Exercise 1: Three-body decay with intermediate virtual state (14 points $=3+4+4+3$)
Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1} \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{L}_{0}=\frac{1}{2}\left[\left(\partial_{\mu} P\right)^{2}-M_{P}^{2} P^{2}\right]+\frac{1}{2}\left[\left(\partial_{\mu} S\right)^{2}-M_{S}^{2} S^{2}\right]+\sum_{i=1,2,3} \frac{1}{2}\left[\left(\partial_{\mu} \varphi_{i}\right)^{2}-m_{i}^{2} \varphi_{i}^{2}\right] \tag{2}\\
\mathcal{L}_{1}=\alpha P S \varphi_{3}+g S \varphi_{1} \varphi_{2} \tag{3}
\end{gather*}
$$

For simplicity we set $m_{3}=0$.

1. If $g=0$ the particle S is stable. Evaluate the two-body decay width $\Gamma_{P \rightarrow S \varphi_{3}}$.
2. If $\alpha=0$ only the decay $S \rightarrow \varphi_{1} \varphi_{2}$ takes place. Determine $\Gamma_{S \rightarrow \varphi_{1} \varphi_{2}}$. The spectral function of S in the relativistic Breit-Wigner approximation is given by

$$
\begin{equation*}
d_{S}(x)=N \frac{\theta\left(x-m_{1}-m_{2}\right)}{\left(x^{2}-M_{S}^{2}\right)^{2}+\left(M_{S} \Gamma_{S \rightarrow \varphi_{1} \varphi_{2} .}\right)^{2}} \tag{4}
\end{equation*}
$$

Which is the equation which determines the normalization constant N ?
3. For $\alpha \neq 0, g \neq 0$ the three-body decay takes place. Write down the expression of $\Gamma_{P \rightarrow \varphi_{1} \varphi_{2} \varphi_{3}}$ using the results of points 3.1 and 3.2. The final solution should be expressed in the integral form

$$
\begin{equation*}
\Gamma_{P \rightarrow \varphi_{1} \varphi_{2} \varphi_{3}}=\int_{a}^{b} F(x) d x \tag{5}
\end{equation*}
$$

where $x=m_{12}$ and $F(x)$ is non-vanishing for $a<x<b$. Determine a, b, and $F(x)$.
4. Discuss the limit in which g is very small.

Exercise 2: Virtual particle in the 1-3 channel (6 points)
Consider a three-body decay $P \rightarrow \varphi_{1} \varphi_{2} \varphi_{3}$ described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1} \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{L}_{1}=\alpha P S \varphi_{2}+g S \varphi_{1} \varphi_{3} \tag{7}
\end{equation*}
$$

How do we 'see' the existence of the particle S in the usual Dalitz plot as function of the two variables m_{12}^{2} and m_{23}^{2} ?

