DECAYS IN QFT - WS 2012/2013

Sheet 11

1/2/2013

<u>Exercise 1: Tilted Mexican hat</u> (12 points = 2 + 4 + 3 + 3)

Consider the Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \sigma \right)^2 + \frac{1}{2} \left(\partial_{\mu} \pi \right)^2 - V(\sigma, \pi)$$
(1)

where the potential reads

$$V(\sigma,\pi) = \frac{\lambda}{4} \left(\sigma^2 + \pi^2 - F^2\right)^2 - \varepsilon\sigma .$$
⁽²⁾

- 1. The minimum of the potential is realized for $(\sigma, \pi) = (\phi, 0)$. Determine the equation which defines ϕ . (It is an equation of third order; no need to solve it exactly.)
- 2. Perform the shift $\sigma \to \sigma + \phi$ and determine the masses M_{σ} and M_{π} . In particular, show that $M_{\pi}^2 = \varepsilon/\phi$. (In order to show it use the result of ex. 1.1).
- 3. Determine the numerical value of F, ε and λ when $\phi = f_{\pi} = 92.4$ MeV, $M_{\sigma} = 1$ GeV, $M_{\pi} = 139$ MeV.
- 4. Determine the mathematical expression of the decay $\Gamma_{\sigma \to \pi\pi}$ and determine its numerical value by using the input of ex. 1.3.

<u>Exercise 2: Polar coordinates</u> (8 points = 4 + 4)

Consider the Lagrangian of Eq. (1) and perform the transformation to polar coordinates:

$$\sigma = \rho \cos \varphi, \ \pi = \rho \sin \varphi \ . \tag{3}$$

- 1. Determine the Lagrangian in terms of the new fields ρ and φ .
- 2. Calculate the decay $\rho \to \varphi \varphi$ for the case $\varepsilon = 0$. Compare it to the result in Cartesian coordinates.