts the existence of various glueball states
in the charmonium mass region, some of them with exotic quantum numbers which are
not possible in a ¢g state. We then obtain the scalar glueball (due to the decay of x.o)
and the pseudoscalar glueball (due to the decay of 7.). We calculate the decay width of
the charmonium state 7. into a pseudoscalar glueball (this decay is allowed in the channel
Ne — 7)), with a mass of 2.6 GeV predicted by lattice QCD and repeat it with a mass of
2.37 GeV, as observed in the BESIII experiment where pseudoscalar resonances have been
investigated in J/v decays [219], 220], 221]. Particularly, we consider the X (2370) resonance,
since its mass lies just below the lattice-QCD prediction. Mixing phenomena, although
believed to be smaller than in the light mesonic sector, can occur also between charmonia
and glueballs with the same quantum numbers [254] 255]. The parameters have been used
in the strange-nonstrange investigation [I10] (which are discussed in chapter 3), whereas
the three parameters related to the charm sector have been fixed in chapter 4 through a fit
including the masses of charmed mesons. There are two parameters, A1, h1, which had zero
values in the previous case (Ny = 4), but in the present chapter this should be re-evaluated,
as the decay widths of x.9 depend on their values. For instance, there is a mixing between a
scalar glueball G with the charmonium state xq, but we neglect it in our evaluation because
it is expected to be small. We compute instead the mixing angle between the pseudoscalar
glueball (with a mass of 2.6 GeV) with 7.

8.2. Decay of the scalar charmonium state Y

In this section we study the decay properties of the scalar ground-state charmonium
Xc0(1P) in the eLSM, via computing the decay width of this charmonium state into (axial-
Jvector and (pseudo)scalar mesons and a scalar glueball as well. As a result of the study

discussed in Ref.[83], the resonance fy(1710) is predominantly a scalar glueball.

The terms in the eLSM relevant for the decay of xycoq are

(&) 5hea)wesn

— A\ [Tr(®T®)]% + %Tr((IDTd))Tr[(L“)Q + (RM)?] 4 ¢(det® — det®h)? ... (8.1)

G 2
Ereo =Lan = (&) TH(#D) + T

These terms contain the decay channels of the charmonium state .o into (pseudo)scalar
and (axial-)vector mesons as well as a scalar glueball G. The full Lagrangian is
presented in chapter 2. The term denoted as Lg; is the dilaton Lagrangian which describes
the scalar dilaton field which is represented by a scalar glueball G = |gg) with quantum
numbers JP¢ = 01F and emulates the trace anomaly of the pure Yang-Mills sector of QCD
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L0, [T, (2] 13, 51, 114, 115):
1 1 2 4
Lai = 5(3pG)2 - le <G4 In ’G‘ — G) : (8.2)

The energy scale of low-energy QCD is described by the dimensionful parameter A which
is identical to the minimum Gq of the dilaton potential, (Go = A). The scalar glueball
mass mq has been evaluated by lattice QCD which gives a mass of about (1.5-1.7) GeV
[65, 66, 67, [71, 256]. The dilatation symmetry or scale invariance, z# — A~lz#, is realized
at the classical level of the Yang-Mills sector of QCD and explicitly broken due to the
logarithmic term of the potential in Eq. . This breaking leads to a non-vanishing
divergence of the corresponding current:

1

6#*]51'1 = Tffil,y = _ZmQGAQ- (8.3)
The importance of including the scalar glueball in the eLSM is to incorporate dilatation
invariance meson mass terms. Note that the scalar glueball state was frozen in the previous
discussion but here it is elevated to be a dynamical degree of freedom. The details of the
terms and the field assignments are presented and discussed for the eLSM in the case Ny = 4
in chapter 4.

In our framework, ® represents the 4 x 4 (pseudo)scalar multiplets, as seen in Sec.(4.2),
as follows:

(aN+a8)\+/%(nN+”°) af +irt Kt +iK+  D°+iD°
on—a0) i (nr —m0 , I
P = (SU+iP)* = 1 ag +im- o %)f/%(mv ) K3 4+iK° D 4iD
V2| K 4iK- Ky +iK’  og+ins Dl +iDg
D)) +iD" Dyt +iDt Db +iDE  xeo +inc

(8.4)
where t* are the generators of the group U(Ny). The multiplet ® transforms as ® —
UL‘@U; under Uy (4) x Ug(4) chiral transformations, where Up, gy = e L™ is an element
of U(4)r(r)- Under parity ®(t, @) — ®(t,— ), and under charge conjugation ® — ®.
The determinant of ® is invariant under SU(4)r x SU(4)r, but not under U(1)4 because
det® — detUy®U,4 = e_w%\/Qdeetq) # det®. Note that Eq. is not invariant under
Ua(1) which is in agreement with the so-called axial anomaly.
Now we present the left-handed and right-handed matrices containing the vector, Vi, and
axial-vector, Ay, degrees of freedom [119]:

“’Njg’o + f“g“? pt +af K+ K} D* 4+ DY

1 — — wN—pO le*a(l) *0 0 *— —
LM:(VQ—}-Aa)‘LLta:f p tay \/2*04‘ 4\65 K —|—K1 D —I—Dl
V2 K4 K} E°+E.  ws+fis Dy +Dj

D7+D;  D*4Dl Dgt+DYy J/v+xe

(8.5)
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0 f + 0
wJ\:/J%p . 11\\7/§a1 P;r o ?—li- 0 K*t+ — Kii— D*U _ Dtl)
— — — —a * — —
RH:(VG_Aa)uta:L pT—ag wNéO—iV\Oﬁl K®—K) D* - Dj
V2 Ko = Ky K" -K, ws — fis Dy —Dg,
D" —D; D**t — Df Dt =D& T/ —xen
(8.6)

which transform as L* — U, LL“U; and R* — URL“U;% under chiral transformations.
These transformation properties of ®, L* and R* have been used to build the chirally
invariant Lagrangian (8.1)). The matrix A is defined as

00 0 0
00 0 0

A=l0o o065 0 | (8.7)
00 0 b

where dg ~ m?g and 6¢ ~ mzc

If mg < 0, the Lagrangian features spontaneous symmetry breaking. To implement
this breaking we have to shift the scalar-isoscalar fields G, oy, og, and xco by their vacuum
expectation values Go, ¢n, ¢g, and ¢¢ [78, [119)]

G =G+ Gy,
oN —0N + éN,

os =05+ ¢s,
Xco —*Xco + ¢c - (8.8)

The identification of the scalar glueball G is still uncertain, the two most likely candidates
are fo(1500) and fp(1710) and/or admixtures of them. We assign the scalar glueball (G),
on, and og from the following mixing matrix which is constructed in Ref. [83]:

fo(1370) 094 —0.17 0.29 on = (u + dd) /2
fo(1500) | = 021 097 —0.12 05 =3s : (8.9)
fo(1710) -0.26  0.18  0.95 G =gg

Note that we used different mixing matrices in the study of the decay of the pseudoscalar
glueball into scalar mesons as seen in chapter 5. From Eq., one obtains

G = 0.29 fo(1370) — 0.12 fo(1500) + 0.95 f5(1710), (8.10)
on = 0.94 fo(1370) + 0.21 f5(1500) — 0.26 fo(1710), (8.11)
og = —0.17 fo(1370) + 0.97 f5(1500) + 0.18 fo(1710) . (8.12)

These relations are used in the calculation of the decay widths of x.o.

8.2.1. Parameters and results

All the parameters in the Lagrangian (8.1) have been fixed in the case of Ny = 3, see
Ref. [I10] for more details, and the three additional parameters related to the charm sector
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(ec, 0c, and ¢¢), in the case of Ny = 4, have been determined in chapter 4. The values
of the parameters and the wave-function renormalization constants are summarized in the

following Table [8.1}

parameter value renormalization factor | value
m3 0.413 x 10° MeV? Zn = Zny 1.70927
m3 —0.918 x 105 MeV? ZK 1.60406
Ss 0.151 x 10°MeV? Zne 1.11892
Sc 3.91 x 10°MeV? Zpg 1.15716
£c 2.23 x 105MeV? Zp; = Zpro 1.00649
g1 5.84 Zns 1.53854
hs 9.88 ZKq 1.00105
A2 68.3 Zp 1.15256
hs 3.87 Zpr, 1.00437

Table 8.1.: Parameters and wave-function renormalization constants.

The wave-function renormalization constants for m and ny are equal because of isospin
symmetry, and for Dj and D*0 as well. The gluon condensate Gy is equal to A ~ 3.3 GeV
[83] in pure YM theory, which is used in the present discussion.

Furthermore, we set the values of the parameters A1 and h; to zero in eLSM in all cases
studied in this framework (as seen also in the previous chapters, in the case of Ny = 2
[108], (78, [78], Ny = 3 [110], and Ny = 4 for the masses of charmed mesons and the (OZI-
dominant) strong decays of open charmed mesons [118] 1191 120], 121], 122]), because they
are expected to be small, which is in agreement with large-NN, expectations. However, in
the OZI-suppressed decays of the charmonium state x.o, non-zero values of A\; and h; will
become important. To understand the reason for this let us explain in more detail.

Indeed, the decay of the charmonium state x.o into hadrons is mediated by gluon annihila-
tion. This annihilation must proceed through a three-gluon exchange for the following two
reasons:

(1) Gluons carry colour, but mesons in the final state are colour singlets (colourless). This
leads to the fact that the annihilation must be mediated by more than one gluon.

(ii) The combination of gluons involved in the decay must be such that it conserves all strong-
interaction quantum numbers. Consequently, vector particles, with charge-conjugation quan-
tum number -1, cannot decay into two vectors through two-gluon exchange. The charge
conjugation quantum number for a two-gluon state is +1, but for a three-gluon state it is
-1. Therefore, vector mesons decays only through three-gluon annihilation.
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Figure 8.1.: Decay of charmonium state into two mesons. ¢ refers to the up (u), down (d),
and strange (s) quark flavours.
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Figure 8.2.: Decay of charmonium state into three mesons.

