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Abstract

How to evaluate theoretical errors out of a x? analysis

1 Hesse matrix

Consider a theoretical approach which dependens on N unknown parameters

Z1, g, ..., Ty. We can determine them by searching the minimum of
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where A;[x1, ..., 2] are the theoretical expressions (Q > N) for which there are
experimental measurements 0 A;.

Let the point {x ... 2%} be the minimum of x? realized at the point
{xpin . 2%in) We introduce the new variables y; :
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In therms of the variables y; the minimum is obviously realized at P = {0, ...0}.
Let us now write the Taylor expansion of x? around y; = 0 :

Iyl = x§ +y'Hy (5)

where the Hesse matrix H is given by:
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Note, we have used the fact the the first derivative vanishes: ( o0,

0.
2 Diagonalization
We now introduce new variables z; in the following way:
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with B C SO(N) in such a way that

BHB' = A = diag{\1, ..., An'}
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where A1, ..., A\, are the eigenvalues of the matrix H. Note, the matrix B can be

written as
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The quantity x? expressed in terms of z; takes the simple form:

X’[2] = x2+2'BHB'z=x32+2'\z=
X(% + Z%)q + ...+ Z]QV/\N

The errors on the quantities z; are now easily given by

which correspond to a variation of &1 for the x? :

1
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If we shift at the same time all the quantities z; we obtain
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This is the maximum variation allowed.

J=x5+N.
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3 Error calculation for a generic function F

Now, all the theoretical quantities we would like to determine are -most probably-
function of the original parameters ;. Let us consider, for instance, some func-
tion

F = Flzy,...,xN] (15)

which we want to determine. The central value is easy:
Fy = F[zn, .., i) (16)

The problem is how to calculate the error JF. In fact, we know the errors only
in terms of the variables z;, thus we should re-express F' as function F' = F[z]

and evaluate
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Instead of doing it explicitly we notice that
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where the derivatives gﬁi Y gﬁ; are the first column of the matrix B?.
We now present two ways to write JF.
Way 1 to write §F in a compact form:
We introduce the vector
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F=(vr) =| (19)
P OF
orn P
Then:
oF  _ OF Oz OF duxy (20)
821 N 82131 821 6.’1?]\] 821
-, A\t -
- (5, = (57),= (1), o
1 1 1
Ergo:
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Way 2 to write §F in a compact form:

It is useful to introduce the matrix D
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and then the matrix product
DBt A"V (24)
We then pick up only the diagonal elements of the latter matrix and form the
vector
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Now, the error of the function F' is given by
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When changing the function F' with another function G all goes as before,
provided that one recalculates the matrix D as
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4 Error on the original parameters z;

As a last step we consider a special case. We suppose that the function G = x;.
Using the way 2 described above, the matrix D takes the form

1 0 .
D=|(1 0 . (28)

One obtains the error on the original parameter z:
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Note that the latter can be obtained also in another way. To this end we recall
that

BHB! =\ (30)
Ergo:
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out of which we identify the inverse of the Hesse matrix:
H™'=B'\"'B. (32)

Now, let us consider the element H 1_11. With simple passages we obtain that
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and therefore

(53)1 = \/Hfll. (34)

The error on the original parameter x; is the first element of the inverse Hesse

matrix. More in general
Sx; =/ H;; ! (35)

i.e., the diagonal of the inverse Hesse matrix gives us the squared errors of the
original parameters.

Note that, in virtue of the obtained dx;, one would be tempted to calculate
the error of a function F' as
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However, the variables z; do not diagonalize the Hesse matrix and correlations
are not eliminated. One has therefore

5 Fraive > OF. (37)

The evaluation of dF,, ;v is therefore an overestimate of the real error. In
fact, we cannot vary the parameters x; as we want in the hypercube defined by
x; £ dx; because in this way we neglect the correlations and we may reach value
of x? which are much larger than the ‘limit’ x3 + N evaluated above.



