$\underline{\text { Exercise 1: Tilted Mexican hat }}$ (12 points $=2+4+3+3$)

Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-V(\sigma, \pi) \tag{1}
\end{equation*}
$$

where the potential reads

$$
\begin{equation*}
V(\sigma, \pi)=\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}-F^{2}\right)^{2}-\varepsilon \sigma \tag{2}
\end{equation*}
$$

1. The minimum of the potential is realized for $(\sigma, \pi)=(\phi, 0)$. Determine the equation which defines ϕ. (It is an equation of third order; no need to solve it exactly.)
2. Perform the shift $\sigma \rightarrow \sigma+\phi$ and determine the masses M_{σ} and M_{π}. In particular, show that $M_{\pi}^{2}=\varepsilon / \phi$. (In order to show it use the result of ex. 1.1).
3. Determine the numerical value of F, ε and λ when $\phi=f_{\pi}=92.4 \mathrm{MeV}, M_{\sigma}=1 \mathrm{GeV}, M_{\pi}=139$ MeV.
4. Determine the mathematical expression of the decay $\Gamma_{\sigma \rightarrow \pi \pi}$ and determine its numerical value by using the input of ex. 1.3.

Exercise 2: Polar coordinates (8 points $=4+4$)
Consider the Lagrangian of Eq. (1) and perform the transformation to polar coordinates:

$$
\begin{equation*}
\sigma=\rho \cos \varphi, \pi=\rho \sin \varphi \tag{3}
\end{equation*}
$$

1. Determine the Lagrangian in terms of the new fields ρ and φ.
2. Calculate the decay $\rho \rightarrow \varphi \varphi$ for the case $\varepsilon=0$. Compare it to the result in Cartesian coordinates.