In our case, gluons carry all the energy. Therefore, the interaction is relatively weak due
to asymptotic freedom, which leads to OZI-suppression. As a consequence, the decay of the
charmonium state yco into (axial-)vector and (pseudo)scalar mesons and a scalar glueball
is dynamically suppressed due to annihilation into three ‘hard’ gluons (see Fig. 8.1 and Fig.
8.2). In the eL.SM, this is incorporated by small non-zero values of the large- N, suppressed
parameters A\; and hj, as seen in Fig. 8.1 and Fig. 8.2. If we set them to zero, all the decay
channels of xco which have been found in the eLSM are zero, which is an unacceptable
result. This is important evidence for these parameters being nonzero in the OZI-suppressed

case. For this reason we determine them using the experimental decay widths of x ¢ listed
by the PDG [51] via a 2 fit,

) O, /Tih — e 2
) =) <Z£F€xpz> , (8.13)

i

where ¢ is a constant. We choose ¢ = 1 which leads to x?/d.o.f = 0.7. We then obtain

A = —0.16, (8.14)

and

hy = 0.046. (8.15)

These values of the parameters A; and h; are indeed very small, as mentioned before. So
a posteriori we justify the results of Refs. [119, 122]. The partial decay widths of various
decay channels which we used in the fit (8.13) are summarized in the Table
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Decay Channel | theoretical result [MeV] | Experimental result [MeV]
e R K20 0.01 0.0120.0047
T\ ok Kt 0.059 0.061=£0.007
Iy omnr 0.089 0.088+0.0092
Fxcoﬁf*oK*O 0.014 0.017£0.0072
Ty 0.01 0.0099-£0.0017
T.0m00 0.004 0.0081%0.0013

Table 8.2.: The partial decay widths of xcg.

Furthermore, we have to change the value of the parameter ¢, which is the coefficient of
the axial anomaly term, to fit the results of the decay widths of x.. Therefore, for the

determination of ¢, we use the decay widths of x.o into nn and n'r/, which are [51].

and

re? = (0.031 + 0.0039)MeV

Xco—=nm

exrp
Xco—n'n’

We then perform a fit by minimizing the y2-function,

th exp 2
XQ(C) — <choann(c) - Fxco—mn) + <F

= (0.02 £ 0.0035)MeV .

exrp

eTp
£FXcO —nm

th _ 2
Xco—n'n' (C) FXCO —n'n’ )
?

§ exp
Xco—n'n’

which gives ¢ = 7.178 x 1071Y MeV~* with x?/d.o.f = 0.18 where ¢ = 1.
The mixing between the hidden-charmed scalar meson x.o and the scalar glueball G is ne-

glected because it is small.

(8.16)

The two- and three-body decays of the hidden-charmed meson . into scalar glueballs and
scalar mesons are reported in Table &.3.

Decay Channel theoretical result [MeV] | Experimental result [MeV]|
FXco—>f0(1370)f0(1370) 51073 <3.1073
D'y o= £0(1500) £ (1500) 4.1073 <5.107%

T o= £0(1370) £ (1500) 2.107° <1.1073
D xeo— f0(1370) fo(1710) 110" 0.0069+0.004
Uy o— £0(1500) £ (1710) 2.107° <7.107*

L'\ o fo(1370)mn 41074 .

FXco—>f0(1500)7777 3.1073 _

D'y o fo (1370 27.1074 _

L'y o= fo(1370) 89.10°6 _

L'\ o= fo (15001 11.103 ;

FXC()—>f0(1710)7777 8.107° _

FXco—>fo(1710)1777’ 3.107° _

Table 8.3.: The partial decay widths of y.g.
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Additionally, the two- and three-body decays of the hidden-charmed meson x.o into (axial-
Jvector and (pseudo)scalar mesons are reported in Table 8.4.

Decay Channel | theoretical result [MeV] | Experimental result [MeV]
Tx0raon 0.004 i
. 0.005 i

Tkt 0.005 0.063-£0.0233
T oo 0.022 0.03120.0039
RN 0.02 0.02£0.0035
Tyeormy 0.004 <0.0024

T o K"K 0.00007 i
Tyoospp 0.01 i

T oo i Ky 0.008 :

Ty K2 Koy 0.004 i

Table 8.4.: The partial decay widths of xo.

The results are in good agreement with experimental data [51]. All the relevant expressions
for the two- and three-body decay processes of xq are presented in the Appendix along with
computational details.

8.3. Decay of the pseudoscalar charmonium state 7.

In this section we compute and discuss the decay widths of the pseudoscalar charmonium
state nc(1P) into (pseudo)scalar mesons and a pseudoscalar glueball (. — 77G) in the
eLLSM.

Two terms in the eLSM are relevant for the decay of the pseudoscalar hidden-charmed
meson 7¢ into (pseudo-)scalar mesons and a pseudoscalar glueball G. The first has the form
c(det® — det®")2, which describes the axial anomaly and represents a further breaking of
dilatation and chiral symmetry and is additionally responsible for the mass and decays of the
n's. The other term (see Eq. (6.1)) describes the interactions of the pseudoscalar glueball
G= lgg), with quantum numbers JPC = 0=F, with scalar and pseudoscalar mesons.

8.3.1. Decay of 7¢ into a pseudoscalar glueball

The effective Lagrangian which describes the interaction of the pseudoscalar glueball G with
the (pseudo)scalar mesons (which is described in detail for the case of Ny = 3 (6.1) in
chapter 6) reads

LI = iceqy G (det<I> - det<I>T> , (8.17)

where cg s 18 2 dimensionless coupling constant. The pseudoscalar glueball G is invariant
under U(4), x U(4) g chiral transformations, while under parity, G(t, 7)) — —G(t,—7), and
under charge conjugation G — G. These considerations lead to the interaction Lagrangian
Eg‘t of Eq. () which is invariant under SU(4), x SU(4)g, parity, and charge conjugation.
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To determine the value of the coupling constant cs 4> one can relate it to its counterpart
in the three-flavour case CEo(N;=3) which was computed in the study of the decay of a

pseudoscalar glueball G into scalar and pseudoscalar mesons (as seen in chapter 6), with the

result Cao(N;=3) = 4.48 £+ 0.46 [124].

The Lagrangian which describes the coupling of the pseudoscalar glueball and (pseudo)scalar
mesons was given in Eq. (6.1)) for the three-flavour case

int i ~ _ T
Lo = Gy =s)C (det®(n, =y — detd]y ) .

By using the relation of the multiplet matrix of (pseudo)scalar mesons (®) for the four-flavour

case and for the three-flavour case (which is presented in Eq. (4.123)), we can transform the
: : : int _
interaction Lagrangian Cé , for the case of Ny =4 1} to be as

V2

bc CGa(N;=3)

Comparing Eq.(8.17)) with Eq.(8.19), we get

o~ \@Cécb(Nf:s)
Go ¢C :

We then get cz4 = 0.036 in the present case (Ny = 4).

(8.18)

£ =i G (det@ - det(I)T> , (8.19)

(8.20)

The interaction Lagrangian (8.17) contains only one decay process which describes the
decay of the pseudoscalar charmonium 7, into a pseudoscalar glueball G through the channel
nc — Gmr. The tree-level vertices of this process have the form

1 ~ 02 1 ~
noGrn = —3€Ga0S Inc ZincGr" — o cgy®s Zye ZaneGr 't (8.21)
One can compute the full decay width Pnc Gy frOm
F’Uc—)éﬂ'ﬂ' = Fnc—>éﬂ'07r0 + Fnc—)éﬂ'_ﬂ+
= Fnc%éﬂ'oﬂ'o + 2Fnc~)éﬂ'07‘r0
= 3Fnc—>é7r07r0 . (8.22)
The decay amplitude is _
, —i
—iM = —cgebs Zpo 72 (8.23)

one also uses the corresponding decay width for the three-body case, Eq. (5.61)). The decay
width of the pseudoscalar charmonium state 7. into a pseudoscalar glueball with a mass of
2.6 GeV (as predicted by lattice QCD in the quenched approximation [65] [66), 67, [7T], 256])
is

r =0.124 MeV, (8.24)

ne—mrG(2600)

and for a mass of the charmonium state 7, which is about of 2.37 GeV (corresponding to
the mass of the resonance X (2370) measured in the BESIII experiment [219] 220] 221])

FnoHWﬂé(Z?ﬂO) =0.16 MeV . (8.25)
These results could be tested in the PANDA experiment at the upcoming FAIR facility.
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8.3.2. Decay of 7¢ into (pseudo)scalar mesons

The chiral Lagrangian contains the tree-level vertices for the decay processes of the pseu-
doscalar n¢ into (pseudo)scalar mesons, through the chiral anomaly term

Ly, = c(det® — det®)? | (8.26)

where ¢ is a dimensionful constant and has been determined in Sec. 8.2. After the field
transformations Eqs. (4.19| - 4.32) have been performed in Sec. 4.3, the terms in the
Lagrangian (8.26)) which correspond to decay processes of nco read

Loe =50%00 ZnanodV20son Zic Zics (KiK' + Ky K + K™K + KT KO)
+ 2Z7r¢25(a87'('0 + a{)"ﬁf + agﬂJr) — 4oNDs(ZygnsoN + ZyyINTS)
— 608 ZnyIN ON — ONNSOS Zng + 20N iy ZnyMENN + 665 Zng Zi ks
V20N Zys ZH(K'K® + K~ K*)ns — 3V2635 Zy 23 (K K° + K~ K+ )y
V265 Z: Z% |V2AR K Tn + KK 7t) — (K'K’ — K- KH)7°
— 2515 Zys Z2(n"° + 217} (8.27)

The decay widths of the pseudoscalar hidden charmed meson n¢ into scalar and pseu-
doscalar charmed mesons are presented in Table 8.5. The relevant expressions for these
decay processes are presented in the Appendix.

Decay Channel | theoretical result [MeV]| | Experimental result [MeV]|
LRk 0.01 -
I'pe—aor 0.01 )

L= fo(1370)7 0.00018 3

F"]c—>f0(1500)'l7 0.006 _

Lo fo(1710)7 0.000032 _

Lo fo(1370)n 0.027 -

L' £0(1500)n/ 0.024 i}

L fo(1710)0 0.0006 B
L —nmm 0.052 -
Loy 0.0023 }
Loesnmy 0.44 -
Lo 0.0034
Lok ® 0.15 0.32+0.17
Ly KK 0.41
Loy 0.12 0.54£0.18
| 0.08 1.3+0.6
Ly Kir 0.095 -

Table 8.5.: The partial decay widths of 7.
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There are experimental data for these decays firm by the PDG with which we can compare.
The three measured decay widths are in reasonably good agreement with experimental data.

8.3.3. Mixing of a pseudoscalar glueball and 7¢

The mixing between the pseudoscalar glueball G with the pseudoscalar charm-anticharm
meson 7). is described by the non-interacting Lagrangian as follows:

Lo = 1 1 5~y 1 -
E@ e = 5(&LG)2 + 5(8/1770)2 _ 5méGY2 _ imfhnz + ZéncGnC’ (8.28)

where .
Zene = T CGaTnc O s - (8.29)

The physical fields no and G can be obtained through an SO(2) rotation

G\ [ cosép sing\ [ G
(n’c>_<—sin¢> Cos<b)_(nc> ; (8.30)

with
m??/c = m% sin? ¢ + m%o cos® ¢ + e sin(2¢) , (8.31)
mZ, = mk cos® ¢ +mp sin® ¢ — Z e, Si0(20) (8.32)

where the mixing angle ¢ reads

1
¢ = — arctan (8.33)

|:_C§q> ch¢?v¢5:|
2 )

2(m2., — m%)
where c~. is a dimensionless coupling constant between G® which was determined in

@ ~
Eq. 1' We then obtain the mixing angle of the pseudoscalar glueball G and the pseu-
doscalar charm-anticharm meson 7. to be —1°, for a mass of the pseudoscalar glueball which
is 2.6 GeV, as predicted by lattice-QCD simulations [65], 66] [7T], 67, 256].
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9. Conclusions and Outlook

In this work, we have developed a four-flavour extended linear sigma model with vector and
axial-vector degrees of freedom. Within this model, we have calculated masses and decay
widths of charmed mesons.

For the coupling constants of the model, we have used the values determined in the low-
energy study of mesons in Ref. [I10] and listed in Table 4.1. The three remaining parameters
related to the current charm quark mass were determined in a fit to twelve masses of hidden
and open charmed mesons. The results are shown in Table 4.5: the open charmed mesons
agree within theoretical errors with the experimental values, while the masses of charmonia
are (with the exception of J/1) underestimated by about 10%. The precision of our approach
cannot compete with methods based on heavy-quark symmetry, but it admits a perspective
on charmed states from a low-energy approach based on chiral symmetry and dilatation
invariance. The level of agreement with experimental data proves that these symmetries
are, at least to some degree, still relevant for the charm sector. In this respect, our approach
is a useful tool to investigate the assignment of some charmed states (see below) and to obtain
an independent determination of quantities such as the chiral condensate of charm-anticharm
quarks. The latter turns out to be sizable, showing that the charm quark, although heavy,
is indeed still connected to nontrivial vacuum dynamics.

We have also presented a chirally invariant effective Lagrangian describing the interaction
of a pseudoscalar glueball with scalar and pseudoscalar mesons for the three-flavour case
Ny = 3. We have studied the decays of the pseudoscalar glueball into three pseudoscalar
and into a scalar and pseudoscalar quark-antiquark fields.

The branching ratios are parameter-free once the mass of the glueball has been fixed.
To this end, we have considered two possibilities: (i) in agreement with lattice QCD, we
have chosen mg = 2.6 GeV. The existence and the decay properties of such a hypothetical
pseudoscalar resonance can be tested in the upcoming PANDA experiment [218]. (ii) We
assumed that the resonance X (2370), measured in the experiment BESIII, is (predominantly)
a pseudoscalar glueball state, and thus we have also used a mass of 2.37 GeV [219] 2201 221].
The results for both possibilities have been summarized in Tables 6.2 and 6.3: we predict
that K K is the dominant decay channel, followed by (almost equally large) nmm and n'7mm
decay channels. In the case of BESIII, with a measurement of the branching ratio for other
decay channels than the measured 7’77 one could ascertain if X (2370) is (predominantly)
a pseudoscalar glueball. In the case of PANDA, our results may represent a useful guideline
for the search of the pseudoscalar glueball.

Then, we have calculated the weak-decay constants of the pseudoscalar states D, Dg,
and 7., which are in fair agreement with the experimental values and, as a last step, we
have evaluated the OZI-dominant decays of charmed mesons (Table 7.1). The result for
D (2400)°, D{(2400)T, D*(2007)°, D*(2010)™, D;1(2420)°, and D;(2420)" are compatible
with the results and the upper bounds listed by the PDG [51], although the theoretical
errors are still quite large. Nevertheless, we could simultaneously describe the decays of
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open-charmed vector and axial-vector states which are chiral partners within our theoretical
treatment.

Concerning the assignment of the scalar and axial-vector strange-charmed quarkonium
states Dgo and Dgp, we obtain the following: If the masses of these quarkonia are above
the respective thresholds, we find that their decay widths are too large, which probably
means that these states, even if they exist, have escaped detection. In this case, the res-
onances D%,(2317) and Dg1(2460) can emerge as dynamically generated companion poles
(alternatively, they can be tetraquark or molecular states). Our results imply also that the
interpretation of the resonance Dg1(2536) as a member of the axial-vector multiplet is not
favored because the experimental width is too narrow when compared to the theoretical
width of a quarkonium state with the same mass. An investigation of these resonances ne-
cessitates the calculation of quantum fluctuations.

In summary, the fact that a (although at this stage only rough) qualitative description is
obtained by using a chiral model and, more remarkably, by using the parameters determined
by a study of Ny = 3 mesons, means that a remnant of chiral symmetry is present also in
the sector of charmed mesons. Chiral symmetry is (to a large extent) still valid because the
parameters of the eLSM do not vary too much as a function of the energy at which they
are probed. Besides mass terms which describe the large contribution of the current charm
quark mass, all interaction terms are the same as in the low-energy effective model of Refs.
[108| [78, 110] which was built under the requirements of chiral symmetry and dilatation
invariance. As a by-product of our work we also evaluate the charm condensate which is
of the same order as the nonstrange and strange quark condensates. This is also in accord
with chiral dynamics enlarged to the group U(4)r x U(4).

In the present work we have also represented a chirally invariant linear sigma model with
(axial-)vector mesons in the four-flavour case, Ny = 4, by including a dilaton field and a
scalar glueball field, and describing the interaction of the pseudoscalar glueball with (pseudo-
)scalar mesons. We have calculated the decay widths of the hidden-charmed meson y.o into
two and three strange and nonstrange mesons (Tables 8.2 and 8.4) as well as into a scalar
glueball G, which is an admixture of two resonances f(1370) and fy(1500) (Table 8.3).
Note here that the decay of charmonium states to open-charmed mesons is forbidden in the
eL.SM, as discussed also in Ref.[257]. We have also computed the decay widths of the pseu-
doscalar charmonium state 7¢ into light mesons (Table 8.5) and into a pseudoscalar glueball
G, through the channel nc — mnG. The latter is obtained from the interaction term of the
pseudoscalar glueball. We have also evaluated the mixing angle between the pseudoscalar
glueball and 7., which is very small and equal to —1°. We have additionally found that the
extended linear sigma model offers no decay channels for the (axial-)vector charmo-
nium states where I'j;, = 0 and T'y,, = 0. The results of the decay widths of x. are in
good agreement with experimental data [51] and of 7. are in reasonably good agreement with
experiment [5I], which indicates to what extent the eL.SM is a successful and appropriate
model to study the phenomenology of hidden-charmed mesons and open-charmed mesons
(chapter 7).

The parameters were determined in the case of Ny = 4 (see chapter 4). However, there are
four parameters that we need to fix: (i) A\; and hy; which are assume to have zero values
in all the previous investigation for Ny = 3 case, (see chapter 3), and Ny = 4 case, (see
chapter 4), because their values are numerically small and do not affect the previous results.
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However, the decay widths of charmonium states x.o and no depend on both, and for this
reason we determined them by a x? fit to the decay widths of x., see Table 8.2. (ii) The ¢
parameter; which is in the axial anomaly term. This parameter was determined by the fit
. (iii) czg; which was fixed by the relation Cho(N;=3) [124].

Note that the decay widths for the (axial-)vector charmonium states J/v and x.1 are zero
for kinematical reasons.

The restoration of chiral symmetry at nonzero temperature and density is one of the
fundamental questions of modern hadronic physics [258], 259, 260, 261]. The two-flavour
version of the eLSM has been successful in a study at nonzero density [I53]. This leads us to
consider the restoration of chiral symmetry at nonzero temperature and density for Ny = 3
and Ny = 4 with the eLSM, which offers many challenges for future work.
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Appendices






149

A. Determination of the weak decay
constants

We compute the decay constants of pion, kaon, the pseudoscalar open-charmed mesons D
and Dg, and the pseudoscalar hidden-charmed meson n¢, which are denoted as fr, fp, fpg,

and fy., by using the formula (5.15),
P— P+0,(t,S+ Sta), (A1)

which is discussed in chapter 5 in details. In the case Ny = 4, the pseudoscalar mesons are
ordered in a 4 x 4 matrix as follows:

%(UN +7T0) T Kt DO
p— L m vzl =) K° D- (A.2)
70 _ 9 .
V2 K- K ns Dg
D’ D+ Dy e
where . ) . )
_ T 4w LT = s
T = — y vie = 5 A3
7 7 (A.3)
K'+iK? Kl —iK?
K =———""—| Kt=—_—| (A.4)
V2 V2
D! +iD? D! —iD?
pP oD DD (4.5)
DL +iD? ~ DL—iD?

The vacuum expectation values ¢y, ¢g, and ¢¢ are contained in the following diagonal
matrix:

¢
0 0 0
1l o & o0 o
(®) = V2 . (A7)
0 0 ¢g O
0 0 0 ¢c

In Eq., ty = ’\7‘1 are the generators with a = 0,1, ...,N? — 1, where A\, are the Gell-
Mann matrices and chosen to satisfy Tr(A, A\p) = 264p. In the case Ny = 4, the Gell-Mann
matrices are rank-4 tensors and there are 16 generators (a = 0,...,15). For a =0, Mg is a
special unitary SU(4) matrix but it corresponds to a unitary U(1) matrix,

1000
1 o100
to_ﬁ 0010 (A8)
0001
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The canonical form of the 4 x 4 Gell-Mann matrices is

010 0 0 —i 00 1 0 00
1000 i 0 0 0 0 -1 0 0
M=l o000l Moo o0l ™M o 0 00|
00 0 0 0 0 00 0 0 00
00 10 00 —i 0 00 0 0
00 0 0 00 0 0 00 10
MEL L 000 ] M0 0 0] M oo o |
00 0 0 00 0 0 00 0 0
00 0 0 10 0 0 000 1
00 —i 0 01 0 0 00 0 0
M=o 00| oo 20|l M loooo]"
00 0 0 00 0 0 1000
00 0 —i 00 0 0 000 O
000 0 000 1 00 0 —i
M=l o000 0 |>™MTlooool] Moo o0 o . (A9)
i 00 0 010 0 0 i 0 0
00 0 0 000 0 100 0
v._|0000 v _|0o0o0 0 v L|loroo
B71ooo01|> ™M looo = | "™ loo1 o
0010 00 i 0 000 —3

Note that the rank-3 Gell-Mann matrices of the SU(3) group are described by the first
eight matrices [262], whereas transitions between SU(3) and SU(4) elements are generated
by the matrices A\g — A5 [263]. We now use Eq.(A.1)) to determine the decay constants.

A.1. Pion decay constant

In order to determine the pion decay constant, it suffices to take the corresponding direction
in a-space, for instance a = 1.

01 00
. 1110 00 .
Firstly, for a = 1, the generator t; = 3 000 0l and Eq.(A.1]) takes the following
00 00

form

P—>P—|—91(t1 <S>—|—<S>t1) (A.lO)
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Explicitly,
0 7t 0 0 0 7t 0 0
000 1 000
2 0 0 00 0 0 00
0 0 00 0 0 00
0100\ (% 0 0 0
oN
Ly, 1 0 00 0 7 0 0
2 00 0O 0 0 ¢g 0
00 0O 0 0 0 ¢c
0 0 0 0100
N
i 0 7 0 0 10 0 0 ’
0 0 ¢s O 00 0O
0 0 0 ¢c 0 0 0O
0 x 00 0« 00 0 200
1= 0 0 0 1f# 0 00 0 00
- = = +01 | V2 (A.11)
2 0O 0 0O 2 0 0 0O 0 0 0 0
0 0 00 0 0 00 0 0 0 0
We obtain
el V20N0; (A.12)
Similarly, for @ = 2,3, we obtain
72 + \/§¢N02, (A13)
70 10+ V29 0. (A.14)
After introducing the wave-function renormalization for the pion, we get
Z.7m v Z. 70 4+ V2hN0s, (A.15)
Z7r 7T1 — Z7T ’ﬂ'l + \/i(ﬁ]\[&l, (A16)
Zom? s Zp w2 4+ V20N0, (A.17)
which can be written
2
70 70+ ‘[;’Neg, (A.18)
2
Y \[ZQSN 01, (A.19)
2
772+—>7T2+\[Z¢N€2. (A.20)
This gives the decay constant of the pion as
2
fr= V2 (A.21)

Zr
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A.2. Kaon decay constant

Let us determine the decay constant fx of the kaon.

0 010
0 000
In the case of a = 4, the generator t4 = 10 0 0
0 000
following form
P — P+ 04(ts (S) + (S) ta).
Kl Kl
0 0 o) 0 0 0 v 0
1 0 0 0 O ’_>1 0O 0 0 0
5 Kl = Kl
\/§ V2 0 0 0 \/5 V2 0O 0 O
0O 0 0 O 0 0 0 O
0010 o
1 0000 0
%110 0 0 0
0000 0
o <z>0 0 0 0
PN
" 0 75 0 O 0
0 0 65 O 1
0 0 0 ¢c 0
Kl Kl
0 O 75 0 0 0 5% 0 0
1 0 0 0 O '_>1 0 0 0 O ey 0
— | = — | 2 )
V2l 5 0 00 V2| 55 0 00 ¢s +
0 0 0 O 0 0 0 O 0
1 1 1 ON
Kl KU “Nyp
2
Kl K1y Y2Osten,
V2
After introducing the wave-function renormalization of the kaons,
V2¢s+ on)
Ik K'— Z K1+(—9
K K NG 4
2
= KlHKl_FW——FQbN)QLL.

V2 Zy

, then Eq.

o ogff o

o o o o

o O O

o O o O

oo oo C’C%OC’

Al

w
o oo +

bc

takes the

SE
P o oo o

DN DO
=
N’

(A.22)

w
s

(A.25)

(A.26)
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Similarly for a = 5, 6, 7,8, which can be written in general as

V25 + on
KK+ —— ) A.27
NP 4,5,6,8 ( )
Then we can obtain the kaon decay constant as
2
fo = Y205 0N (A.28)
V2 Zk

Note that, in the case Ny = 3, we used the formulas for the weak decay constants of pion
and kaon divided by /2 as follows:

_ON
Jr= Z (A.29)
and
_ V2¢5+ N
Jk = T9Z. (A.30)

because these theoretical formulas of the weak decay constants have been used in the fit
[110], which are compared to the experimental data as listed by the PDG [51]], where they
are divided by /2.

A.3. Decay constant of D and Dg

Now let us turn to determine the weak decay constants of the open charmed mesons D and
Dg:

For a = 9, the generator tg = % , and Eq.(5.15)) reads

_ o O O
o O o o
o O O O
o O O

P — P+ 0y(tg (S) + (S) to). (A.31)

Then,
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D' D' + (% + pc)by . (A.33)

After introducing the wave-function renormalization of the D mesons

Zp D' v Zp D! +(q\5/]\%+¢c)99>
L oN + V2¢c

V2

Similarly for a = 10, 11, 12, which can be written in general as

= D' D! 0y . (A.34)

oNt V2,
\/§ZD ) ) ) .

Then we can obtain the decay constant of D as

D D+ (A.35)

_ N +V20c

fp iz,

(A.36)

For a = 13, the generator t13 = % , and Eq.(5.15) is

o O O O
o O O O
_ o O O
o= OO
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P — P+ 6h3(t13(S) + (S) t13) - (A.37)
00 O 0 0 0 O 0
tfoo o o | 100 0 0
2 00 0 D 200 0 D}
00 DY o0 0 0 DY 0
0000\ [% 0 0 0
1 oN
o 0 000 0 7 0 0
2 0 0 0 1 0 0 ¢g O
0 01 0 0 0 0 ¢c
0 0 0 0000
N
I 0 NG 0 o0 00 0O ’
0 0 ¢g O 0 0 0 1
0 0 0 ¢c 0 01 0
(A.38)
00 O 0 0 0 O 0 0 0 0 0
00 O 0 . 00 O 0 ny 0 0 0 0
00 0 D 00 0 D Bl o o 0 s +dc |
00 DL 0 0 0 DL 0 0 0 ¢s+9oc 0
(A.39)
Dg = Dy + (65 + ¢c)b1s, (A.40)
we get
Zpg Dy — Zpg D + (¢s + ¢c)b13
. DL DLy sty (A.A41)
ZDg
Similarly for a = 14, which can be written in general as
_'_
Ds— Dg + M913,14 ; (A.42)
Zpg
Then we obtain the decay constant of Dg as
_l’_
fp, = Nt (A.43)

Zp

S
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A.4. Decay constant of 7

Finally, the decay constant of the charmonium state no can be determined from the combi-
nation of two generators, a = 0 and a = 15, as follows:

10 00
01 00
_ — X — _1_
For a = 0, the generator tp = 3 = >3l o0 1 0 , and Eq.(5.15] reads
0 001
P — P+ 60y(to (S) + (S)tg) - (A.44)
N N
\/Nﬁ nO 0 0 \/J\% 770 0 0
N N
1 0 75 0 0 v—>i 0 75 0 0
V2 0 0 ns 0O V2 0o 0 ng o
0O 0 0 ne 0 0 0 no
N
1000 3 ¢0 0 0
1 N
I 0, 01 00 0 /3 0 0
2v/2 0 010 0 0 ég 0
0 0 01 0 0 0 ¢c
20 0 0 1000
oN 1
n 0 75 0 0 0 0 0 ’
0 0 ég 0 0 01 0
0 0 0 ¢ 0 0 01
N N [
\/J\% 7]O 0 0 \/N§ 770 0 0 \/1% ¢0 0 0
N N N
0 7 0 0 . 0 75 0 O + 0, 0 3 0 O (A.45)
0 0 ns O 0 0 ¢s O 0 0 ¢s O
0 0 0 nc 0 0 0 ¢c 0 0 0 o¢¢
1 00 0
010 O
_ — 1
For a = 15, the generator t15 = il oo 1 o , and Eq.(A.1)) reads
000 -3

P — P+ 615(t15 (S) + (S) t15) - (A.46)
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Then,
N N
finooo jinooo
N NN
Lf o " oo o0 1o Z oo o
V2 0 0 ns 0 V2 0 0 ng 0
0 0 0 ne 0 0 0 7
é
100 0 7§¢000
1 010 0 0 2 o 0
+ —=0 V2
2v6 L1 001 0 0 0 ¢g 0
0 0 0 -3 0 0 0 ¢c
& 0 0 0 100 0
on 1
Lo % oo 0 0 0 |
0 0 ¢g O 0 01 O
0 0 0 ¢c 00 0 -3
n n N
7%”000 7]%77000 Jg(ﬁoo 0
N Un'a PN
OﬁOO'_)O\/iOO+915 0\/50 0
0 0 ng O 0 0 ng O V3L 0o 0 ¢s 0
0 0 0 ne 0 0 0 ne 0 0 0 =3¢
(A.47)

To find a combination of diagonal Lambdas which has only a nonzero entry in the fourth
column and in the fourth row, we consider the relation between the singlet angle of trans-
formation 6y and the multiplet angle transformation 615 as follows:

615 = —V/360 .
Therefore, Eq.(A.47), can be written as

n n (2
7% 77O 0 O 7% 770 0 O \/%’ ¢0 0 0
NN N PN
0 0 0 | |0 B0 0| b0 % o0 o
0 0 ng O 0 0 ns O 0 0 ¢g 0
0 0 0 nc 0 0 0 n¢ 0 0 0 —3¢c
(A.48)
Adding Eq.(A.45) and Eq.(A.48)), we obtain
% nO 0 0 ”7% T]O 0 0 000 0
g g
of O 8 0 0 ol OB 0 00000 (A.49)
0 0 79 O 0 0 79 O 000 O
0 0 0 7 0 0 0 ne 0 0 0 4¢c
Then,
2nc = 2nc + 4¢cbo (A.50)

After introducing the wave-function renormalization of the nc meson
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Zne e+ Zne e + 2¢cb - (A.51)

Therefore, the weak decay constant of n¢ is

2
o = 52 (A.52)
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B. Decay rates for y

We show the explicit expressions for the two- and three-body decay rates for the scalar
hidden-charmed meson x.o, which are extracted from the Lagrangian (8.1) at tree level.
The results are listed in Tables 8.2, 8.3, and Table 8.4 in Sec.8.2.

B.1. Two-body decay rates for Yy

The explicit expression for the two-body decay rates of x.o are extracted from the Lagrangian
(8.1), and are presented in the following.

Decay channel xco — FSOKSO

The corresponding interaction Lagrangian from the Lagrangian (8.1) reads
7740 7 - *— Tk
L ooRiks == 2M Zs d0 xco(Ko Ko + KiK'
— 1 b Ziswhoo X0 (O KO + 0, K5 MK (B.1)

Consider only the xyco — FSOKS‘U decay channel, the ycg — KS_K(’)kJr will give the same
contribution due to isospin symmetry,

——*0 . % —x*0
L oK =~ 2N Zfs v x00K o Ki' = hi ¢¢ Zies i xco0u K "0 Ky (B.2)

Let us denote the momenta of K()‘O and fgo as P and P, respectively. The energy-
momentum conservation on the vertex implies P = P, + P, where P denotes the momenta
of the decaying particle xco. Given that our particles are on-shell, we obtain

P2_p2_p2 m2  —2myso
PPy = 21 2 — X TR (B.3)

Upon substituting 9, — —iP* for the decay particle and 9, — —I—iPl’f2 for the outgoing
particles, one obtains

m .
= ¢ Die [— 2A1 + hwie- : ] Xco K3 Ky - (B.4)

£ —*0
xcoKo Kg°

Consequently, the decay amplitude is given by

. . 9 9 My — “ME;
—iM 00 = 160 Zhs |20 — hawh. — 20| (B.5)
0

Xco—>F3
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The decay width is obtained as

|kl
Xco— Ko K&~ Spm2 |~ xco— Ko Kgo (B.6)
XCo
where
1 4 2 2 2 2 2 2 2
LA Dy | X0 F (Mo = myggo)” = Ao T mmpo)Macy |- (BT)

Decay channel xco -+ K~ KT

The corresponding interaction Lagrangian from the Lagrangian (8.1) has the following
form

-0 -
Lycork == 2\ Zi ¢c xco(K K + K7K{)
+ 1 b0 23wl Xoo(0, KPR + 0, K~ 9" K. (B.8)

In a similar way as the previous case, one can obtain the decay width for the channel
xco — K~KT as

|?1] m? —Qm%{ 2
r e = B g2 g 0N 4o (X TEE) B.9
v = b ot Zk |21+ (T (B9
where 1/2
— 1
| k1] = e [mico —4m%mico} . (B.10)

Decay channel ycg — 7w

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1) as

2 _ 1 _
Lyconr = =M b0 Z2 xco(n?” +2n7 7 h) + th pc Z2w2 Xcol(0um°)? + 20,7 Ot
(B.11)

The decay width for the channel ycg — 77 can be obtained in complete analogous as the
previous cases

i 2 2\ 12
3 kil 5 4 2 [ Mxeo — 2Mir
r =———S—¢cZ |2+ h 2 B.12
X0 = Y gy, 0 [P e 2 ’ (B.12)
where A 2 3 \1/2
— my . —4mim
[ k] = e xeo) (B.13)

2m‘Xco
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Decay channel xco — KR

The corresponding interaction Lagrangian is extracted as
- —+0)
L w00 = h1dcxoo(K, K+ KK (B.14)
Consider only the K ZOF*OM decay channel, then

«07>*0
L 0 =hidc Xco KK (B.15)
Put
AXCoF*OK*O =hgc. (B-16)

Let us denote the momenta of x¢o, F*O, and K*0 as P, Py, and P,, respectively, while
the polarisation vectors are denoted as 5La)(P1) and ¢/ (P2). Then, upon substituting
o+ — iP{f o for the outgoing particles, we obtain the following Lorentz-invariant XCOF*OK *0

. . _oaq(ep)
scattering amplitude Zchoﬁ?*OK*O'
_ im(@h) — () B) %
ZMXco—)F*OK*O €M (Pl)EV (Pz)hXcoF*oK*O s (B.17)
with
v . . wv
xcoK K0 ZAXCOK kw09 (B.18)
where h‘; ZOK*OK*O denotes the XCOF*OK *0 vertex.
The averaged squared amplitude |—iM|? is determined as follows:
2 1§~ |l ?
o XCQHF*OK*O :g Z ‘_zMXCO_}F*OK*O
a,B=1
138
- (a) (B pv
=3 > €ﬁ1(fﬁ)fu)(fﬁ)hXCoigokgo€g”(fﬁ)
a,B=1
x e pz)h;zz?%o . (B.19)

puv v
s 2 _ 1 wv ’ XCO?*OK*OPIM) _ ’ XCOF*OK*OPQV
| ZMXCO—W*OK*O 3 h KO px0 2 2
Xco mV1 mv2
’ " 70 oL 1ntov
+ X = ] : (B.20)
My My,
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From Eq. (B.18)) we obtain

M, P, A o, P/
XcoK K0 KTK=07 10
iz "
hXcoK*OK*OPQV iA CO?*OK*OPQ )
and
uv
h —40 Pl/JPQZ, =iA X*OK*OPI . PQ y

and consequently

A2

2
- B0l = 2 2 2 2
Xco—K K 3 m-_. mK*omF*o

K*0 K

1 P2 P2 P Py)?
[4_ 1 2 + ( 1 2)
m

For on-shell states, Pﬁ 9 = m%*o and Eq. (B.21)) reduces to

K*O

| podloy LBE )
— 70 —_ - —_— —
xco—K " K*0 3 m%*om%(*o xcoK U K+0
2 2 2 2
1, (e e =]
= — ——*0 .
3 4m2?*0m§(*0 xcoK “K*0

Consequently, the decay width is

—
0 — M|_ — %0 2
xco—K T K*0 87Tm§<co xco—E K0l
where
— 1 4 2 2 \2 2 2 2,2 11/2
LE 2my g [mxco + (mf*o - mK*O) - 2(m?*0 + mK*O) mXco] 2.

Decay channel oo — K1 K
The corresponding interaction Lagrangian is extracted as

_ 00
L i, =M éoxooK K, + K'EKY,).

xcoK O K+

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

Consider only the xcg — K?f(l) decay channel, which gives the same contribution as the

xco — K fr FK 1 decay channel due to the isospin symmetry

0770
L —0o=nh K"K
XCOK?Kl 1 d)c Xco 1 1p o

(B.26)
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which has the same form of the interaction Lagrangian /JX Therefore, in a similar

—*0 .
coK "K*0
way as was discussed in the previous case for the decay width of x¢g into KK *0 one can
obviously obtain the decay width of the channel xgo — K ?F(l) as

2 2 2 2
’?1\ 1h2 022 + (Mico Mgy ™ m??) (B.27)
% T g2 ='1PC ) .
xco—K{ K,y 8mm2 . 3 ! 4m§(? m%(l)
where
- 1 4 2 2 \2 2 2 V2,2 71/2
| ka1l = ST (Mo + (Mg = m20)® = 2mip +mzo)?mi V2. (B.28)
Decay channel ycg — ww
The corresponding interaction Lagrangian is extracted as
1 I
Ly coww = §h1 PC XCOWNWN L » (B.29)

which also has the same form as the interaction Lagrangian EXC Thus one can

O%F*OK*O.
obtain the decay width of yog — ww as

4 2.2 11/2 2 22
T -9 [mXCO — 47TLW?TLXCO] / ihQ ¢2 2+ (mXCO — zm“-’) (B 30)
Xeomrew 167m3 12°17¢ Am, ' ‘
Decay channel ycg — ¢¢
The corresponding interaction Lagrangian is extracted as
1 1
Lxcows = 51 G XCOWSWs) (B.31)

Similar to the decay width for xco — ww, the decay width for xco — ¢¢ is

4 2.2 11/2 2 212
1—\ . 2 [mXCO B 4m¢mXCO} / hz 2 2 (mXCO B 2m¢) B 32
Xco—¢¢ = 167m3 |2+ Am} ' (B.32)
XCo

Decay channel ycg — pp

The corresponding interaction Lagrangian is extracted as

1 B
Lxcorn = 51 60 xco(p™ pjy +207"p}r) (B.33)
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which also has the same form as £, ,ww. We thus obtain the decay width as

FXCO—>PP = 3FXco—>pOp0

4 2,2 11/2 2 2 \2
_ 3[m><CO — Amjomo] w Lp2 |2+ (Mo = 2m3p) (B.34)
167m3 12717¢ am3,
Decay channel ycg — agag
The corresponding interaction Lagrangian has the form
_ 02 -+
Exooaoao =— M\ ¢¢ Xco(do + 2CL0 Qg ) . (B.35)
The decay width of x¢¢ into agag can be obtained as
1—‘XC()—WO ap — 3Fxgg—>a8 a8
4 2,2 11/2
_ 5 )\% Q%‘ [mXco - 4ma8 mXco} / (B.36)
8 mico 2my

Decay channel ygg — K 1+ K~

The corresponding interaction Lagrangian from the Lagrangian (8.1)) reads
=0 _ =0
Lyoori K = Zx Wi, b1 e xoo(K O, K- + 9, KKV + K0, K~ + K,"9,K°). (B.37)

Let us consider only the decay channel ycg — K 1+ K~ ; the decay channels xco9 — K?FO,

f(l)K 0K | K will give the same contribution as a result of the isospin symmetry, so consider
only

EXCOKTK* = Zr wi, h1 ¢c xco K0, K™ . (B.38)

We denote the momenta of K~ and K; as Py and Py, respectively. The energy-momentum
conservation on the vertex implies P = P; + P», where P denotes the momentum of the
decaying particle xco. Given that our particles are on-shell, we obtain

P2_P2_P2 m2 — M- — Mg+
PPy = 2 - Xco . sy (B.39)

Note that the scattering amplitude depends on the polarisation vector 5,(LO‘)(P2), Upon
substituting d,, — +iP" for the outgoing particles, one obtains

- ME(O;)O%KTK* = idy o x iPle) (P), (B.40)

The average modulus squared amplitude reads

- 21, 9 .
_ZMXCQ%KTK* = gAxcoKlK |: - Py + 2 | (B.41)
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where
AXCOKlK = ZK le hl gbCa (B4:2>
and
P12 = m%_ .
Then, the decay width FXC0—>K1+K— is
r = 7@1’ M ’ B.43
xco— KK~ = g2 WV oo KR (B.43)
Xco
where
- 1 4 2 2 \2 2 2 2 1/2
| k1| = 2 e + (mie— — mKﬂ —2(mp— + mK;L)mXCO . (B.44)

Similarly, one can obtain the decay width of xco — K* K as follows.
Decay channel xycoo — K*K,
From the interaction Lagrangian

L. oo = Zics wice b e xeoKo K (B.45)

which obtain from the corresponding interaction Lagrangian

—*0, * *— Tk * *— —5=*0 *
L ok x, = Zig wic- b oo xoo(Ky ' 0,Kg" — 9,5~ K* M+ 9 KgTK* ™ — 9, K " K™).

(B.46)
We compute the decay width as
i (m2 . —m2., —m?)>
LT 2.2 2 Xco Ko Ky’
o= 2 2 262 | —m2e + o |, (B47
xco— KK’ 81 m>2<co K K- hioc K0 47712?*0 ( )
0
where
- 1 4 2 2 \2 2 2 2 /2
| k1| = G My + (Miee0 — m?;()) — 2(Mew0 + mféo)mXCO . (B.48)

Note that we considered only the decay channel xcoK *OFSO because the other decay
channels contribute the same of isospin symmetry reasons. Thus,

FXCO_)K*FS = FXCO%K*OFSO + FXCO*)K*-Q»KS‘* + FXCOA)K*_KSH‘» + FXCO%KSOF*O . (B4:9)

Decay channels xco — 7, 1’

The corresponding interaction Lagrangian of yco with the " and the 7 resonances reads
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1 1
Lyconnny msnsmnns =(—A1 = §C¢%¢§)Z§N ute XCOUJQV + ihl wjzfm ZgNXCo OunNO*nN
1 1
4%—M—§WMZ%%%m%+5mwﬁﬂimmmew
1
- §¢§’v¢c¢s Zny Zng MINTS - (B.50)

Using Eq.(4.101) and Eq.(4.102), the interaction Lagrangian (B.50) will transform to a
Lagrangian which describes the interaction of ycg with n and 7/,

Ly con?m2mm’ = [_)‘1(27271\7 cos? py, + ZTQ]S sin? ;) — %cgb?\;(q% Z,27N cos? ¢y,
10X 2,50 oy + O T T sim g 05 2 bcxcon”
+ [;hlgbc(wfclNZ%N cos? on + wJ%lSng sin? gon)] Xc00,m0*n
[—/\1(Z$N sin? ©on + Z,QIS cos? on) — %cqﬁ?\,(qﬁg ZgN sin? ©n
+ %gb?sts cos? @y — NS Zny Zng S0 oy €08 @) doxcon’

xcodun' oty

+ [;hlgbc(wfclNZgN sin? @, + wj%lsng cos? @y)
+ [—2)\1(—Z3N + Zf,s) sin ¢y, cos @)

+ 5k (208 72, — 0% 72,) cos oy sinay)

- %CQZ)?VQSS ZnyZng (0052 $n — sin? $Pn COS @n)]ﬁbcxconn/

+ hi¢c cos gy sin gon(w]%lsZgS - w}lNng)XCoaunaﬂn’ , (B.51)

which contains three different decay channels, xco — 71, xco — 7’1, and xco — n7’, with
the following vertices

Ayoom = — Moc(Z2 cos® o + 27 sin® ¢y)

1 1 . .
- §c¢%¢c(¢% Z"?N cos? gy, + Z(ﬁ?ngs sin? @, + ONPs Zny Zns SN @y, COS @y
(B.52)

1 .
Bycom = §h1¢c(w]20mz$]v cos” on + wfclsZﬁs sin” ©n) (B.53)

Ay == Moc(Z] sin® o + Z7 cos® o)

1 ) 1 .
- §C¢?\I¢O<¢% ZﬁN sin” o+ ?ﬁvzgs cos” Py — QNS Zny Zns SN oy cOS o)
(B.54)

1 .
Byoonn = §h1¢0(w?‘11\r ZgN sin” $n + w?ﬁszgs cos” Qpﬁ) ) (B.55)
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. 1 1 _

Aycomy = — 2)\1¢C(—Z73N + ng) sin ¢y, cos ¢y, + 56@1)%;(;50(2@%)% Z?IN - 5(;5?\, ZZS) COS (py sin @y
1 .

— fcqb‘})’vgbsgbc ZnnZnsg (cos2 oy — sin? ) COS ) (B.56)

Bycomy = h1¢c cos gy sin ‘Pn(wflsZ2 wleZQ )- (B.57)

Let us firstly consider the channel xycg — nn. We denote the momenta of the two outgoing
n particles as P; and P>, and P denotes the momentum of the decaying xco particle. Given
that our particles are on shell, we obtain

_ P?2-pP}-pP; mi, —2m

P -P= — XCo . B.58
1 P . ; (B.58)

After replacing 0,, — +iP* for the outgoing particles, one obtains the decay amplitude as

2 2
— iMyco—smm = | Axcom — BXconnmXCOQ_an . (B.59)
Then the decay width is
[T —
Dyco—sm = Q&TT%O ’_ZMXCO—>7777| ) (B.60)
where ) "
]?1\ = D [mico — 4mnmico] . (B.61)

Similarly, the decay width of x¢g into 1'n’ is obtained as

— 5 9 12
‘ k 1‘ Myco — 2m77’
ano%n’n’ = 287r m2 Axaon’n’ - BXCon’n’ 9 ) (B.62)
Xco
where L2
— 1 4
[kl = G {meO —4m /mico} : (B.63)
0
In a similar way, the decay width of x¢g into 71’ can be obtained as
- 2 2 2 |2
|k1’ Myco = My = My
r A B / B.64
Xco—nm 87 m?cco Xconm Xconm ) ) ( )
where
B 1 4 2 212 2 24,2 12
[kl = T [mxco + (my 4+ my)* = 2(my + mn/)mXCO] : (B.65)
0

Decay channels xco — fofo

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1))
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2
m
Lycofs = =M1 00 Xco(ox +0%) — ng doxXC0G . (B.66)
0

Using the mixing matrix , the interaction Lagrangian becomes

B 2

m,
Lycofofs =— |0.9125)1 + 0.0841 GS} dcxcofo(1370)>
L 0

2
— 10.985\ +0.0144 ’(;‘g] bexcofo(1500)
0

- 2
mg

— {0.065\1 —0.0696 =
0

bcxcofo(1370) fo(1500)

r 2
— 10.55M, — 0.551 % dexcofo(1370) fo(1710)
L 0
r 2
— 10.24) — 0.228 ZLS} dcxcofo(1500) fo(1710) . (B.67)
L 0

Therefore, we obtain the decay widths for all channels represented in the interaction

Lagrangian (B.67) as follows:

Decay channels yco — fo(1370) fo(1370)

[0 — 4m3f (1370 Mmool m2 |?
r —9 o(1870)" xco — 0.9125A; ¢ — 0.0841 20 B.68
Xco— fo(1370)2 2 % Samd, 1%c 2 oc| , | )

Decay channels yco — fo(1500) fo(1500)

(M3 = 4””? (1500)mi 172 m2 |?
r =2 0 == —0.985\16¢ — 0.0144 =9 ., (B.69
XG0 fo (1500)2 2 8mmd,_ 19C & te (B.69)
Decay channels yco — fo(1370) fo(1500)
1 ma 2
L'\ co— fo(1370) fo(1500) :W — 0.065A19¢ + 0.0696 Eg¢c
2 2 2 2 2 2 2 q1/2
o (Mo + (mfo(1370) - mf0(1500)> - 2(mf0(1370) + mf0(1500))mxco] /

)
2Tano

(B.70)
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Decay channels yco — fo(1370) fo(1710)

1 m2 2

I = | — 055\ 0.551 0

xco— fo(1370) fo(1710) 87rm§<00 10¢ + G% bc
[ 2

2 2 2 2 2 2 11/2
Myeo T (mfo(1370) - mf0(1710)) - 2(mf0(1370) + mfg(l?lo))mXco] /

2Miy g
(B.71)
Decay channels yco — fo(1500) f5(1710)
1 mé |
T =—F 1| —0.228) — 0. 24
Xco—fo(1500) fo(1710) Stm?_ 19 G2
2 2 2 2 2 2 2 11/2
y [Myeo + (mfo(1500) - mf0(1710)) - 2(77”Lf0(1500) + mfg(l?lo))mXCo] /
2Miy g
(B.72)

B.2. Three-body decay rates for Y

The general formula for the three-body decay width for xco, which is proved in chapter 5,
takes the following form

S (mxco —ms3) ) 9 9
Iyoo—BiBBy = 9)3 / | — ZMA—>B1BQB:‘>’ dmi,
( ™ m1+m2)2

)3m
\/( mi +mig — mz)(m1 + mi2 — ma)(—m1 + miz + ma)(mq1 + miz2 + ma)

2
mis

\/ (=1 + Mz — m3)(Maypg + M1z — ms)(—myco + Mz +ms)(Mypg + Mz + ms)

2 )
mis

(B.73)

The quantities my, mg, ms refer to the masses of the three outgoing particles (P;, P, and
P3), which are (pseudo)scalar mesons in the present case, M, p, p,p, is the corresponding
tree-level decay amplitude, and S is a symmetrization factor (it equals 1 if all P, P, and
Pj5 are different, it equals 2 for two identical particles in the final state, and it equals 6 for
three identical particles in the final state)

Now let us list the corresponding tree-level decay amplitudes for xcg which are presented
in Tables 8.3 and 8.4 as follows:
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Decay channel xco — KJKn,n/
The corresponding interaction Lagrangian can be obtained from the Lagrangian (8.1]) as

P S _ _
cZK ZK; ZnndNdsdcxconn (K"K + Ky KO+ Ky KT+ KgTK™)

LycoKsKnyms = 73

vz

i

* -0 -+0 *— * —
cZk Zis Znsdndoxcons (KK + Ky K°+ K KT+ KgTK™).
(B.74)

Using Egs. (4.101, 4.102), the interaction Lagrangian (B.74) can be written as

1 1 .
LycoKgKny = ﬁcﬁbcﬁb%vZKZKcho (p5Zyy cos oy + §¢NZns sin ¢;)n

. 1
— (¢5Zyy sin gy, — §¢NZns cos gon)n'
x [KPK + Ky KO+ K"K + K;YK™]. (B.75)

Consequently, the amplitude decay for the decay channels xco — K§Kn and xco — KJKn/
can be obtain as

‘ 1 1 ,
— iMook Kn = —zﬁcqﬁcqb?vZKZKg(éanN cos py + §¢NZWS sin py) (B.76)
and
. 1 ) . 1
— iMycosKs Ky = \ﬁcgbcngZKZKg (—psZyy sin gy + §¢NZ7,S cos ¢y) , (B.77)

which are used to compute 'y kzky and I'y o, ke xy by Eq. 1}

Decay channel xycq — fon,n'

The corresponding interaction Lagrangian is extracted from the Lagrangian (8.1) and
given by

3
Lxcoonsnvs == 5€ T Zns ONDSOOXCOTNTINTIS — € Zpy dXdSPCX 0TS

1
- CZ$N¢?V¢%¢CXCOUN77]2V 3¢ Z,?S¢§’V¢0XCOGN77%
1
- §CZ77N’ Zﬂsﬁb?VQSC’XC’OUSUSnN- (B.78)

Substituting Eqs.(4.101, 4.102, 4.113, 4.114) and the relations (8.11) and (8.12), we get the
decay amplitudes for several channels, which are used in Eq.(B.73) to compute the decay
widths, as follows:
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Decay channel xco — fo(1370)nn

Lo fo(1370)m =cONGc [(0.085¢ N — 1.41¢5) cos ¢y sin pn Zyy Znsdn

—0.47sin* 0, Z2 ¢% + (0.17¢n — 0.94¢5) ¢ cos” oy Z7 | xcon” fo(1370) .
(B.79)

Thus, the decay amplitude for the decay width Ty 1370y, Teads

— iMoo fo(1370)m =CONPC [(0.085¢n — 1.41¢s) cos @y sin py Zyy ZnsdN
— 0.47sin” 0, Z7 ¢% + (0.17¢n — 0.94¢5)pg cos® ppZ7 ] . (B.80)

Decay channel xco — fo(1370)n'n/

£X00f0(1370)n/,7, =coNPC [(—0.085¢N + 1.41¢g) cos p, sin gy Zyy Zys N
— 0.47 cos? <p,7ng¢>?V + (0.17¢n — 0.9465)pg sin’ QDnZgN]XCO 0" fo(1370) .
(B.81)

Thus, the decay amplitude for the decay width I'y  _, r)(1370)y,y T€2dS

—iM o fo(1370)y =CONGC [(—0.085¢N + 1.41ds)cospy sin gy Zy . Znsdn
— 047 cos® oy Z7 d% + (0.17¢n — 0.94¢5)pgsin® oy Z2 ] . (B.82)

Decay channel xco — fo(1370)nn’

Ly cofo (13700 =cONGc [(0.085¢ N — 1.41¢g) cos® on Zyy Zns N
+ (—0.085¢x + 1.41¢3) sin® @, Zy\ ZnsdN

+ —0.94Z] ¢ + (—0.34¢n + 1.88¢5) s Zy . sin gy cos py| xcomm' fo(1370) .
(B.83)

Thus, the decay amplitude for the decay width I'y ., 1 (1370)5, reads

— iMoo fo(1370)my =CONDC [(0.085¢N — 1.4165) cos® o Zyy Zysdn
+ (—0.085¢ N + 1.41¢g) sin® ¢, Zyy ZnsON
+—0.94Z2 ¢ + (—0.34¢N + 1.88¢5) s Z, sinpy cospy| . (B.84)
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Decay channel xco — fo(1500)nn

Ly 0 fo(1500)m =CONPc [(—0.485¢n — 0.3151¢5) cos gy sin o Zyy Zns N

— 0.105sin” pp Z2 ¢ + (—0.97¢n — 0.21¢5)ds cos® o, Z7 | xcon® fo(1500) .
(B.85)

Thus, the decay amplitude for the decay width I’y _, 1500y, reads

—iM o fo 1500y =CONPC [(—0.485¢n — 0.3151.41¢) cos @y sin p, Zyy Zns O
— 0.105sin” o, Z2 ¢ + (—0.97¢n — 0.21¢5)dg cos” o, Z; | . (B.86)

Decay channel ycg — fo(1500)nn’

Ly o fo (1500 =cONOC [(—0.485¢ N — 0.3151¢) cos® o Zyy Zns N
+(0.48¢ N + 0.315¢5) sin® ¢, Zyx Zns ON

+—0.21Z ¢ + (L.946n + 0.42¢5) s Z;  sin gy cos oy | xconm' fo(1500) .
(B.87)

Thus, the decay amplitude for the decay width Ty _, 1500y, Teads

—iM g fo(1500)my =CONGC [(—0.485¢ N — 0.3151.41¢) cos® @, Zyy Zns N
+(0.48pN + 0.315¢5) sin® v, Zyy Zns ON
+—0.2122 ¢ + (1946 + 0.42¢5)psZ2, sin py cos | . (B.88)

Decay channel xco — fo(1710)nn

£X00f0(1710)7777 =CONPC [(_0-09¢N — 0.39¢s) cos py sin oy Zyy Zns o

+0.13sin” p, Z2 ¢ + (—0.18¢n + 0.26¢5)ds cos® ¢, Z7 | xcon® fo(1710) .
(B.89)

Thus, the decay amplitude for the decay width T'y ., (1710)y, reads

—iMy o fo(1710)y =CONGC [(—0.090N — 0.39¢5) cos gy sin gy Zyy Zysdn
+0.13sin* 0, Z7 ¢ + (—0.18¢n + 0.26¢5)ds cos” v, Z7 | . (B.90)
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Decay channel xco — fo(1710)nn’

Ly cofo(1710)my =CONPC [(_0'09¢N —0.39¢s) sin? OnZny Lns PN
+ (=0.09¢ N + 0.39¢5) cos® v, Zny Zns PN
+—0.262Z7 ¢ + (0.360n — 0.5205)ds Zy,, sin gy cos oy | xconn' fo(1710) .
(B.91)

Thus, the decay amplitude for the decay width T'y 1710y, Teads

—iMy s fo(1T10)my =CONDC cONPC [(—0.09¢ N — 0.39¢5) sin” on Zy . Zns b
+ (—=0.09¢ N + 0.39¢5) cos® v, Zny Zns N
+—0.262Z; ¢% + (0.360x — 0.5205)psZy, sin g, cospy] . (B.92)
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C. Decay rates for n¢

We present the explicit expressions for the two- and three-body decay rates for the pseu-
doscalar hidden-charmed meson 7¢, which are listed in Table 8.5 in Sec.8.3.

C.1. Two-body decay expressions for 7

The explicit expressions for the two-body decay widths of no are given by
Decay channel 5o — KoK

The corresponding interaction Lagrangian can be obtained from the Lagrangian ([8.27)
as

cxf %00 , ==+0 _ _
Lo —¢>N¢>S¢C ZrZi; Zneo(K3'K” + Ko K+ K"Kt + KiTK™). (C.1)

The decay width is obtained as

%
kil 26 2 2 42 L2 2
| SN o WC N Os D0 Lk Zics Ze: » (C.2)
C
with
- 1 2 2 2 2\ 2 12
’kl‘ = anc m +(mK mK*) —Q(mKS-I—mK)mnC (03)
Decay channel noc — ag
The corresponding interaction Lagrangian is extracted as
c _ _
L :Zgé?vgb%gi)c Zr Zyenc (adm® + agm +agmh). (C4)
The decay width is obtained as
EA
12 2
Lpe—sagn = SW ON b5 b6 Z2 7 770 5 (C.5)
with
- 1 4 2 2 \2 2 2, 2 V2
| k1] = 2 My, + (my —mg, )" —2(m; + mao)mnc . (C.6)
(o]
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Decay channel nc — fon, 1

The corresponding interaction Lagrangian can be obtained from the Lagrangian (|8.27)

as

C
Loycno chf)?\ﬂbc Znenc{—4oNbs(ZysnsonN + ZyynNos)

- 6(;% ZynTIN ON — ﬁb%\mSO’S Zns} . (C.7)

Substituting Eqs.(4.102, 4.103) and the relations (8.11) and (8.12), the interaction La-
grangian (C.7)) can be written as

c .
'Cncfonm’ = g(ﬁ\ﬂbC Zne {(3.76¢5 — 0.17¢N)dN Zng sin gy

+ (5.64¢5 — 0.68¢N) s Zyy cos ontnc fo(1370) 7
+{(0.8465 + 0.976N) b Zyg sin 0y
+(1.2605 + 3.886x) 65 Zny €08 o b fo(1500)1
+ {(0.18¢n — 1.04¢5)dN Zng sin @y,
+ (0.72¢N — 1.56¢5)ds Zy,, cos optnc fo(1710)n
+{(3.76¢5 — 0.17)N)dN Zyg cOS @y
— (5.64¢5 + 0.68)N)ds Zyy sin oy }ne fo(1370)7
+ {(0.84¢s + 0.979N ) PN Zy5 cOS
— (1.26¢5 + 3.88¢N)ds Zyy sin @y }nc fo(1500)7

+ {(0.18¢n — 1.04¢5)pN Zyg cOS @y
— (1.56¢5 — 0.72¢ N ) s Zny sin oy Ine fo(1710)7 | . (C.8)
We then obtain the following decay amplitudes:

Decay channel nc — f,(1370)n
%
ok 0% Z2. | (3.T605 — 0.1TdN) b Zng sin g,

oo poasrom = 5127 m?2
ne

2
+ (5.64¢s5 — 0.68¢N)ps Zy, cOs ‘Pn] ,  (C.9)

with

— 1 1/2
Rl = n%+m%mrmy_m@mmﬂﬁﬁ4 ANCERT)
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Decay channel nc — f,(1500)n
%
r _ IR a2 22 (08466 4 0.97 Z,. si
ne—fo(1500) = g5 5 C N P Zne (0.84¢5 + 0.97dpN) PN Zng sin @y,
no
2
+ (1.26¢5 + 3.880N )b Zyyyy COS %} ., (C.11)
with
i 4 2 212 2 2y, 2 12
’ k 1’ = anc mnc + (mf0(1500) — mn) — Q(mf0(1500) + mn)mnc . (C12)
Decay channel nc — fo(1710)n
Il
_ 1 2 4 2 72 .
Fnc—>fo(1710)77 = mc ng (Z)C ch (018¢N - 104¢S)¢N ZT]S Sin 9077
2
+ (0.72¢n — 1.5605)¢s Zm\,cosgon] ,  (C.13)
with
- 4 2 212 2 2, 2 12
’ k 1’ = anc mnc + (mf0(1710) — mn) — Q(mf0(1710) + mn)mnc . (C14)
Decay channel n¢e — fo(1370)n
%1
1
Lo fo1370)y = WCQ DN OE Z1 | (3.76¢5 — 0.1T¢N)dN Zyg cos oy
no
2
— (5645 + 0.68¢y )b Zny sin @n} ., (C.15)
with
Tl = 4 2 212 _ o2 2y, 2 12 c1
[ k1| = S | e+ (Mhysmo) — m2)? = 2(m?, 1gr0) + mE )M, | (C.16)
Decay channel n¢e — fo(1500)n
_>
r _ IR 2 g2 72 (08466 4 0.97 Z
no—+fo(1500) = g5 ¢ ON O Zne, |(0.84¢5 + 0.97dN ) PN Zyg cos oy
no
2
— (1.265 + 3.88¢N)bs Zyy singy| ,  (C.17)
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with
- 4 2 212 2 2y 2 1/2
Kl = g e+ (Mpyas00) = )™ = 20mgyaso0) + e | (C.18)
C
Decay channel nc — fo(1710)n/
N
1
ne
2
— (1.5665 — 0.72x )b Zyy, sin 4,07,] . (C.19)
with
- 4 2 212 2 2y 2 12
| k 1’ = om mnc + (mf0(1710) - mn/) — 2(mf0(1710) + mn/)mncj| . (CQO)
ne

C.2. Three-body decay expressions for 7¢

The corresponding interaction Lagrangian, contains the three-body decay rates for the no
meson, is extracted as

C
Ly chf)?\ﬂﬁc Znenc{2¢n ng Z77N77§'77N + 605 Zyg Zngzv??s
—0 _ —0 _
— V20N Zns Zi(K K° + K™K ) g — 3v2¢5 Zyy Z3 (K K° + K~ K ")y
V205 Zr 22| V2AR Kt + KK 7t) — (K'K" — K~ K)r"
— 2515 Zys Z2(n°° + 21771} . (C.21)

The general formula for the three-body decay width for 5o, which is proved in chapter 5,
takes the following form

r S (mag =ms) M 2
A—B1B3Bs — m /(m1+m2)2 ‘ —1 A—>BlBng|

2

\/(_ml + mi2 — ma)(my + mi2 — ma)(—my + miz2 + ma)(m1 + miz + ma)
mia

2
5 dmisy .

\/(—mnc +mi2 — m3)(Mye + miz — m3)(—my. + miz +ms)(my, +mig +mg)
mia

Now let us list the corresponding tree-level decay amplitudes for o which are obtained
from the Lagrangian (C.21)) and are presented in Table 8.5 as follows:
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Decay channel ¢ — 7% m; = mg = m3 = m, and S =6

2
—_— 1 : .

| =i M,y 3 ? = [4&75?\/(?0 sin @y, €08 @ (Zyg N sin py + 32y, b5 €S ©n) Zne, Zny Zns]
(C.22)

Decay channel nc — 13t mi; = mg = m3z =m,y and S =6

2
- 1 . .
‘_ZMncHn’3|2 = [40@5%{9250 sin ¢, €os @y (Zys O N cos @y — 32,5 b5 Sinwy) Zye Zyy Zns

(C.23)
Decay channel nc — n'n?: m; = My, M2 =m3 = my and S = 2
- 1 . .
| =M,y 2|” = Ec%ﬁv(ﬁ% [(bN Zns sin @p(2 cos® g, — sin® @)
2
+ 32, ¢s cos Lp,](cos2 op — 2 sin? 9077)] . (C.24)
Decay channel 1o — 7/?n: my = mg = My, m3 = my and S = 2
S| :
|_ZM770—>77’277’2 = quﬁ?\,dﬁc Zsc ZgN ng Zps®N cos gy (cos? p, — 2sin? )
2
+ 32,y ¢ssin gy, (cos? op — 2 cos? ©n)
(C.25)
Decay channel nKK: m; = K% my = M0, M3 = My
F’I’]c—)’l]Kf = FncﬁﬂK"'K_ + Fnc—)nKO?O
= Fnc—mKO?o' (C.26)
with the average modulus squared decay amplitude
1 -
‘_ZMnc—meF = 3—202(;5%(;% Z%C Zi (N Zyg sin gy + 3bs Zyy cos py)? . (C.27)
Decay channel ¢ — /' KK: m; = K°, my = M0, M3 = My
Lk = 21“770_}7],](0?0. (C.28)

The average modulus squared decay amplitude for this process reads

—_— 1 -
—iM, .l = 3302¢§V¢g Z} . Zic (N Zng cos oy — 3ds Zyy singy)? . (C.29)
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Decay channel n¢ — nrm: mp =n, mg = mz =m0 and S =2
Lhyeonar = 300 pr070 5 (C.30)

where the average modulus squared decay amplitude for this process is obtained from the

Lagrangian (C.21) as

—_— 1 -
|=iMyye—pmn|® = EC%W?; be Zy, Zr Zy sin® @y . (C.31)

Decay channel g — n'mn: my =1, mo =m3 =m, o and S =2
Typosmirm = 3oy m0n0 5 (C.32)

where the average modulus squared decay amplitude for this process is

- 1
| =My yrmn)? = T662¢;1V¢’g bo 22 23 Zy cos® oy . (C.33)

Decay channel ¢ -+ KK7: m; = KT, my = K~, m3 =m0 and S = 2

Pneskikn =Upesgri-a0 + 1 pogoo+ 1 gopr — + Tposgog—m+
- 4F7704)K+K_7T0' (034)

with the average modulus squared decay amplitude

nc "Nk —m

; 1
|~ My kim0l = 3*202¢31v¢§¢20 Ze Zye Z- (C.35)
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